-
Notifications
You must be signed in to change notification settings - Fork 26.3k
[optim][adam] use fastest impl whenever possible, add util #93184
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Conversation
[ghstack-poisoned]
🔗 Helpful Links🧪 See artifacts and rendered test results at hud.pytorch.org/pr/93184
Note: Links to docs will display an error until the docs builds have been completed. ❌ 1 Failures, 1 PendingAs of commit a818e43: NEW FAILURES - The following jobs have failed:
This comment was automatically generated by Dr. CI and updates every 15 minutes. |
This allows it so that ONLY when the users don't set anything for foreach or fused do we switch the default and cascades adam so that we default to fused, then foreach, then single-tensor.
To clarify:
* if the user puts True in foreach _only_, it will run the foreach implementation.
* if the user puts True in fused _only_, it will run the fused implementation.
* if the user puts True in foreach AND for fused, it will run the fused implementation.
And:
* if the user puts False in foreach _only_, it will run the single tensor implementation.
* if the user puts False in fused _only_, it will still run the single tensor implementation.
* if the user puts False in foreach AND for fused, it will run the single tensor implementation.
I also didn't trust myself that much with the helper function, so I ran some local asserts on _default_to_fused_or_foreach. The only point left to really test is the type(p) -- torch.Tensor but I think the distributed tests will catch that in CI.
```
cuda_only_fp_list = [
torch.rand((1, 2), device="cuda", dtype=torch.float32),
torch.rand((1, 2), device="cuda", dtype=torch.float64),
torch.rand((1, 2), device="cuda", dtype=torch.float16),
torch.rand((1, 2), device="cuda", dtype=torch.bfloat16),
]
cuda_only_int_list = [
torch.randint(1024, (1, 2), device="cuda", dtype=torch.int64),
]
cpu_list = [
torch.rand((1, 2), device="cpu", dtype=torch.float32),
torch.rand((1, 2), device="cpu", dtype=torch.float64),
torch.rand((1, 2), device="cpu", dtype=torch.float16),
]
none_list = [None]
# differentiable should always make it return false for both
assert _default_to_fused_or_foreach([cuda_only_fp_list], True, True) == (False, False)
assert _default_to_fused_or_foreach([cuda_only_fp_list], True, False) == (False, False)
# cpu lists should always make it return false for both
assert _default_to_fused_or_foreach([cuda_only_fp_list, cpu_list], False, True) == (False, False)
assert _default_to_fused_or_foreach([cpu_list], False, True) == (False, False)
assert _default_to_fused_or_foreach([cuda_only_fp_list, cpu_list], False, False) == (False, False)
assert _default_to_fused_or_foreach([cpu_list], False, False) == (False, False)
# has fused triggers correctly
assert _default_to_fused_or_foreach([cuda_only_fp_list], False, True) == (True, False)
assert _default_to_fused_or_foreach([cuda_only_fp_list], False, False) == (False, True)
# ints always goes to foreach
assert _default_to_fused_or_foreach([cuda_only_fp_list, cuda_only_int_list], False, True) == (False, True)
assert _default_to_fused_or_foreach([cuda_only_fp_list, cuda_only_int_list], False, False) == (False, True)
# Nones don't error
assert _default_to_fused_or_foreach([cuda_only_fp_list, none_list], False, True) == (True, False)
assert _default_to_fused_or_foreach([cuda_only_fp_list, cuda_only_int_list, none_list], False, True) == (False, True)
assert _default_to_fused_or_foreach([none_list], False, True) == (True, False)
assert _default_to_fused_or_foreach([none_list], False, False) == (False, True)
```
cc ezyang gchanan
[ghstack-poisoned]
This allows it so that ONLY when the users don't set anything for foreach or fused do we switch the default and cascades adam so that we default to fused, then foreach, then single-tensor.
To clarify:
* if the user puts True in foreach _only_, it will run the foreach implementation.
* if the user puts True in fused _only_, it will run the fused implementation.
* if the user puts True in foreach AND for fused, it will run the fused implementation.
And:
* if the user puts False in foreach _only_, it will run the single tensor implementation.
* if the user puts False in fused _only_, it will still run the single tensor implementation.
* if the user puts False in foreach AND for fused, it will run the single tensor implementation.
I also didn't trust myself that much with the helper function, so I ran some local asserts on _default_to_fused_or_foreach. The only point left to really test is the type(p) -- torch.Tensor but I think the distributed tests will catch that in CI.
```
cuda_only_fp_list = [
torch.rand((1, 2), device="cuda", dtype=torch.float32),
torch.rand((1, 2), device="cuda", dtype=torch.float64),
torch.rand((1, 2), device="cuda", dtype=torch.float16),
torch.rand((1, 2), device="cuda", dtype=torch.bfloat16),
]
cuda_only_int_list = [
torch.randint(1024, (1, 2), device="cuda", dtype=torch.int64),
]
cpu_list = [
torch.rand((1, 2), device="cpu", dtype=torch.float32),
torch.rand((1, 2), device="cpu", dtype=torch.float64),
torch.rand((1, 2), device="cpu", dtype=torch.float16),
]
none_list = [None]
# differentiable should always make it return false for both
assert _default_to_fused_or_foreach([cuda_only_fp_list], True, True) == (False, False)
assert _default_to_fused_or_foreach([cuda_only_fp_list], True, False) == (False, False)
# cpu lists should always make it return false for both
assert _default_to_fused_or_foreach([cuda_only_fp_list, cpu_list], False, True) == (False, False)
assert _default_to_fused_or_foreach([cpu_list], False, True) == (False, False)
assert _default_to_fused_or_foreach([cuda_only_fp_list, cpu_list], False, False) == (False, False)
assert _default_to_fused_or_foreach([cpu_list], False, False) == (False, False)
# has fused triggers correctly
assert _default_to_fused_or_foreach([cuda_only_fp_list], False, True) == (True, False)
assert _default_to_fused_or_foreach([cuda_only_fp_list], False, False) == (False, True)
# ints always goes to foreach
assert _default_to_fused_or_foreach([cuda_only_fp_list, cuda_only_int_list], False, True) == (False, True)
assert _default_to_fused_or_foreach([cuda_only_fp_list, cuda_only_int_list], False, False) == (False, True)
# Nones don't error
assert _default_to_fused_or_foreach([cuda_only_fp_list, none_list], False, True) == (True, False)
assert _default_to_fused_or_foreach([cuda_only_fp_list, cuda_only_int_list, none_list], False, True) == (False, True)
assert _default_to_fused_or_foreach([none_list], False, True) == (True, False)
assert _default_to_fused_or_foreach([none_list], False, False) == (False, True)
```
cc ezyang gchanan
[ghstack-poisoned]
albanD
left a comment
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Sound good, only a stylistic comment.
This allows it so that ONLY when the users don't set anything for foreach or fused do we switch the default and cascades adam so that we default to fused, then foreach, then single-tensor.
To clarify:
* if the user puts True in foreach _only_, it will run the foreach implementation.
* if the user puts True in fused _only_, it will run the fused implementation.
* if the user puts True in foreach AND for fused, it will run the fused implementation.
And:
* if the user puts False in foreach _only_, it will run the single tensor implementation.
* if the user puts False in fused _only_, it will still run the single tensor implementation.
* if the user puts False in foreach AND for fused, it will run the single tensor implementation.
I also didn't trust myself that much with the helper function, so I ran some local asserts on _default_to_fused_or_foreach. The only point left to really test is the type(p) -- torch.Tensor but I think the distributed tests will catch that in CI.
```
cuda_only_fp_list = [
torch.rand((1, 2), device="cuda", dtype=torch.float32),
torch.rand((1, 2), device="cuda", dtype=torch.float64),
torch.rand((1, 2), device="cuda", dtype=torch.float16),
torch.rand((1, 2), device="cuda", dtype=torch.bfloat16),
]
cuda_only_int_list = [
torch.randint(1024, (1, 2), device="cuda", dtype=torch.int64),
]
cpu_list = [
torch.rand((1, 2), device="cpu", dtype=torch.float32),
torch.rand((1, 2), device="cpu", dtype=torch.float64),
torch.rand((1, 2), device="cpu", dtype=torch.float16),
]
none_list = [None]
# differentiable should always make it return false for both
assert _default_to_fused_or_foreach([cuda_only_fp_list], True, True) == (False, False)
assert _default_to_fused_or_foreach([cuda_only_fp_list], True, False) == (False, False)
# cpu lists should always make it return false for both
assert _default_to_fused_or_foreach([cuda_only_fp_list, cpu_list], False, True) == (False, False)
assert _default_to_fused_or_foreach([cpu_list], False, True) == (False, False)
assert _default_to_fused_or_foreach([cuda_only_fp_list, cpu_list], False, False) == (False, False)
assert _default_to_fused_or_foreach([cpu_list], False, False) == (False, False)
# has fused triggers correctly
assert _default_to_fused_or_foreach([cuda_only_fp_list], False, True) == (True, False)
assert _default_to_fused_or_foreach([cuda_only_fp_list], False, False) == (False, True)
# ints always goes to foreach
assert _default_to_fused_or_foreach([cuda_only_fp_list, cuda_only_int_list], False, True) == (False, True)
assert _default_to_fused_or_foreach([cuda_only_fp_list, cuda_only_int_list], False, False) == (False, True)
# Nones don't error
assert _default_to_fused_or_foreach([cuda_only_fp_list, none_list], False, True) == (True, False)
assert _default_to_fused_or_foreach([cuda_only_fp_list, cuda_only_int_list, none_list], False, True) == (False, True)
assert _default_to_fused_or_foreach([none_list], False, True) == (True, False)
assert _default_to_fused_or_foreach([none_list], False, False) == (False, True)
```
cc ezyang gchanan
[ghstack-poisoned]
|
@pytorchbot merge |
Merge startedYour change will be merged once all checks pass (ETA 0-4 Hours). Learn more about merging in the wiki. Questions? Feedback? Please reach out to the PyTorch DevX Team |
Merge failedReason: 1 mandatory check(s) failed (Rule Dig deeper by viewing the failures on hud Details for Dev Infra teamRaised by workflow job |
|
@pytorchbot merge -f "xla failure looks like an infra issue" |
Merge startedYour change will be merged immediately since you used the force (-f) flag, bypassing any CI checks (ETA: 1-5 minutes). Learn more about merging in the wiki. Questions? Feedback? Please reach out to the PyTorch DevX Team |
This allows it so that ONLY when the users don't set anything for foreach or fused do we switch the default and cascades adam so that we default to fused, then foreach, then single-tensor.
To clarify:
And:
Stack from ghstack (oldest at bottom):
I also didn't trust myself that much with the helper function, so I ran some local asserts on _default_to_fused_or_foreach. The only point left to really test is the type(p) -- torch.Tensor but I think the distributed tests will catch that in CI.
cc @ezyang @gchanan