Skip to content

Conversation

@andrewor14
Copy link
Contributor

@andrewor14 andrewor14 commented Dec 7, 2022

Stack from ghstack (oldest at bottom):

Summary: The existing BackendConfig fusion pattern
uses a "reversed nested tuple" format that is highly
unintuitive. For example,

linear-relu -> (nn.ReLU, nn.Linear)
conv-bn-relu -> (nn.ReLU, (nn.BatchNorm2d, nn.Conv2d))

This pattern format also complicates the signatures
of the user specified "fuser methods", which needed
to accept arguments in reverse nested order to match
the patterns:

def fuse_linear_relu(is_qat, relu, linear):
    ...

def fuse_conv_bn_relu(is_qat, relu, bn_conv):
    (bn, conv) = bn_conv
    ...

Instead, this commit introduces a new pattern format that
simply specifies the ops in forward order with no nesting:

linear-relu -> (nn.Linear, nn.ReLU)
conv-bn-relu -> (nn.Conv2d, nn.BatchNorm2d, nn.ReLU)

def fuse_linear_relu(is_qat, linear, relu):
    ...

def fuse_conv_bn_relu(is_qat, conv, bn, relu):
    ...

Note that the legacy "reversed nested tuple" is still
used internally since it is more general. In the
future, we should replace it with the format used in
the subgraph rewriter in torch.fx, and simplify the
existing pattern matching code to handle the new
format added in this commit.

BC-breaking Notes:

Before:

import torch as nn
import torch.ao.nn.intrinsic as nni
from torch.ao.quantization.backend_config import BackendPatternConfig

def fuse_linear_relu(is_qat, relu, bn_conv):
    (bn, conv) = bn_conv
    return nni.ConvBnReLU2d(conv, bn, relu)

config = BackendPatternConfig((nn.ReLU, (nn.BatchNorm2d, nn.Conv2d))) \
    .set_dtype_configs(...) \
    .set_fuser_method(fuse_conv_bn_relu) \
    .set_fused_module(nni.ConvBnReLU2d)

After:

def fuse_linear_relu(is_qat, conv, bn, relu):
    return nni.ConvBnReLU2d(conv, bn, relu)

config = BackendPatternConfig((nn.Conv2d, nn.BatchNorm2d, nn.ReLU)) \
    .set_dtype_configs(...) \
    .set_fuser_method(fuse_conv_bn_relu) \
    .set_fused_module(nni.ConvBnReLU2d)

OR (for backward-compatibility)

def fuse_linear_relu(is_qat, relu, bn_conv):
    (bn, conv) = bn_conv
    return nni.ConvBnReLU2d(conv, bn, relu)

config = BackendPatternConfig((nn.ReLU, (nn.BatchNorm2d, nn.Conv2d))) \
    .set_dtype_configs(...) \
    .set_fuser_method(fuse_conv_bn_relu) \
    .set_fused_module(nni.ConvBnReLU2d) \
    ._set_use_legacy_pattern_format(True)

Test Plan:
python test/test_quantization.py TestQuantizeFx
python test/test_quantization.py TestQuantizeFxOps
python test/test_quantization.py TestBackendConfig

Reviewers: jerryzh168, vkuzo

Subscribers: jerryzh168, vkuzo

Differential Revision: D41854096

Summary: The existing BackendConfig fusion pattern
uses a "reversed nested tuple" format that is highly
unintuitive. For example,
```
linear-relu -> (nn.ReLU, nn.Linear)
conv-bn-relu -> (nn.ReLU, (nn.BatchNorm2d, nn.Conv2d))
```
This pattern format also complicates the signatures
of the user specified "fuser methods", which needed
to accept arguments in reverse nested order to match
the patterns:
```
def fuse_linear_relu(is_qat, relu, linear):
    ...

def fuse_conv_bn_relu(is_qat, relu, bn_conv):
    (bn, conv) = bn_conv
    ...
```
Instead, this commit introduces a new pattern format that
simpliy specifies the ops in forward order with no nesting:
```
linear-relu -> (nn.Linear, nn.ReLU)
conv-bn-relu -> (nn.Conv2d, nn.BatchNorm2d, nn.ReLU)

def fuse_linear_relu(is_qat, linear, relu):
    ...

def fuse_conv_bn_relu(is_qat, conv, bn, relu):
    ...
```
Note that the legacy "reversed nested tuple" is still
used internally since it is more general. In the
future, we should replace it with the format used in
the subgraph rewriter in `torch.fx`, and simplify the
existing pattern matching code to handle the new
format added in this commit.

BC-breaking Notes:

Before:
```
import torch as nn
import torch.ao.nn.intrinsic as nni
from torch.ao.quantization.backend_config import BackendPatternConfig

def fuse_linear_relu(is_qat, relu, bn_conv):
    (bn, conv) = bn_conv
    return nni.ConvBnReLU2d(conv, bn, relu)

config = BackendPatternConfig((nn.ReLU, (nn.BatchNorm2d, nn.Conv2d))) \
    .set_dtype_configs(...) \
    .set_fuser_method(fuse_conv_bn_relu) \
    .set_fused_module(nni.ConvBnReLU2d)
```

After:
```
def fuse_linear_relu(is_qat, conv, bn, relu):
    return nni.ConvBnReLU2d(conv, bn, relu)

config = BackendPatternConfig((nn.Conv2d, nn.BatchNorm2d, nn.ReLU)) \
    .set_dtype_configs(...) \
    .set_fuser_method(fuse_conv_bn_relu) \
    .set_fused_module(nni.ConvBnReLU2d)
```

OR (for backward-compatibility)

```
def fuse_linear_relu(is_qat, relu, bn_conv):
    (bn, conv) = bn_conv
    return nni.ConvBnReLU2d(conv, bn, relu)

config = BackendPatternConfig((nn.ReLU, (nn.BatchNorm2d, nn.Conv2d))) \
    .set_dtype_configs(...) \
    .set_fuser_method(fuse_conv_bn_relu) \
    .set_fused_module(nni.ConvBnReLU2d) \
    ._set_legacy_pattern_format(True)
```

Test Plan:
python test/test_quantization.py TestQuantizeFx
python test/test_quantization.py TestQuantizeFxOps
python test/test_quantization.py TestBackendConfig

Reviewers: jerryzh168, vkuzo

Subscribers: jerryzh168, vkuzo

[ghstack-poisoned]
@pytorch-bot pytorch-bot bot added the release notes: quantization release notes category label Dec 7, 2022
@pytorch-bot
Copy link

pytorch-bot bot commented Dec 7, 2022

🔗 Helpful Links

🧪 See artifacts and rendered test results at hud.pytorch.org/pr/90351

Note: Links to docs will display an error until the docs builds have been completed.

✅ No Failures

As of commit 8a98fff:
💚 Looks good so far! There are no failures yet. 💚

This comment was automatically generated by Dr. CI and updates every 15 minutes.

… format"

Summary: The existing BackendConfig fusion pattern
uses a "reversed nested tuple" format that is highly
unintuitive. For example,
```
linear-relu -> (nn.ReLU, nn.Linear)
conv-bn-relu -> (nn.ReLU, (nn.BatchNorm2d, nn.Conv2d))
```
This pattern format also complicates the signatures
of the user specified "fuser methods", which needed
to accept arguments in reverse nested order to match
the patterns:
```
def fuse_linear_relu(is_qat, relu, linear):
    ...

def fuse_conv_bn_relu(is_qat, relu, bn_conv):
    (bn, conv) = bn_conv
    ...
```
Instead, this commit introduces a new pattern format that
simpliy specifies the ops in forward order with no nesting:
```
linear-relu -> (nn.Linear, nn.ReLU)
conv-bn-relu -> (nn.Conv2d, nn.BatchNorm2d, nn.ReLU)

def fuse_linear_relu(is_qat, linear, relu):
    ...

def fuse_conv_bn_relu(is_qat, conv, bn, relu):
    ...
```
Note that the legacy "reversed nested tuple" is still
used internally since it is more general. In the
future, we should replace it with the format used in
the subgraph rewriter in `torch.fx`, and simplify the
existing pattern matching code to handle the new
format added in this commit.

BC-breaking Notes:

Before:
```
import torch as nn
import torch.ao.nn.intrinsic as nni
from torch.ao.quantization.backend_config import BackendPatternConfig

def fuse_linear_relu(is_qat, relu, bn_conv):
    (bn, conv) = bn_conv
    return nni.ConvBnReLU2d(conv, bn, relu)

config = BackendPatternConfig((nn.ReLU, (nn.BatchNorm2d, nn.Conv2d))) \
    .set_dtype_configs(...) \
    .set_fuser_method(fuse_conv_bn_relu) \
    .set_fused_module(nni.ConvBnReLU2d)
```

After:
```
def fuse_linear_relu(is_qat, conv, bn, relu):
    return nni.ConvBnReLU2d(conv, bn, relu)

config = BackendPatternConfig((nn.Conv2d, nn.BatchNorm2d, nn.ReLU)) \
    .set_dtype_configs(...) \
    .set_fuser_method(fuse_conv_bn_relu) \
    .set_fused_module(nni.ConvBnReLU2d)
```

OR (for backward-compatibility)

```
def fuse_linear_relu(is_qat, relu, bn_conv):
    (bn, conv) = bn_conv
    return nni.ConvBnReLU2d(conv, bn, relu)

config = BackendPatternConfig((nn.ReLU, (nn.BatchNorm2d, nn.Conv2d))) \
    .set_dtype_configs(...) \
    .set_fuser_method(fuse_conv_bn_relu) \
    .set_fused_module(nni.ConvBnReLU2d) \
    ._set_legacy_pattern_format(True)
```

Test Plan:
python test/test_quantization.py TestQuantizeFx
python test/test_quantization.py TestQuantizeFxOps
python test/test_quantization.py TestBackendConfig

Reviewers: jerryzh168, vkuzo

Subscribers: jerryzh168, vkuzo

[ghstack-poisoned]
@andrewor14 andrewor14 requested a review from vkuzo December 7, 2022 03:18
… format"

Summary: The existing BackendConfig fusion pattern
uses a "reversed nested tuple" format that is highly
unintuitive. For example,
```
linear-relu -> (nn.ReLU, nn.Linear)
conv-bn-relu -> (nn.ReLU, (nn.BatchNorm2d, nn.Conv2d))
```
This pattern format also complicates the signatures
of the user specified "fuser methods", which needed
to accept arguments in reverse nested order to match
the patterns:
```
def fuse_linear_relu(is_qat, relu, linear):
    ...

def fuse_conv_bn_relu(is_qat, relu, bn_conv):
    (bn, conv) = bn_conv
    ...
```
Instead, this commit introduces a new pattern format that
simply specifies the ops in forward order with no nesting:
```
linear-relu -> (nn.Linear, nn.ReLU)
conv-bn-relu -> (nn.Conv2d, nn.BatchNorm2d, nn.ReLU)

def fuse_linear_relu(is_qat, linear, relu):
    ...

def fuse_conv_bn_relu(is_qat, conv, bn, relu):
    ...
```
Note that the legacy "reversed nested tuple" is still
used internally since it is more general. In the
future, we should replace it with the format used in
the subgraph rewriter in `torch.fx`, and simplify the
existing pattern matching code to handle the new
format added in this commit.

BC-breaking Notes:

Before:
```
import torch as nn
import torch.ao.nn.intrinsic as nni
from torch.ao.quantization.backend_config import BackendPatternConfig

def fuse_linear_relu(is_qat, relu, bn_conv):
    (bn, conv) = bn_conv
    return nni.ConvBnReLU2d(conv, bn, relu)

config = BackendPatternConfig((nn.ReLU, (nn.BatchNorm2d, nn.Conv2d))) \
    .set_dtype_configs(...) \
    .set_fuser_method(fuse_conv_bn_relu) \
    .set_fused_module(nni.ConvBnReLU2d)
```

After:
```
def fuse_linear_relu(is_qat, conv, bn, relu):
    return nni.ConvBnReLU2d(conv, bn, relu)

config = BackendPatternConfig((nn.Conv2d, nn.BatchNorm2d, nn.ReLU)) \
    .set_dtype_configs(...) \
    .set_fuser_method(fuse_conv_bn_relu) \
    .set_fused_module(nni.ConvBnReLU2d)
```

OR (for backward-compatibility)

```
def fuse_linear_relu(is_qat, relu, bn_conv):
    (bn, conv) = bn_conv
    return nni.ConvBnReLU2d(conv, bn, relu)

config = BackendPatternConfig((nn.ReLU, (nn.BatchNorm2d, nn.Conv2d))) \
    .set_dtype_configs(...) \
    .set_fuser_method(fuse_conv_bn_relu) \
    .set_fused_module(nni.ConvBnReLU2d) \
    ._set_use_legacy_pattern_format(True)
```

Test Plan:
python test/test_quantization.py TestQuantizeFx
python test/test_quantization.py TestQuantizeFxOps
python test/test_quantization.py TestBackendConfig

Reviewers: jerryzh168, vkuzo

Subscribers: jerryzh168, vkuzo

[ghstack-poisoned]
andrewor14 added a commit that referenced this pull request Dec 7, 2022
Summary: The existing BackendConfig fusion pattern
uses a "reversed nested tuple" format that is highly
unintuitive. For example,
```
linear-relu -> (nn.ReLU, nn.Linear)
conv-bn-relu -> (nn.ReLU, (nn.BatchNorm2d, nn.Conv2d))
```
This pattern format also complicates the signatures
of the user specified "fuser methods", which needed
to accept arguments in reverse nested order to match
the patterns:
```
def fuse_linear_relu(is_qat, relu, linear):
    ...

def fuse_conv_bn_relu(is_qat, relu, bn_conv):
    (bn, conv) = bn_conv
    ...
```
Instead, this commit introduces a new pattern format that
simply specifies the ops in forward order with no nesting:
```
linear-relu -> (nn.Linear, nn.ReLU)
conv-bn-relu -> (nn.Conv2d, nn.BatchNorm2d, nn.ReLU)

def fuse_linear_relu(is_qat, linear, relu):
    ...

def fuse_conv_bn_relu(is_qat, conv, bn, relu):
    ...
```
Note that the legacy "reversed nested tuple" is still
used internally since it is more general. In the
future, we should replace it with the format used in
the subgraph rewriter in `torch.fx`, and simplify the
existing pattern matching code to handle the new
format added in this commit.

BC-breaking Notes:

Before:
```
import torch as nn
import torch.ao.nn.intrinsic as nni
from torch.ao.quantization.backend_config import BackendPatternConfig

def fuse_linear_relu(is_qat, relu, bn_conv):
    (bn, conv) = bn_conv
    return nni.ConvBnReLU2d(conv, bn, relu)

config = BackendPatternConfig((nn.ReLU, (nn.BatchNorm2d, nn.Conv2d))) \
    .set_dtype_configs(...) \
    .set_fuser_method(fuse_conv_bn_relu) \
    .set_fused_module(nni.ConvBnReLU2d)
```

After:
```
def fuse_linear_relu(is_qat, conv, bn, relu):
    return nni.ConvBnReLU2d(conv, bn, relu)

config = BackendPatternConfig((nn.Conv2d, nn.BatchNorm2d, nn.ReLU)) \
    .set_dtype_configs(...) \
    .set_fuser_method(fuse_conv_bn_relu) \
    .set_fused_module(nni.ConvBnReLU2d)
```

OR (for backward-compatibility)

```
def fuse_linear_relu(is_qat, relu, bn_conv):
    (bn, conv) = bn_conv
    return nni.ConvBnReLU2d(conv, bn, relu)

config = BackendPatternConfig((nn.ReLU, (nn.BatchNorm2d, nn.Conv2d))) \
    .set_dtype_configs(...) \
    .set_fuser_method(fuse_conv_bn_relu) \
    .set_fused_module(nni.ConvBnReLU2d) \
    ._set_use_legacy_pattern_format(True)
```

Test Plan:
python test/test_quantization.py TestQuantizeFx
python test/test_quantization.py TestQuantizeFxOps
python test/test_quantization.py TestBackendConfig

Reviewers: jerryzh168, vkuzo

Subscribers: jerryzh168, vkuzo

ghstack-source-id: 6cb2595
Pull Request resolved: #90351
@vkuzo
Copy link
Contributor

vkuzo commented Dec 7, 2022

do we still need the previous format exposed to users for any reason? Are there people at Meta using it? If no one is using it, I'd vote for breaking BC, if they are using it then sgtm.

@andrewor14
Copy link
Contributor Author

do we still need the previous format exposed to users for any reason? Are there people at Meta using it? If no one is using it, I'd vote for breaking BC, if they are using it then sgtm.

The only internal uses at Meta can be converted to the simple format as part of this diff. I didn't see any uses that required the complex format. There are a few tests in PyTorch that use it but that's about it. Maybe @jerryzh168 has more context on this?

@jerryzh168
Copy link
Contributor

I remember we do have internal customers using the complex format, I can send you the use case in chat

andrewor14 added a commit that referenced this pull request Dec 7, 2022
Summary: The existing BackendConfig fusion pattern
uses a "reversed nested tuple" format that is highly
unintuitive. For example,
```
linear-relu -> (nn.ReLU, nn.Linear)
conv-bn-relu -> (nn.ReLU, (nn.BatchNorm2d, nn.Conv2d))
```
This pattern format also complicates the signatures
of the user specified "fuser methods", which needed
to accept arguments in reverse nested order to match
the patterns:
```
def fuse_linear_relu(is_qat, relu, linear):
    ...

def fuse_conv_bn_relu(is_qat, relu, bn_conv):
    (bn, conv) = bn_conv
    ...
```
Instead, this commit introduces a new pattern format that
simply specifies the ops in forward order with no nesting:
```
linear-relu -> (nn.Linear, nn.ReLU)
conv-bn-relu -> (nn.Conv2d, nn.BatchNorm2d, nn.ReLU)

def fuse_linear_relu(is_qat, linear, relu):
    ...

def fuse_conv_bn_relu(is_qat, conv, bn, relu):
    ...
```
Note that the legacy "reversed nested tuple" is still
used internally since it is more general. In the
future, we should replace it with the format used in
the subgraph rewriter in `torch.fx`, and simplify the
existing pattern matching code to handle the new
format added in this commit.

BC-breaking Notes:

Before:
```
import torch as nn
import torch.ao.nn.intrinsic as nni
from torch.ao.quantization.backend_config import BackendPatternConfig

def fuse_linear_relu(is_qat, relu, bn_conv):
    (bn, conv) = bn_conv
    return nni.ConvBnReLU2d(conv, bn, relu)

config = BackendPatternConfig((nn.ReLU, (nn.BatchNorm2d, nn.Conv2d))) \
    .set_dtype_configs(...) \
    .set_fuser_method(fuse_conv_bn_relu) \
    .set_fused_module(nni.ConvBnReLU2d)
```

After:
```
def fuse_linear_relu(is_qat, conv, bn, relu):
    return nni.ConvBnReLU2d(conv, bn, relu)

config = BackendPatternConfig((nn.Conv2d, nn.BatchNorm2d, nn.ReLU)) \
    .set_dtype_configs(...) \
    .set_fuser_method(fuse_conv_bn_relu) \
    .set_fused_module(nni.ConvBnReLU2d)
```

OR (for backward-compatibility)

```
def fuse_linear_relu(is_qat, relu, bn_conv):
    (bn, conv) = bn_conv
    return nni.ConvBnReLU2d(conv, bn, relu)

config = BackendPatternConfig((nn.ReLU, (nn.BatchNorm2d, nn.Conv2d))) \
    .set_dtype_configs(...) \
    .set_fuser_method(fuse_conv_bn_relu) \
    .set_fused_module(nni.ConvBnReLU2d) \
    ._set_use_legacy_pattern_format(True)
```

Test Plan:
python test/test_quantization.py TestQuantizeFx
python test/test_quantization.py TestQuantizeFxOps
python test/test_quantization.py TestBackendConfig

Reviewers: jerryzh168, vkuzo

Subscribers: jerryzh168, vkuzo

ghstack-source-id: 6cb2595
Pull Request resolved: #90351
… format"

Summary: The existing BackendConfig fusion pattern
uses a "reversed nested tuple" format that is highly
unintuitive. For example,
```
linear-relu -> (nn.ReLU, nn.Linear)
conv-bn-relu -> (nn.ReLU, (nn.BatchNorm2d, nn.Conv2d))
```
This pattern format also complicates the signatures
of the user specified "fuser methods", which needed
to accept arguments in reverse nested order to match
the patterns:
```
def fuse_linear_relu(is_qat, relu, linear):
    ...

def fuse_conv_bn_relu(is_qat, relu, bn_conv):
    (bn, conv) = bn_conv
    ...
```
Instead, this commit introduces a new pattern format that
simply specifies the ops in forward order with no nesting:
```
linear-relu -> (nn.Linear, nn.ReLU)
conv-bn-relu -> (nn.Conv2d, nn.BatchNorm2d, nn.ReLU)

def fuse_linear_relu(is_qat, linear, relu):
    ...

def fuse_conv_bn_relu(is_qat, conv, bn, relu):
    ...
```
Note that the legacy "reversed nested tuple" is still
used internally since it is more general. In the
future, we should replace it with the format used in
the subgraph rewriter in `torch.fx`, and simplify the
existing pattern matching code to handle the new
format added in this commit.

BC-breaking Notes:

Before:
```
import torch as nn
import torch.ao.nn.intrinsic as nni
from torch.ao.quantization.backend_config import BackendPatternConfig

def fuse_linear_relu(is_qat, relu, bn_conv):
    (bn, conv) = bn_conv
    return nni.ConvBnReLU2d(conv, bn, relu)

config = BackendPatternConfig((nn.ReLU, (nn.BatchNorm2d, nn.Conv2d))) \
    .set_dtype_configs(...) \
    .set_fuser_method(fuse_conv_bn_relu) \
    .set_fused_module(nni.ConvBnReLU2d)
```

After:
```
def fuse_linear_relu(is_qat, conv, bn, relu):
    return nni.ConvBnReLU2d(conv, bn, relu)

config = BackendPatternConfig((nn.Conv2d, nn.BatchNorm2d, nn.ReLU)) \
    .set_dtype_configs(...) \
    .set_fuser_method(fuse_conv_bn_relu) \
    .set_fused_module(nni.ConvBnReLU2d)
```

OR (for backward-compatibility)

```
def fuse_linear_relu(is_qat, relu, bn_conv):
    (bn, conv) = bn_conv
    return nni.ConvBnReLU2d(conv, bn, relu)

config = BackendPatternConfig((nn.ReLU, (nn.BatchNorm2d, nn.Conv2d))) \
    .set_dtype_configs(...) \
    .set_fuser_method(fuse_conv_bn_relu) \
    .set_fused_module(nni.ConvBnReLU2d) \
    ._set_use_legacy_pattern_format(True)
```

Test Plan:
python test/test_quantization.py TestQuantizeFx
python test/test_quantization.py TestQuantizeFxOps
python test/test_quantization.py TestBackendConfig

Reviewers: jerryzh168, vkuzo

Subscribers: jerryzh168, vkuzo

[ghstack-poisoned]
… format"

Summary: The existing BackendConfig fusion pattern
uses a "reversed nested tuple" format that is highly
unintuitive. For example,
```
linear-relu -> (nn.ReLU, nn.Linear)
conv-bn-relu -> (nn.ReLU, (nn.BatchNorm2d, nn.Conv2d))
```
This pattern format also complicates the signatures
of the user specified "fuser methods", which needed
to accept arguments in reverse nested order to match
the patterns:
```
def fuse_linear_relu(is_qat, relu, linear):
    ...

def fuse_conv_bn_relu(is_qat, relu, bn_conv):
    (bn, conv) = bn_conv
    ...
```
Instead, this commit introduces a new pattern format that
simply specifies the ops in forward order with no nesting:
```
linear-relu -> (nn.Linear, nn.ReLU)
conv-bn-relu -> (nn.Conv2d, nn.BatchNorm2d, nn.ReLU)

def fuse_linear_relu(is_qat, linear, relu):
    ...

def fuse_conv_bn_relu(is_qat, conv, bn, relu):
    ...
```
Note that the legacy "reversed nested tuple" is still
used internally since it is more general. In the
future, we should replace it with the format used in
the subgraph rewriter in `torch.fx`, and simplify the
existing pattern matching code to handle the new
format added in this commit.

BC-breaking Notes:

Before:
```
import torch as nn
import torch.ao.nn.intrinsic as nni
from torch.ao.quantization.backend_config import BackendPatternConfig

def fuse_linear_relu(is_qat, relu, bn_conv):
    (bn, conv) = bn_conv
    return nni.ConvBnReLU2d(conv, bn, relu)

config = BackendPatternConfig((nn.ReLU, (nn.BatchNorm2d, nn.Conv2d))) \
    .set_dtype_configs(...) \
    .set_fuser_method(fuse_conv_bn_relu) \
    .set_fused_module(nni.ConvBnReLU2d)
```

After:
```
def fuse_linear_relu(is_qat, conv, bn, relu):
    return nni.ConvBnReLU2d(conv, bn, relu)

config = BackendPatternConfig((nn.Conv2d, nn.BatchNorm2d, nn.ReLU)) \
    .set_dtype_configs(...) \
    .set_fuser_method(fuse_conv_bn_relu) \
    .set_fused_module(nni.ConvBnReLU2d)
```

OR (for backward-compatibility)

```
def fuse_linear_relu(is_qat, relu, bn_conv):
    (bn, conv) = bn_conv
    return nni.ConvBnReLU2d(conv, bn, relu)

config = BackendPatternConfig((nn.ReLU, (nn.BatchNorm2d, nn.Conv2d))) \
    .set_dtype_configs(...) \
    .set_fuser_method(fuse_conv_bn_relu) \
    .set_fused_module(nni.ConvBnReLU2d) \
    ._set_use_legacy_pattern_format(True)
```

Test Plan:
python test/test_quantization.py TestQuantizeFx
python test/test_quantization.py TestQuantizeFxOps
python test/test_quantization.py TestBackendConfig

Reviewers: jerryzh168, vkuzo

Subscribers: jerryzh168, vkuzo

[ghstack-poisoned]
andrewor14 added a commit that referenced this pull request Dec 8, 2022
Summary: The existing BackendConfig fusion pattern
uses a "reversed nested tuple" format that is highly
unintuitive. For example,
```
linear-relu -> (nn.ReLU, nn.Linear)
conv-bn-relu -> (nn.ReLU, (nn.BatchNorm2d, nn.Conv2d))
```
This pattern format also complicates the signatures
of the user specified "fuser methods", which needed
to accept arguments in reverse nested order to match
the patterns:
```
def fuse_linear_relu(is_qat, relu, linear):
    ...

def fuse_conv_bn_relu(is_qat, relu, bn_conv):
    (bn, conv) = bn_conv
    ...
```
Instead, this commit introduces a new pattern format that
simply specifies the ops in forward order with no nesting:
```
linear-relu -> (nn.Linear, nn.ReLU)
conv-bn-relu -> (nn.Conv2d, nn.BatchNorm2d, nn.ReLU)

def fuse_linear_relu(is_qat, linear, relu):
    ...

def fuse_conv_bn_relu(is_qat, conv, bn, relu):
    ...
```
Note that the legacy "reversed nested tuple" is still
used internally since it is more general. In the
future, we should replace it with the format used in
the subgraph rewriter in `torch.fx`, and simplify the
existing pattern matching code to handle the new
format added in this commit.

BC-breaking Notes:

Before:
```
import torch as nn
import torch.ao.nn.intrinsic as nni
from torch.ao.quantization.backend_config import BackendPatternConfig

def fuse_linear_relu(is_qat, relu, bn_conv):
    (bn, conv) = bn_conv
    return nni.ConvBnReLU2d(conv, bn, relu)

config = BackendPatternConfig((nn.ReLU, (nn.BatchNorm2d, nn.Conv2d))) \
    .set_dtype_configs(...) \
    .set_fuser_method(fuse_conv_bn_relu) \
    .set_fused_module(nni.ConvBnReLU2d)
```

After:
```
def fuse_linear_relu(is_qat, conv, bn, relu):
    return nni.ConvBnReLU2d(conv, bn, relu)

config = BackendPatternConfig((nn.Conv2d, nn.BatchNorm2d, nn.ReLU)) \
    .set_dtype_configs(...) \
    .set_fuser_method(fuse_conv_bn_relu) \
    .set_fused_module(nni.ConvBnReLU2d)
```

OR (for backward-compatibility)

```
def fuse_linear_relu(is_qat, relu, bn_conv):
    (bn, conv) = bn_conv
    return nni.ConvBnReLU2d(conv, bn, relu)

config = BackendPatternConfig((nn.ReLU, (nn.BatchNorm2d, nn.Conv2d))) \
    .set_dtype_configs(...) \
    .set_fuser_method(fuse_conv_bn_relu) \
    .set_fused_module(nni.ConvBnReLU2d) \
    ._set_use_legacy_pattern_format(True)
```

Test Plan:
python test/test_quantization.py TestQuantizeFx
python test/test_quantization.py TestQuantizeFxOps
python test/test_quantization.py TestBackendConfig

Reviewers: jerryzh168, vkuzo

Subscribers: jerryzh168, vkuzo

ghstack-source-id: f8e792f
Pull Request resolved: #90351
… format"

Summary: The existing BackendConfig fusion pattern
uses a "reversed nested tuple" format that is highly
unintuitive. For example,
```
linear-relu -> (nn.ReLU, nn.Linear)
conv-bn-relu -> (nn.ReLU, (nn.BatchNorm2d, nn.Conv2d))
```
This pattern format also complicates the signatures
of the user specified "fuser methods", which needed
to accept arguments in reverse nested order to match
the patterns:
```
def fuse_linear_relu(is_qat, relu, linear):
    ...

def fuse_conv_bn_relu(is_qat, relu, bn_conv):
    (bn, conv) = bn_conv
    ...
```
Instead, this commit introduces a new pattern format that
simply specifies the ops in forward order with no nesting:
```
linear-relu -> (nn.Linear, nn.ReLU)
conv-bn-relu -> (nn.Conv2d, nn.BatchNorm2d, nn.ReLU)

def fuse_linear_relu(is_qat, linear, relu):
    ...

def fuse_conv_bn_relu(is_qat, conv, bn, relu):
    ...
```
Note that the legacy "reversed nested tuple" is still
used internally since it is more general. In the
future, we should replace it with the format used in
the subgraph rewriter in `torch.fx`, and simplify the
existing pattern matching code to handle the new
format added in this commit.

BC-breaking Notes:

Before:
```
import torch as nn
import torch.ao.nn.intrinsic as nni
from torch.ao.quantization.backend_config import BackendPatternConfig

def fuse_linear_relu(is_qat, relu, bn_conv):
    (bn, conv) = bn_conv
    return nni.ConvBnReLU2d(conv, bn, relu)

config = BackendPatternConfig((nn.ReLU, (nn.BatchNorm2d, nn.Conv2d))) \
    .set_dtype_configs(...) \
    .set_fuser_method(fuse_conv_bn_relu) \
    .set_fused_module(nni.ConvBnReLU2d)
```

After:
```
def fuse_linear_relu(is_qat, conv, bn, relu):
    return nni.ConvBnReLU2d(conv, bn, relu)

config = BackendPatternConfig((nn.Conv2d, nn.BatchNorm2d, nn.ReLU)) \
    .set_dtype_configs(...) \
    .set_fuser_method(fuse_conv_bn_relu) \
    .set_fused_module(nni.ConvBnReLU2d)
```

OR (for backward-compatibility)

```
def fuse_linear_relu(is_qat, relu, bn_conv):
    (bn, conv) = bn_conv
    return nni.ConvBnReLU2d(conv, bn, relu)

config = BackendPatternConfig((nn.ReLU, (nn.BatchNorm2d, nn.Conv2d))) \
    .set_dtype_configs(...) \
    .set_fuser_method(fuse_conv_bn_relu) \
    .set_fused_module(nni.ConvBnReLU2d) \
    ._set_use_legacy_pattern_format(True)
```

Test Plan:
python test/test_quantization.py TestQuantizeFx
python test/test_quantization.py TestQuantizeFxOps
python test/test_quantization.py TestBackendConfig

Reviewers: jerryzh168, vkuzo

Subscribers: jerryzh168, vkuzo

[ghstack-poisoned]
… format"

Summary: The existing BackendConfig fusion pattern
uses a "reversed nested tuple" format that is highly
unintuitive. For example,
```
linear-relu -> (nn.ReLU, nn.Linear)
conv-bn-relu -> (nn.ReLU, (nn.BatchNorm2d, nn.Conv2d))
```
This pattern format also complicates the signatures
of the user specified "fuser methods", which needed
to accept arguments in reverse nested order to match
the patterns:
```
def fuse_linear_relu(is_qat, relu, linear):
    ...

def fuse_conv_bn_relu(is_qat, relu, bn_conv):
    (bn, conv) = bn_conv
    ...
```
Instead, this commit introduces a new pattern format that
simply specifies the ops in forward order with no nesting:
```
linear-relu -> (nn.Linear, nn.ReLU)
conv-bn-relu -> (nn.Conv2d, nn.BatchNorm2d, nn.ReLU)

def fuse_linear_relu(is_qat, linear, relu):
    ...

def fuse_conv_bn_relu(is_qat, conv, bn, relu):
    ...
```
Note that the legacy "reversed nested tuple" is still
used internally since it is more general. In the
future, we should replace it with the format used in
the subgraph rewriter in `torch.fx`, and simplify the
existing pattern matching code to handle the new
format added in this commit.

BC-breaking Notes:

Before:
```
import torch as nn
import torch.ao.nn.intrinsic as nni
from torch.ao.quantization.backend_config import BackendPatternConfig

def fuse_linear_relu(is_qat, relu, bn_conv):
    (bn, conv) = bn_conv
    return nni.ConvBnReLU2d(conv, bn, relu)

config = BackendPatternConfig((nn.ReLU, (nn.BatchNorm2d, nn.Conv2d))) \
    .set_dtype_configs(...) \
    .set_fuser_method(fuse_conv_bn_relu) \
    .set_fused_module(nni.ConvBnReLU2d)
```

After:
```
def fuse_linear_relu(is_qat, conv, bn, relu):
    return nni.ConvBnReLU2d(conv, bn, relu)

config = BackendPatternConfig((nn.Conv2d, nn.BatchNorm2d, nn.ReLU)) \
    .set_dtype_configs(...) \
    .set_fuser_method(fuse_conv_bn_relu) \
    .set_fused_module(nni.ConvBnReLU2d)
```

OR (for backward-compatibility)

```
def fuse_linear_relu(is_qat, relu, bn_conv):
    (bn, conv) = bn_conv
    return nni.ConvBnReLU2d(conv, bn, relu)

config = BackendPatternConfig((nn.ReLU, (nn.BatchNorm2d, nn.Conv2d))) \
    .set_dtype_configs(...) \
    .set_fuser_method(fuse_conv_bn_relu) \
    .set_fused_module(nni.ConvBnReLU2d) \
    ._set_use_legacy_pattern_format(True)
```

Test Plan:
python test/test_quantization.py TestQuantizeFx
python test/test_quantization.py TestQuantizeFxOps
python test/test_quantization.py TestBackendConfig

Reviewers: jerryzh168, vkuzo

Subscribers: jerryzh168, vkuzo

[ghstack-poisoned]
… format"

Summary: The existing BackendConfig fusion pattern
uses a "reversed nested tuple" format that is highly
unintuitive. For example,
```
linear-relu -> (nn.ReLU, nn.Linear)
conv-bn-relu -> (nn.ReLU, (nn.BatchNorm2d, nn.Conv2d))
```
This pattern format also complicates the signatures
of the user specified "fuser methods", which needed
to accept arguments in reverse nested order to match
the patterns:
```
def fuse_linear_relu(is_qat, relu, linear):
    ...

def fuse_conv_bn_relu(is_qat, relu, bn_conv):
    (bn, conv) = bn_conv
    ...
```
Instead, this commit introduces a new pattern format that
simply specifies the ops in forward order with no nesting:
```
linear-relu -> (nn.Linear, nn.ReLU)
conv-bn-relu -> (nn.Conv2d, nn.BatchNorm2d, nn.ReLU)

def fuse_linear_relu(is_qat, linear, relu):
    ...

def fuse_conv_bn_relu(is_qat, conv, bn, relu):
    ...
```
Note that the legacy "reversed nested tuple" is still
used internally since it is more general. In the
future, we should replace it with the format used in
the subgraph rewriter in `torch.fx`, and simplify the
existing pattern matching code to handle the new
format added in this commit.

BC-breaking Notes:

Before:
```
import torch as nn
import torch.ao.nn.intrinsic as nni
from torch.ao.quantization.backend_config import BackendPatternConfig

def fuse_linear_relu(is_qat, relu, bn_conv):
    (bn, conv) = bn_conv
    return nni.ConvBnReLU2d(conv, bn, relu)

config = BackendPatternConfig((nn.ReLU, (nn.BatchNorm2d, nn.Conv2d))) \
    .set_dtype_configs(...) \
    .set_fuser_method(fuse_conv_bn_relu) \
    .set_fused_module(nni.ConvBnReLU2d)
```

After:
```
def fuse_linear_relu(is_qat, conv, bn, relu):
    return nni.ConvBnReLU2d(conv, bn, relu)

config = BackendPatternConfig((nn.Conv2d, nn.BatchNorm2d, nn.ReLU)) \
    .set_dtype_configs(...) \
    .set_fuser_method(fuse_conv_bn_relu) \
    .set_fused_module(nni.ConvBnReLU2d)
```

OR (for backward-compatibility)

```
def fuse_linear_relu(is_qat, relu, bn_conv):
    (bn, conv) = bn_conv
    return nni.ConvBnReLU2d(conv, bn, relu)

config = BackendPatternConfig((nn.ReLU, (nn.BatchNorm2d, nn.Conv2d))) \
    .set_dtype_configs(...) \
    .set_fuser_method(fuse_conv_bn_relu) \
    .set_fused_module(nni.ConvBnReLU2d) \
    ._set_use_legacy_pattern_format(True)
```

Test Plan:
python test/test_quantization.py TestQuantizeFx
python test/test_quantization.py TestQuantizeFxOps
python test/test_quantization.py TestBackendConfig

Reviewers: jerryzh168, vkuzo

Subscribers: jerryzh168, vkuzo

Differential Revision: [D41854096](https://our.internmc.facebook.com/intern/diff/D41854096)

[ghstack-poisoned]
andrewor14 added a commit that referenced this pull request Dec 8, 2022
Pull Request resolved: #90351


The existing BackendConfig fusion pattern
uses a "reversed nested tuple" format that is highly
unintuitive. For example,
```
linear-relu -> (nn.ReLU, nn.Linear)
conv-bn-relu -> (nn.ReLU, (nn.BatchNorm2d, nn.Conv2d))
```
This pattern format also complicates the signatures
of the user specified "fuser methods", which needed
to accept arguments in reverse nested order to match
the patterns:
```
def fuse_linear_relu(is_qat, relu, linear):
    ...

def fuse_conv_bn_relu(is_qat, relu, bn_conv):
    (bn, conv) = bn_conv
    ...
```
Instead, this commit introduces a new pattern format that
simply specifies the ops in forward order with no nesting:
```
linear-relu -> (nn.Linear, nn.ReLU)
conv-bn-relu -> (nn.Conv2d, nn.BatchNorm2d, nn.ReLU)

def fuse_linear_relu(is_qat, linear, relu):
    ...

def fuse_conv_bn_relu(is_qat, conv, bn, relu):
    ...
```
Note that the legacy "reversed nested tuple" is still
used internally since it is more general. In the
future, we should replace it with the format used in
the subgraph rewriter in `torch.fx`, and simplify the
existing pattern matching code to handle the new
format added in this commit.

BC-breaking Notes:

Before:
```
import torch as nn
import torch.ao.nn.intrinsic as nni
from torch.ao.quantization.backend_config import BackendPatternConfig

def fuse_linear_relu(is_qat, relu, bn_conv):
    (bn, conv) = bn_conv
    return nni.ConvBnReLU2d(conv, bn, relu)

config = BackendPatternConfig((nn.ReLU, (nn.BatchNorm2d, nn.Conv2d))) \
    .set_dtype_configs(...) \
    .set_fuser_method(fuse_conv_bn_relu) \
    .set_fused_module(nni.ConvBnReLU2d)
```

After:
```
def fuse_linear_relu(is_qat, conv, bn, relu):
    return nni.ConvBnReLU2d(conv, bn, relu)

config = BackendPatternConfig((nn.Conv2d, nn.BatchNorm2d, nn.ReLU)) \
    .set_dtype_configs(...) \
    .set_fuser_method(fuse_conv_bn_relu) \
    .set_fused_module(nni.ConvBnReLU2d)
```

OR (for backward-compatibility)

```
def fuse_linear_relu(is_qat, relu, bn_conv):
    (bn, conv) = bn_conv
    return nni.ConvBnReLU2d(conv, bn, relu)

config = BackendPatternConfig((nn.ReLU, (nn.BatchNorm2d, nn.Conv2d))) \
    .set_dtype_configs(...) \
    .set_fuser_method(fuse_conv_bn_relu) \
    .set_fused_module(nni.ConvBnReLU2d) \
    ._set_use_legacy_pattern_format(True)
```

Differential Revision: [D41854096](https://our.internmc.facebook.com/intern/diff/D41854096/)
ghstack-source-id: 175587605
… format"

Summary: The existing BackendConfig fusion pattern
uses a "reversed nested tuple" format that is highly
unintuitive. For example,
```
linear-relu -> (nn.ReLU, nn.Linear)
conv-bn-relu -> (nn.ReLU, (nn.BatchNorm2d, nn.Conv2d))
```
This pattern format also complicates the signatures
of the user specified "fuser methods", which needed
to accept arguments in reverse nested order to match
the patterns:
```
def fuse_linear_relu(is_qat, relu, linear):
    ...

def fuse_conv_bn_relu(is_qat, relu, bn_conv):
    (bn, conv) = bn_conv
    ...
```
Instead, this commit introduces a new pattern format that
simply specifies the ops in forward order with no nesting:
```
linear-relu -> (nn.Linear, nn.ReLU)
conv-bn-relu -> (nn.Conv2d, nn.BatchNorm2d, nn.ReLU)

def fuse_linear_relu(is_qat, linear, relu):
    ...

def fuse_conv_bn_relu(is_qat, conv, bn, relu):
    ...
```
Note that the legacy "reversed nested tuple" is still
used internally since it is more general. In the
future, we should replace it with the format used in
the subgraph rewriter in `torch.fx`, and simplify the
existing pattern matching code to handle the new
format added in this commit.

BC-breaking Notes:

Before:
```
import torch as nn
import torch.ao.nn.intrinsic as nni
from torch.ao.quantization.backend_config import BackendPatternConfig

def fuse_linear_relu(is_qat, relu, bn_conv):
    (bn, conv) = bn_conv
    return nni.ConvBnReLU2d(conv, bn, relu)

config = BackendPatternConfig((nn.ReLU, (nn.BatchNorm2d, nn.Conv2d))) \
    .set_dtype_configs(...) \
    .set_fuser_method(fuse_conv_bn_relu) \
    .set_fused_module(nni.ConvBnReLU2d)
```

After:
```
def fuse_linear_relu(is_qat, conv, bn, relu):
    return nni.ConvBnReLU2d(conv, bn, relu)

config = BackendPatternConfig((nn.Conv2d, nn.BatchNorm2d, nn.ReLU)) \
    .set_dtype_configs(...) \
    .set_fuser_method(fuse_conv_bn_relu) \
    .set_fused_module(nni.ConvBnReLU2d)
```

OR (for backward-compatibility)

```
def fuse_linear_relu(is_qat, relu, bn_conv):
    (bn, conv) = bn_conv
    return nni.ConvBnReLU2d(conv, bn, relu)

config = BackendPatternConfig((nn.ReLU, (nn.BatchNorm2d, nn.Conv2d))) \
    .set_dtype_configs(...) \
    .set_fuser_method(fuse_conv_bn_relu) \
    .set_fused_module(nni.ConvBnReLU2d) \
    ._set_use_legacy_pattern_format(True)
```

Test Plan:
python test/test_quantization.py TestQuantizeFx
python test/test_quantization.py TestQuantizeFxOps
python test/test_quantization.py TestBackendConfig

Reviewers: jerryzh168, vkuzo

Subscribers: jerryzh168, vkuzo

Differential Revision: [D41854096](https://our.internmc.facebook.com/intern/diff/D41854096)

[ghstack-poisoned]
… format"

Summary: The existing BackendConfig fusion pattern
uses a "reversed nested tuple" format that is highly
unintuitive. For example,
```
linear-relu -> (nn.ReLU, nn.Linear)
conv-bn-relu -> (nn.ReLU, (nn.BatchNorm2d, nn.Conv2d))
```
This pattern format also complicates the signatures
of the user specified "fuser methods", which needed
to accept arguments in reverse nested order to match
the patterns:
```
def fuse_linear_relu(is_qat, relu, linear):
    ...

def fuse_conv_bn_relu(is_qat, relu, bn_conv):
    (bn, conv) = bn_conv
    ...
```
Instead, this commit introduces a new pattern format that
simply specifies the ops in forward order with no nesting:
```
linear-relu -> (nn.Linear, nn.ReLU)
conv-bn-relu -> (nn.Conv2d, nn.BatchNorm2d, nn.ReLU)

def fuse_linear_relu(is_qat, linear, relu):
    ...

def fuse_conv_bn_relu(is_qat, conv, bn, relu):
    ...
```
Note that the legacy "reversed nested tuple" is still
used internally since it is more general. In the
future, we should replace it with the format used in
the subgraph rewriter in `torch.fx`, and simplify the
existing pattern matching code to handle the new
format added in this commit.

BC-breaking Notes:

Before:
```
import torch as nn
import torch.ao.nn.intrinsic as nni
from torch.ao.quantization.backend_config import BackendPatternConfig

def fuse_linear_relu(is_qat, relu, bn_conv):
    (bn, conv) = bn_conv
    return nni.ConvBnReLU2d(conv, bn, relu)

config = BackendPatternConfig((nn.ReLU, (nn.BatchNorm2d, nn.Conv2d))) \
    .set_dtype_configs(...) \
    .set_fuser_method(fuse_conv_bn_relu) \
    .set_fused_module(nni.ConvBnReLU2d)
```

After:
```
def fuse_linear_relu(is_qat, conv, bn, relu):
    return nni.ConvBnReLU2d(conv, bn, relu)

config = BackendPatternConfig((nn.Conv2d, nn.BatchNorm2d, nn.ReLU)) \
    .set_dtype_configs(...) \
    .set_fuser_method(fuse_conv_bn_relu) \
    .set_fused_module(nni.ConvBnReLU2d)
```

OR (for backward-compatibility)

```
def fuse_linear_relu(is_qat, relu, bn_conv):
    (bn, conv) = bn_conv
    return nni.ConvBnReLU2d(conv, bn, relu)

config = BackendPatternConfig((nn.ReLU, (nn.BatchNorm2d, nn.Conv2d))) \
    .set_dtype_configs(...) \
    .set_fuser_method(fuse_conv_bn_relu) \
    .set_fused_module(nni.ConvBnReLU2d) \
    ._set_use_legacy_pattern_format(True)
```

Test Plan:
python test/test_quantization.py TestQuantizeFx
python test/test_quantization.py TestQuantizeFxOps
python test/test_quantization.py TestBackendConfig

Reviewers: jerryzh168, vkuzo

Subscribers: jerryzh168, vkuzo

Differential Revision: [D41854096](https://our.internmc.facebook.com/intern/diff/D41854096)

[ghstack-poisoned]
andrewor14 added a commit that referenced this pull request Dec 9, 2022
Pull Request resolved: #90351


The existing BackendConfig fusion pattern
uses a "reversed nested tuple" format that is highly
unintuitive. For example,
```
linear-relu -> (nn.ReLU, nn.Linear)
conv-bn-relu -> (nn.ReLU, (nn.BatchNorm2d, nn.Conv2d))
```
This pattern format also complicates the signatures
of the user specified "fuser methods", which needed
to accept arguments in reverse nested order to match
the patterns:
```
def fuse_linear_relu(is_qat, relu, linear):
    ...

def fuse_conv_bn_relu(is_qat, relu, bn_conv):
    (bn, conv) = bn_conv
    ...
```
Instead, this commit introduces a new pattern format that
simply specifies the ops in forward order with no nesting:
```
linear-relu -> (nn.Linear, nn.ReLU)
conv-bn-relu -> (nn.Conv2d, nn.BatchNorm2d, nn.ReLU)

def fuse_linear_relu(is_qat, linear, relu):
    ...

def fuse_conv_bn_relu(is_qat, conv, bn, relu):
    ...
```
Note that the legacy "reversed nested tuple" is still
used internally since it is more general. In the
future, we should replace it with the format used in
the subgraph rewriter in `torch.fx`, and simplify the
existing pattern matching code to handle the new
format added in this commit.

BC-breaking Notes:

Before:
```
import torch as nn
import torch.ao.nn.intrinsic as nni
from torch.ao.quantization.backend_config import BackendPatternConfig

def fuse_linear_relu(is_qat, relu, bn_conv):
    (bn, conv) = bn_conv
    return nni.ConvBnReLU2d(conv, bn, relu)

config = BackendPatternConfig((nn.ReLU, (nn.BatchNorm2d, nn.Conv2d))) \
    .set_dtype_configs(...) \
    .set_fuser_method(fuse_conv_bn_relu) \
    .set_fused_module(nni.ConvBnReLU2d)
```

After:
```
def fuse_linear_relu(is_qat, conv, bn, relu):
    return nni.ConvBnReLU2d(conv, bn, relu)

config = BackendPatternConfig((nn.Conv2d, nn.BatchNorm2d, nn.ReLU)) \
    .set_dtype_configs(...) \
    .set_fuser_method(fuse_conv_bn_relu) \
    .set_fused_module(nni.ConvBnReLU2d)
```

OR (for backward-compatibility)

```
def fuse_linear_relu(is_qat, relu, bn_conv):
    (bn, conv) = bn_conv
    return nni.ConvBnReLU2d(conv, bn, relu)

config = BackendPatternConfig((nn.ReLU, (nn.BatchNorm2d, nn.Conv2d))) \
    .set_dtype_configs(...) \
    .set_fuser_method(fuse_conv_bn_relu) \
    .set_fused_module(nni.ConvBnReLU2d) \
    ._set_use_legacy_pattern_format(True)
```
ghstack-source-id: 175662447

Differential Revision: [D41854096](https://our.internmc.facebook.com/intern/diff/D41854096/)
@andrewor14 andrewor14 requested a review from jerryzh168 December 9, 2022 17:37
@andrewor14
Copy link
Contributor Author

Ok, I think I fixed all the NS test failures. I also modified the internal call sites to use the new flag. Looks like we cannot remove support for the complex format after all since internal teams are already using it. Please have another look @jerryzh168 and @vkuzo. Thanks!

Copy link
Contributor

@jerryzh168 jerryzh168 left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

LGMT, thanks!

… format"

Summary: The existing BackendConfig fusion pattern
uses a "reversed nested tuple" format that is highly
unintuitive. For example,
```
linear-relu -> (nn.ReLU, nn.Linear)
conv-bn-relu -> (nn.ReLU, (nn.BatchNorm2d, nn.Conv2d))
```
This pattern format also complicates the signatures
of the user specified "fuser methods", which needed
to accept arguments in reverse nested order to match
the patterns:
```
def fuse_linear_relu(is_qat, relu, linear):
    ...

def fuse_conv_bn_relu(is_qat, relu, bn_conv):
    (bn, conv) = bn_conv
    ...
```
Instead, this commit introduces a new pattern format that
simply specifies the ops in forward order with no nesting:
```
linear-relu -> (nn.Linear, nn.ReLU)
conv-bn-relu -> (nn.Conv2d, nn.BatchNorm2d, nn.ReLU)

def fuse_linear_relu(is_qat, linear, relu):
    ...

def fuse_conv_bn_relu(is_qat, conv, bn, relu):
    ...
```
Note that the legacy "reversed nested tuple" is still
used internally since it is more general. In the
future, we should replace it with the format used in
the subgraph rewriter in `torch.fx`, and simplify the
existing pattern matching code to handle the new
format added in this commit.

BC-breaking Notes:

Before:
```
import torch as nn
import torch.ao.nn.intrinsic as nni
from torch.ao.quantization.backend_config import BackendPatternConfig

def fuse_linear_relu(is_qat, relu, bn_conv):
    (bn, conv) = bn_conv
    return nni.ConvBnReLU2d(conv, bn, relu)

config = BackendPatternConfig((nn.ReLU, (nn.BatchNorm2d, nn.Conv2d))) \
    .set_dtype_configs(...) \
    .set_fuser_method(fuse_conv_bn_relu) \
    .set_fused_module(nni.ConvBnReLU2d)
```

After:
```
def fuse_linear_relu(is_qat, conv, bn, relu):
    return nni.ConvBnReLU2d(conv, bn, relu)

config = BackendPatternConfig((nn.Conv2d, nn.BatchNorm2d, nn.ReLU)) \
    .set_dtype_configs(...) \
    .set_fuser_method(fuse_conv_bn_relu) \
    .set_fused_module(nni.ConvBnReLU2d)
```

OR (for backward-compatibility)

```
def fuse_linear_relu(is_qat, relu, bn_conv):
    (bn, conv) = bn_conv
    return nni.ConvBnReLU2d(conv, bn, relu)

config = BackendPatternConfig((nn.ReLU, (nn.BatchNorm2d, nn.Conv2d))) \
    .set_dtype_configs(...) \
    .set_fuser_method(fuse_conv_bn_relu) \
    .set_fused_module(nni.ConvBnReLU2d) \
    ._set_use_legacy_pattern_format(True)
```

Test Plan:
python test/test_quantization.py TestQuantizeFx
python test/test_quantization.py TestQuantizeFxOps
python test/test_quantization.py TestBackendConfig

Reviewers: jerryzh168, vkuzo

Subscribers: jerryzh168, vkuzo

Differential Revision: [D41854096](https://our.internmc.facebook.com/intern/diff/D41854096)

[ghstack-poisoned]
@andrewor14 andrewor14 added the topic: bc breaking topic category label Dec 9, 2022
… format"

Summary: The existing BackendConfig fusion pattern
uses a "reversed nested tuple" format that is highly
unintuitive. For example,
```
linear-relu -> (nn.ReLU, nn.Linear)
conv-bn-relu -> (nn.ReLU, (nn.BatchNorm2d, nn.Conv2d))
```
This pattern format also complicates the signatures
of the user specified "fuser methods", which needed
to accept arguments in reverse nested order to match
the patterns:
```
def fuse_linear_relu(is_qat, relu, linear):
    ...

def fuse_conv_bn_relu(is_qat, relu, bn_conv):
    (bn, conv) = bn_conv
    ...
```
Instead, this commit introduces a new pattern format that
simply specifies the ops in forward order with no nesting:
```
linear-relu -> (nn.Linear, nn.ReLU)
conv-bn-relu -> (nn.Conv2d, nn.BatchNorm2d, nn.ReLU)

def fuse_linear_relu(is_qat, linear, relu):
    ...

def fuse_conv_bn_relu(is_qat, conv, bn, relu):
    ...
```
Note that the legacy "reversed nested tuple" is still
used internally since it is more general. In the
future, we should replace it with the format used in
the subgraph rewriter in `torch.fx`, and simplify the
existing pattern matching code to handle the new
format added in this commit.

BC-breaking Notes:

Before:
```
import torch as nn
import torch.ao.nn.intrinsic as nni
from torch.ao.quantization.backend_config import BackendPatternConfig

def fuse_linear_relu(is_qat, relu, bn_conv):
    (bn, conv) = bn_conv
    return nni.ConvBnReLU2d(conv, bn, relu)

config = BackendPatternConfig((nn.ReLU, (nn.BatchNorm2d, nn.Conv2d))) \
    .set_dtype_configs(...) \
    .set_fuser_method(fuse_conv_bn_relu) \
    .set_fused_module(nni.ConvBnReLU2d)
```

After:
```
def fuse_linear_relu(is_qat, conv, bn, relu):
    return nni.ConvBnReLU2d(conv, bn, relu)

config = BackendPatternConfig((nn.Conv2d, nn.BatchNorm2d, nn.ReLU)) \
    .set_dtype_configs(...) \
    .set_fuser_method(fuse_conv_bn_relu) \
    .set_fused_module(nni.ConvBnReLU2d)
```

OR (for backward-compatibility)

```
def fuse_linear_relu(is_qat, relu, bn_conv):
    (bn, conv) = bn_conv
    return nni.ConvBnReLU2d(conv, bn, relu)

config = BackendPatternConfig((nn.ReLU, (nn.BatchNorm2d, nn.Conv2d))) \
    .set_dtype_configs(...) \
    .set_fuser_method(fuse_conv_bn_relu) \
    .set_fused_module(nni.ConvBnReLU2d) \
    ._set_use_legacy_pattern_format(True)
```

Test Plan:
python test/test_quantization.py TestQuantizeFx
python test/test_quantization.py TestQuantizeFxOps
python test/test_quantization.py TestBackendConfig

Reviewers: jerryzh168, vkuzo

Subscribers: jerryzh168, vkuzo

Differential Revision: [D41854096](https://our.internmc.facebook.com/intern/diff/D41854096)

[ghstack-poisoned]
andrewor14 added a commit that referenced this pull request Dec 9, 2022
Summary: The existing BackendConfig fusion pattern
uses a "reversed nested tuple" format that is highly
unintuitive. For example,
```
linear-relu -> (nn.ReLU, nn.Linear)
conv-bn-relu -> (nn.ReLU, (nn.BatchNorm2d, nn.Conv2d))
```
This pattern format also complicates the signatures
of the user specified "fuser methods", which needed
to accept arguments in reverse nested order to match
the patterns:
```
def fuse_linear_relu(is_qat, relu, linear):
    ...

def fuse_conv_bn_relu(is_qat, relu, bn_conv):
    (bn, conv) = bn_conv
    ...
```
Instead, this commit introduces a new pattern format that
simply specifies the ops in forward order with no nesting:
```
linear-relu -> (nn.Linear, nn.ReLU)
conv-bn-relu -> (nn.Conv2d, nn.BatchNorm2d, nn.ReLU)

def fuse_linear_relu(is_qat, linear, relu):
    ...

def fuse_conv_bn_relu(is_qat, conv, bn, relu):
    ...
```
Note that the legacy "reversed nested tuple" is still
used internally since it is more general. In the
future, we should replace it with the format used in
the subgraph rewriter in `torch.fx`, and simplify the
existing pattern matching code to handle the new
format added in this commit.

BC-breaking Notes:

Before:
```
import torch as nn
import torch.ao.nn.intrinsic as nni
from torch.ao.quantization.backend_config import BackendPatternConfig

def fuse_linear_relu(is_qat, relu, bn_conv):
    (bn, conv) = bn_conv
    return nni.ConvBnReLU2d(conv, bn, relu)

config = BackendPatternConfig((nn.ReLU, (nn.BatchNorm2d, nn.Conv2d))) \
    .set_dtype_configs(...) \
    .set_fuser_method(fuse_conv_bn_relu) \
    .set_fused_module(nni.ConvBnReLU2d)
```

After:
```
def fuse_linear_relu(is_qat, conv, bn, relu):
    return nni.ConvBnReLU2d(conv, bn, relu)

config = BackendPatternConfig((nn.Conv2d, nn.BatchNorm2d, nn.ReLU)) \
    .set_dtype_configs(...) \
    .set_fuser_method(fuse_conv_bn_relu) \
    .set_fused_module(nni.ConvBnReLU2d)
```

OR (for backward-compatibility)

```
def fuse_linear_relu(is_qat, relu, bn_conv):
    (bn, conv) = bn_conv
    return nni.ConvBnReLU2d(conv, bn, relu)

config = BackendPatternConfig() \
    ._set_pattern_complex_format((nn.ReLU, (nn.BatchNorm2d, nn.Conv2d))) \
    .set_dtype_configs(...) \
    .set_fuser_method(fuse_conv_bn_relu) \
    .set_fused_module(nni.ConvBnReLU2d) \
    ._set_use_legacy_pattern_format(True)
```

Before:
```
backend_config.configs  # returns Dict[Pattern, BackendPatternConfig]
```

After:
```
backend_config.configs  # returns List[BackendPatternConfig]
```

Test Plan:
python test/test_quantization.py TestQuantizeFx
python test/test_quantization.py TestQuantizeFxOps
python test/test_quantization.py TestBackendConfig

Reviewers: jerryzh168, vkuzo

Subscribers: jerryzh168, vkuzo

ghstack-source-id: fa7ae0e
Pull Request resolved: #90351
@andrewor14
Copy link
Contributor Author

@andrewor14 has imported this pull request. If you are a Meta employee, you can view this diff on Phabricator.

@andrewor14
Copy link
Contributor Author

Can't figure out how to sync this with the diff after multiple exports. Closing this in favor of #90698

@andrewor14 andrewor14 closed this Dec 12, 2022
@andrewor14 andrewor14 changed the title [Quant][fx][bc-breaking] Add simpler BackendConfig pattern format [OLD DO NOT MERGE][Quant][fx][bc-breaking] Add simpler BackendConfig pattern format Dec 12, 2022
@facebook-github-bot facebook-github-bot deleted the gh/andrewor14/40/head branch June 8, 2023 15:13
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment

Labels

release notes: quantization release notes category topic: bc breaking topic category

Projects

None yet

Development

Successfully merging this pull request may close these issues.

4 participants