Skip to content

Conversation

@wconstab
Copy link
Contributor

@wconstab wconstab commented Nov 4, 2022

Stack from ghstack (oldest at bottom):

Example output:

2022-11-04 05:09:29,525] torch._dynamo.optimizations.distributed: [INFO]
DDPOptimizer bucket assignments             
┌─────────┬────────────┬───────────────────┐       
│   Index │   Size (b) │ Param Names       │       
├─────────┼────────────┼───────────────────┤       
│       0 │  100120020 │ self_net_6_weight │       
├─────────┼────────────┼───────────────────┤       
│         │            │ self_net_6_bias   │       
├─────────┼────────────┼───────────────────┤       
│         │            │ self_net_4_weight │       
├─────────┼────────────┼───────────────────┤       
│         │            │ self_net_4_bias   │                              
├─────────┼────────────┼───────────────────┤
│       1 │  100020000 │ self_net_2_weight │
├─────────┼────────────┼───────────────────┤            
│         │            │ self_net_2_bias   │                                                          
├─────────┼────────────┼───────────────────┤
│       2 │     220000 │ self_net_0_weight │
├─────────┼────────────┼───────────────────┤
│         │            │ self_net_0_bias   │
└─────────┴────────────┴───────────────────┘
[2022-11-04 05:09:29,527] torch._dynamo.optimizations.distributed: [DEBUG]
---orig graph---
graph():
    %inputs : torch.Tensor [#users=1] = placeholder[target=inputs]
    %self_net_0 : [#users=1] = call_module[target=self_net_0](args = (%inputs,), kwargs = {})
    %self_net_1 : [#users=1] = call_module[target=self_net_1](args = (%self_net_0,), kwargs = {})
    %self_net_2 : [#users=1] = call_module[target=self_net_2](args = (%self_net_1,), kwargs = {})
    %self_net_3 : [#users=1] = call_module[target=self_net_3](args = (%self_net_2,), kwargs = {})
    %self_net_4 : [#users=1] = call_module[target=self_net_4](args = (%self_net_3,), kwargs = {})
    %self_net_5 : [#users=1] = call_module[target=self_net_5](args = (%self_net_4,), kwargs = {})
    %self_net_6 : [#users=1] = call_module[target=self_net_6](args = (%self_net_5,), kwargs = {})
    %self_net_7 : [#users=1] = call_module[target=self_net_7](args = (%self_net_6,), kwargs = {})
    return (self_net_7,)

---split graph---
graph():
    %inputs : torch.Tensor [#users=1] = placeholder[target=inputs]
    %submod_0 : [#users=1] = call_module[target=submod_0](args = (%inputs,), kwargs = {})
    %submod_1 : [#users=1] = call_module[target=submod_1](args = (%submod_0,), kwargs = {})
    %submod_2 : [#users=1] = call_module[target=submod_2](args = (%submod_1,), kwargs = {})
    return (submod_2,)

---submod_0 graph---
graph():
    %inputs : [#users=1] = placeholder[target=inputs]
    %self_net_0 : [#users=1] = call_module[target=self_net_0](args = (%inputs,), kwargs = {})
    %self_net_1 : [#users=1] = call_module[target=self_net_1](args = (%self_net_0,), kwargs = {})
    return self_net_1

---submod_1 graph---
graph():
    %self_net_1 : [#users=1] = placeholder[target=self_net_1]
    %self_net_2 : [#users=1] = call_module[target=self_net_2](args = (%self_net_1,), kwargs = {})
    %self_net_3 : [#users=1] = call_module[target=self_net_3](args = (%self_net_2,), kwargs = {})
    return self_net_3

---submod_2 graph---
graph():
    %self_net_3 : [#users=1] = placeholder[target=self_net_3]
    %self_net_4 : [#users=1] = call_module[target=self_net_4](args = (%self_net_3,), kwargs = {})
    %self_net_5 : [#users=1] = call_module[target=self_net_5](args = (%self_net_4,), kwargs = {})
    %self_net_6 : [#users=1] = call_module[target=self_net_6](args = (%self_net_5,), kwargs = {})
    %self_net_7 : [#users=1] = call_module[target=self_net_7](args = (%self_net_6,), kwargs = {})
    return self_net_7

---------------

cc @mlazos @soumith @voznesenskym @yanboliang @penguinwu @anijain2305 @EikanWang @jgong5 @Guobing-Chen @chunyuan-w @XiaobingSuper @zhuhaozhe @blzheng @Xia-Weiwen @wenzhe-nrv @jiayisunx

@pytorch-bot
Copy link

pytorch-bot bot commented Nov 4, 2022

🔗 Helpful Links

🧪 See artifacts and rendered test results at hud.pytorch.org/pr/88480

Note: Links to docs will display an error until the docs builds have been completed.

❌ 1 Failures

As of commit 9988375:

The following jobs have failed:

This comment was automatically generated by Dr. CI and updates every 15 minutes.

…mo logger"


Example output:

```
2022-11-04 05:09:29,525] torch._dynamo.optimizations.distributed: [INFO]
DDPOptimizer bucket assignments             
┌─────────┬────────────┬───────────────────┐       
│   Index │   Size (b) │ Param Names       │       
├─────────┼────────────┼───────────────────┤       
│       0 │  100120020 │ self_net_6_weight │       
├─────────┼────────────┼───────────────────┤       
│         │            │ self_net_6_bias   │       
├─────────┼────────────┼───────────────────┤       
│         │            │ self_net_4_weight │       
├─────────┼────────────┼───────────────────┤       
│         │            │ self_net_4_bias   │                              
├─────────┼────────────┼───────────────────┤
│       1 │  100020000 │ self_net_2_weight │
├─────────┼────────────┼───────────────────┤            
│         │            │ self_net_2_bias   │                                                          
├─────────┼────────────┼───────────────────┤
│       2 │     220000 │ self_net_0_weight │
├─────────┼────────────┼───────────────────┤
│         │            │ self_net_0_bias   │
└─────────┴────────────┴───────────────────┘
[2022-11-04 05:09:29,527] torch._dynamo.optimizations.distributed: [DEBUG]
---orig graph---
graph():
    %inputs : torch.Tensor [#users=1] = placeholder[target=inputs]
    %self_net_0 : [#users=1] = call_module[target=self_net_0](args = (%inputs,), kwargs = {})
    %self_net_1 : [#users=1] = call_module[target=self_net_1](args = (%self_net_0,), kwargs = {})
    %self_net_2 : [#users=1] = call_module[target=self_net_2](args = (%self_net_1,), kwargs = {})
    %self_net_3 : [#users=1] = call_module[target=self_net_3](args = (%self_net_2,), kwargs = {})
    %self_net_4 : [#users=1] = call_module[target=self_net_4](args = (%self_net_3,), kwargs = {})
    %self_net_5 : [#users=1] = call_module[target=self_net_5](args = (%self_net_4,), kwargs = {})
    %self_net_6 : [#users=1] = call_module[target=self_net_6](args = (%self_net_5,), kwargs = {})
    %self_net_7 : [#users=1] = call_module[target=self_net_7](args = (%self_net_6,), kwargs = {})
    return (self_net_7,)

---split graph---
graph():
    %inputs : torch.Tensor [#users=1] = placeholder[target=inputs]
    %submod_0 : [#users=1] = call_module[target=submod_0](args = (%inputs,), kwargs = {})
    %submod_1 : [#users=1] = call_module[target=submod_1](args = (%submod_0,), kwargs = {})
    %submod_2 : [#users=1] = call_module[target=submod_2](args = (%submod_1,), kwargs = {})
    return (submod_2,)

---submod_0 graph---
graph():
    %inputs : [#users=1] = placeholder[target=inputs]
    %self_net_0 : [#users=1] = call_module[target=self_net_0](args = (%inputs,), kwargs = {})
    %self_net_1 : [#users=1] = call_module[target=self_net_1](args = (%self_net_0,), kwargs = {})
    return self_net_1

---submod_1 graph---
graph():
    %self_net_1 : [#users=1] = placeholder[target=self_net_1]
    %self_net_2 : [#users=1] = call_module[target=self_net_2](args = (%self_net_1,), kwargs = {})
    %self_net_3 : [#users=1] = call_module[target=self_net_3](args = (%self_net_2,), kwargs = {})
    return self_net_3

---submod_2 graph---
graph():
    %self_net_3 : [#users=1] = placeholder[target=self_net_3]
    %self_net_4 : [#users=1] = call_module[target=self_net_4](args = (%self_net_3,), kwargs = {})
    %self_net_5 : [#users=1] = call_module[target=self_net_5](args = (%self_net_4,), kwargs = {})
    %self_net_6 : [#users=1] = call_module[target=self_net_6](args = (%self_net_5,), kwargs = {})
    %self_net_7 : [#users=1] = call_module[target=self_net_7](args = (%self_net_6,), kwargs = {})
    return self_net_7

---------------
```

cc mlazos soumith voznesenskym yanboliang penguinwu anijain2305 EikanWang jgong5 Guobing-Chen chunyuan-w XiaobingSuper zhuhaozhe blzheng Xia-Weiwen wenzhe-nrv jiayisunx

[ghstack-poisoned]
wconstab added a commit that referenced this pull request Nov 4, 2022
2022-11-04 05:09:29,525] torch._dynamo.optimizations.distributed: [INFO]
DDPOptimizer bucket assignments
┌─────────┬────────────┬───────────────────┐
│   Index │   Size (b) │ Param Names       │
├─────────┼────────────┼───────────────────┤
│       0 │  100120020 │ self_net_6_weight │
├─────────┼────────────┼───────────────────┤
│         │            │ self_net_6_bias   │
├─────────┼────────────┼───────────────────┤
│         │            │ self_net_4_weight │
├─────────┼────────────┼───────────────────┤
│         │            │ self_net_4_bias   │
├─────────┼────────────┼───────────────────┤
│       1 │  100020000 │ self_net_2_weight │
├─────────┼────────────┼───────────────────┤
│         │            │ self_net_2_bias   │
├─────────┼────────────┼───────────────────┤
│       2 │     220000 │ self_net_0_weight │
├─────────┼────────────┼───────────────────┤
│         │            │ self_net_0_bias   │
└─────────┴────────────┴───────────────────┘
[2022-11-04 05:09:29,527] torch._dynamo.optimizations.distributed: [DEBUG]
---orig graph---
graph():
    %inputs : torch.Tensor [#users=1] = placeholder[target=inputs]
    %self_net_0 : [#users=1] = call_module[target=self_net_0](args = (%inputs,), kwargs = {})
    %self_net_1 : [#users=1] = call_module[target=self_net_1](args = (%self_net_0,), kwargs = {})
    %self_net_2 : [#users=1] = call_module[target=self_net_2](args = (%self_net_1,), kwargs = {})
    %self_net_3 : [#users=1] = call_module[target=self_net_3](args = (%self_net_2,), kwargs = {})
    %self_net_4 : [#users=1] = call_module[target=self_net_4](args = (%self_net_3,), kwargs = {})
    %self_net_5 : [#users=1] = call_module[target=self_net_5](args = (%self_net_4,), kwargs = {})
    %self_net_6 : [#users=1] = call_module[target=self_net_6](args = (%self_net_5,), kwargs = {})
    %self_net_7 : [#users=1] = call_module[target=self_net_7](args = (%self_net_6,), kwargs = {})
    return (self_net_7,)

---split graph---
graph():
    %inputs : torch.Tensor [#users=1] = placeholder[target=inputs]
    %submod_0 : [#users=1] = call_module[target=submod_0](args = (%inputs,), kwargs = {})
    %submod_1 : [#users=1] = call_module[target=submod_1](args = (%submod_0,), kwargs = {})
    %submod_2 : [#users=1] = call_module[target=submod_2](args = (%submod_1,), kwargs = {})
    return (submod_2,)

---submod_0 graph---
graph():
    %inputs : [#users=1] = placeholder[target=inputs]
    %self_net_0 : [#users=1] = call_module[target=self_net_0](args = (%inputs,), kwargs = {})
    %self_net_1 : [#users=1] = call_module[target=self_net_1](args = (%self_net_0,), kwargs = {})
    return self_net_1

---submod_1 graph---
graph():
    %self_net_1 : [#users=1] = placeholder[target=self_net_1]
    %self_net_2 : [#users=1] = call_module[target=self_net_2](args = (%self_net_1,), kwargs = {})
    %self_net_3 : [#users=1] = call_module[target=self_net_3](args = (%self_net_2,), kwargs = {})
    return self_net_3

---submod_2 graph---
graph():
    %self_net_3 : [#users=1] = placeholder[target=self_net_3]
    %self_net_4 : [#users=1] = call_module[target=self_net_4](args = (%self_net_3,), kwargs = {})
    %self_net_5 : [#users=1] = call_module[target=self_net_5](args = (%self_net_4,), kwargs = {})
    %self_net_6 : [#users=1] = call_module[target=self_net_6](args = (%self_net_5,), kwargs = {})
    %self_net_7 : [#users=1] = call_module[target=self_net_7](args = (%self_net_6,), kwargs = {})
    return self_net_7

---------------

ghstack-source-id: 4ee80a8
Pull Request resolved: #88480
@wconstab wconstab added the release notes: distributed (ddp) release notes category label Nov 4, 2022
…mo logger"


Example output:

```
2022-11-04 05:09:29,525] torch._dynamo.optimizations.distributed: [INFO]
DDPOptimizer bucket assignments             
┌─────────┬────────────┬───────────────────┐       
│   Index │   Size (b) │ Param Names       │       
├─────────┼────────────┼───────────────────┤       
│       0 │  100120020 │ self_net_6_weight │       
├─────────┼────────────┼───────────────────┤       
│         │            │ self_net_6_bias   │       
├─────────┼────────────┼───────────────────┤       
│         │            │ self_net_4_weight │       
├─────────┼────────────┼───────────────────┤       
│         │            │ self_net_4_bias   │                              
├─────────┼────────────┼───────────────────┤
│       1 │  100020000 │ self_net_2_weight │
├─────────┼────────────┼───────────────────┤            
│         │            │ self_net_2_bias   │                                                          
├─────────┼────────────┼───────────────────┤
│       2 │     220000 │ self_net_0_weight │
├─────────┼────────────┼───────────────────┤
│         │            │ self_net_0_bias   │
└─────────┴────────────┴───────────────────┘
[2022-11-04 05:09:29,527] torch._dynamo.optimizations.distributed: [DEBUG]
---orig graph---
graph():
    %inputs : torch.Tensor [#users=1] = placeholder[target=inputs]
    %self_net_0 : [#users=1] = call_module[target=self_net_0](args = (%inputs,), kwargs = {})
    %self_net_1 : [#users=1] = call_module[target=self_net_1](args = (%self_net_0,), kwargs = {})
    %self_net_2 : [#users=1] = call_module[target=self_net_2](args = (%self_net_1,), kwargs = {})
    %self_net_3 : [#users=1] = call_module[target=self_net_3](args = (%self_net_2,), kwargs = {})
    %self_net_4 : [#users=1] = call_module[target=self_net_4](args = (%self_net_3,), kwargs = {})
    %self_net_5 : [#users=1] = call_module[target=self_net_5](args = (%self_net_4,), kwargs = {})
    %self_net_6 : [#users=1] = call_module[target=self_net_6](args = (%self_net_5,), kwargs = {})
    %self_net_7 : [#users=1] = call_module[target=self_net_7](args = (%self_net_6,), kwargs = {})
    return (self_net_7,)

---split graph---
graph():
    %inputs : torch.Tensor [#users=1] = placeholder[target=inputs]
    %submod_0 : [#users=1] = call_module[target=submod_0](args = (%inputs,), kwargs = {})
    %submod_1 : [#users=1] = call_module[target=submod_1](args = (%submod_0,), kwargs = {})
    %submod_2 : [#users=1] = call_module[target=submod_2](args = (%submod_1,), kwargs = {})
    return (submod_2,)

---submod_0 graph---
graph():
    %inputs : [#users=1] = placeholder[target=inputs]
    %self_net_0 : [#users=1] = call_module[target=self_net_0](args = (%inputs,), kwargs = {})
    %self_net_1 : [#users=1] = call_module[target=self_net_1](args = (%self_net_0,), kwargs = {})
    return self_net_1

---submod_1 graph---
graph():
    %self_net_1 : [#users=1] = placeholder[target=self_net_1]
    %self_net_2 : [#users=1] = call_module[target=self_net_2](args = (%self_net_1,), kwargs = {})
    %self_net_3 : [#users=1] = call_module[target=self_net_3](args = (%self_net_2,), kwargs = {})
    return self_net_3

---submod_2 graph---
graph():
    %self_net_3 : [#users=1] = placeholder[target=self_net_3]
    %self_net_4 : [#users=1] = call_module[target=self_net_4](args = (%self_net_3,), kwargs = {})
    %self_net_5 : [#users=1] = call_module[target=self_net_5](args = (%self_net_4,), kwargs = {})
    %self_net_6 : [#users=1] = call_module[target=self_net_6](args = (%self_net_5,), kwargs = {})
    %self_net_7 : [#users=1] = call_module[target=self_net_7](args = (%self_net_6,), kwargs = {})
    return self_net_7

---------------
```

cc mlazos soumith voznesenskym yanboliang penguinwu anijain2305 EikanWang jgong5 Guobing-Chen chunyuan-w XiaobingSuper zhuhaozhe blzheng Xia-Weiwen wenzhe-nrv jiayisunx

[ghstack-poisoned]
wconstab added a commit that referenced this pull request Nov 4, 2022
2022-11-04 05:09:29,525] torch._dynamo.optimizations.distributed: [INFO]
DDPOptimizer bucket assignments
┌─────────┬────────────┬───────────────────┐
│   Index │   Size (b) │ Param Names       │
├─────────┼────────────┼───────────────────┤
│       0 │  100120020 │ self_net_6_weight │
├─────────┼────────────┼───────────────────┤
│         │            │ self_net_6_bias   │
├─────────┼────────────┼───────────────────┤
│         │            │ self_net_4_weight │
├─────────┼────────────┼───────────────────┤
│         │            │ self_net_4_bias   │
├─────────┼────────────┼───────────────────┤
│       1 │  100020000 │ self_net_2_weight │
├─────────┼────────────┼───────────────────┤
│         │            │ self_net_2_bias   │
├─────────┼────────────┼───────────────────┤
│       2 │     220000 │ self_net_0_weight │
├─────────┼────────────┼───────────────────┤
│         │            │ self_net_0_bias   │
└─────────┴────────────┴───────────────────┘
[2022-11-04 05:09:29,527] torch._dynamo.optimizations.distributed: [DEBUG]
---orig graph---
graph():
    %inputs : torch.Tensor [#users=1] = placeholder[target=inputs]
    %self_net_0 : [#users=1] = call_module[target=self_net_0](args = (%inputs,), kwargs = {})
    %self_net_1 : [#users=1] = call_module[target=self_net_1](args = (%self_net_0,), kwargs = {})
    %self_net_2 : [#users=1] = call_module[target=self_net_2](args = (%self_net_1,), kwargs = {})
    %self_net_3 : [#users=1] = call_module[target=self_net_3](args = (%self_net_2,), kwargs = {})
    %self_net_4 : [#users=1] = call_module[target=self_net_4](args = (%self_net_3,), kwargs = {})
    %self_net_5 : [#users=1] = call_module[target=self_net_5](args = (%self_net_4,), kwargs = {})
    %self_net_6 : [#users=1] = call_module[target=self_net_6](args = (%self_net_5,), kwargs = {})
    %self_net_7 : [#users=1] = call_module[target=self_net_7](args = (%self_net_6,), kwargs = {})
    return (self_net_7,)

---split graph---
graph():
    %inputs : torch.Tensor [#users=1] = placeholder[target=inputs]
    %submod_0 : [#users=1] = call_module[target=submod_0](args = (%inputs,), kwargs = {})
    %submod_1 : [#users=1] = call_module[target=submod_1](args = (%submod_0,), kwargs = {})
    %submod_2 : [#users=1] = call_module[target=submod_2](args = (%submod_1,), kwargs = {})
    return (submod_2,)

---submod_0 graph---
graph():
    %inputs : [#users=1] = placeholder[target=inputs]
    %self_net_0 : [#users=1] = call_module[target=self_net_0](args = (%inputs,), kwargs = {})
    %self_net_1 : [#users=1] = call_module[target=self_net_1](args = (%self_net_0,), kwargs = {})
    return self_net_1

---submod_1 graph---
graph():
    %self_net_1 : [#users=1] = placeholder[target=self_net_1]
    %self_net_2 : [#users=1] = call_module[target=self_net_2](args = (%self_net_1,), kwargs = {})
    %self_net_3 : [#users=1] = call_module[target=self_net_3](args = (%self_net_2,), kwargs = {})
    return self_net_3

---submod_2 graph---
graph():
    %self_net_3 : [#users=1] = placeholder[target=self_net_3]
    %self_net_4 : [#users=1] = call_module[target=self_net_4](args = (%self_net_3,), kwargs = {})
    %self_net_5 : [#users=1] = call_module[target=self_net_5](args = (%self_net_4,), kwargs = {})
    %self_net_6 : [#users=1] = call_module[target=self_net_6](args = (%self_net_5,), kwargs = {})
    %self_net_7 : [#users=1] = call_module[target=self_net_7](args = (%self_net_6,), kwargs = {})
    return self_net_7

---------------

ghstack-source-id: b952f27
Pull Request resolved: #88480
Copy link

@anj-s anj-s left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Nice!

@wconstab
Copy link
Contributor Author

wconstab commented Nov 4, 2022

@pytorchbot merge

@pytorch-bot pytorch-bot bot added the ciflow/trunk Trigger trunk jobs on your pull request label Nov 4, 2022
@pytorchmergebot
Copy link
Collaborator

Merge started

Your change will be merged once all checks pass (ETA 0-4 Hours).

Learn more about merging in the wiki.

Questions? Feedback? Please reach out to the PyTorch DevX Team

Advanced Debugging
Check the merge workflow status
here

@pytorchmergebot
Copy link
Collaborator

Merge failed

Reason: 2 additional jobs have failed, first few of them are: trunk ,trunk / cuda11.6-py3.10-gcc7-sm86 / test (default, 2, 4, linux.g5.4xlarge.nvidia.gpu)

Details for Dev Infra team Raised by workflow job

@wconstab
Copy link
Contributor Author

wconstab commented Nov 5, 2022

@pytorchbot merge -f "Flaky CI"

@pytorchmergebot
Copy link
Collaborator

Merge started

Your change will be merged immediately since you used the force (-f) flag, bypassing any CI checks (ETA: 1-5 minutes).

Learn more about merging in the wiki.

Questions? Feedback? Please reach out to the PyTorch DevX Team

Advanced Debugging
Check the merge workflow status
here

kulinseth pushed a commit to kulinseth/pytorch that referenced this pull request Nov 5, 2022
…ytorch#88480)

Example output:

```
2022-11-04 05:09:29,525] torch._dynamo.optimizations.distributed: [INFO]
DDPOptimizer bucket assignments
┌─────────┬────────────┬───────────────────┐
│   Index │   Size (b) │ Param Names       │
├─────────┼────────────┼───────────────────┤
│       0 │  100120020 │ self_net_6_weight │
├─────────┼────────────┼───────────────────┤
│         │            │ self_net_6_bias   │
├─────────┼────────────┼───────────────────┤
│         │            │ self_net_4_weight │
├─────────┼────────────┼───────────────────┤
│         │            │ self_net_4_bias   │
├─────────┼────────────┼───────────────────┤
│       1 │  100020000 │ self_net_2_weight │
├─────────┼────────────┼───────────────────┤
│         │            │ self_net_2_bias   │
├─────────┼────────────┼───────────────────┤
│       2 │     220000 │ self_net_0_weight │
├─────────┼────────────┼───────────────────┤
│         │            │ self_net_0_bias   │
└─────────┴────────────┴───────────────────┘
[2022-11-04 05:09:29,527] torch._dynamo.optimizations.distributed: [DEBUG]
---orig graph---
graph():
    %inputs : torch.Tensor [#users=1] = placeholder[target=inputs]
    %self_net_0 : [#users=1] = call_module[target=self_net_0](args = (%inputs,), kwargs = {})
    %self_net_1 : [#users=1] = call_module[target=self_net_1](args = (%self_net_0,), kwargs = {})
    %self_net_2 : [#users=1] = call_module[target=self_net_2](args = (%self_net_1,), kwargs = {})
    %self_net_3 : [#users=1] = call_module[target=self_net_3](args = (%self_net_2,), kwargs = {})
    %self_net_4 : [#users=1] = call_module[target=self_net_4](args = (%self_net_3,), kwargs = {})
    %self_net_5 : [#users=1] = call_module[target=self_net_5](args = (%self_net_4,), kwargs = {})
    %self_net_6 : [#users=1] = call_module[target=self_net_6](args = (%self_net_5,), kwargs = {})
    %self_net_7 : [#users=1] = call_module[target=self_net_7](args = (%self_net_6,), kwargs = {})
    return (self_net_7,)

---split graph---
graph():
    %inputs : torch.Tensor [#users=1] = placeholder[target=inputs]
    %submod_0 : [#users=1] = call_module[target=submod_0](args = (%inputs,), kwargs = {})
    %submod_1 : [#users=1] = call_module[target=submod_1](args = (%submod_0,), kwargs = {})
    %submod_2 : [#users=1] = call_module[target=submod_2](args = (%submod_1,), kwargs = {})
    return (submod_2,)

---submod_0 graph---
graph():
    %inputs : [#users=1] = placeholder[target=inputs]
    %self_net_0 : [#users=1] = call_module[target=self_net_0](args = (%inputs,), kwargs = {})
    %self_net_1 : [#users=1] = call_module[target=self_net_1](args = (%self_net_0,), kwargs = {})
    return self_net_1

---submod_1 graph---
graph():
    %self_net_1 : [#users=1] = placeholder[target=self_net_1]
    %self_net_2 : [#users=1] = call_module[target=self_net_2](args = (%self_net_1,), kwargs = {})
    %self_net_3 : [#users=1] = call_module[target=self_net_3](args = (%self_net_2,), kwargs = {})
    return self_net_3

---submod_2 graph---
graph():
    %self_net_3 : [#users=1] = placeholder[target=self_net_3]
    %self_net_4 : [#users=1] = call_module[target=self_net_4](args = (%self_net_3,), kwargs = {})
    %self_net_5 : [#users=1] = call_module[target=self_net_5](args = (%self_net_4,), kwargs = {})
    %self_net_6 : [#users=1] = call_module[target=self_net_6](args = (%self_net_5,), kwargs = {})
    %self_net_7 : [#users=1] = call_module[target=self_net_7](args = (%self_net_6,), kwargs = {})
    return self_net_7

---------------
```

Pull Request resolved: pytorch#88480
Approved by: https://github.com/anj-s, https://github.com/davidberard98
kulinseth pushed a commit to kulinseth/pytorch that referenced this pull request Dec 10, 2022
…ytorch#88480)

Example output:

```
2022-11-04 05:09:29,525] torch._dynamo.optimizations.distributed: [INFO]
DDPOptimizer bucket assignments
┌─────────┬────────────┬───────────────────┐
│   Index │   Size (b) │ Param Names       │
├─────────┼────────────┼───────────────────┤
│       0 │  100120020 │ self_net_6_weight │
├─────────┼────────────┼───────────────────┤
│         │            │ self_net_6_bias   │
├─────────┼────────────┼───────────────────┤
│         │            │ self_net_4_weight │
├─────────┼────────────┼───────────────────┤
│         │            │ self_net_4_bias   │
├─────────┼────────────┼───────────────────┤
│       1 │  100020000 │ self_net_2_weight │
├─────────┼────────────┼───────────────────┤
│         │            │ self_net_2_bias   │
├─────────┼────────────┼───────────────────┤
│       2 │     220000 │ self_net_0_weight │
├─────────┼────────────┼───────────────────┤
│         │            │ self_net_0_bias   │
└─────────┴────────────┴───────────────────┘
[2022-11-04 05:09:29,527] torch._dynamo.optimizations.distributed: [DEBUG]
---orig graph---
graph():
    %inputs : torch.Tensor [#users=1] = placeholder[target=inputs]
    %self_net_0 : [#users=1] = call_module[target=self_net_0](args = (%inputs,), kwargs = {})
    %self_net_1 : [#users=1] = call_module[target=self_net_1](args = (%self_net_0,), kwargs = {})
    %self_net_2 : [#users=1] = call_module[target=self_net_2](args = (%self_net_1,), kwargs = {})
    %self_net_3 : [#users=1] = call_module[target=self_net_3](args = (%self_net_2,), kwargs = {})
    %self_net_4 : [#users=1] = call_module[target=self_net_4](args = (%self_net_3,), kwargs = {})
    %self_net_5 : [#users=1] = call_module[target=self_net_5](args = (%self_net_4,), kwargs = {})
    %self_net_6 : [#users=1] = call_module[target=self_net_6](args = (%self_net_5,), kwargs = {})
    %self_net_7 : [#users=1] = call_module[target=self_net_7](args = (%self_net_6,), kwargs = {})
    return (self_net_7,)

---split graph---
graph():
    %inputs : torch.Tensor [#users=1] = placeholder[target=inputs]
    %submod_0 : [#users=1] = call_module[target=submod_0](args = (%inputs,), kwargs = {})
    %submod_1 : [#users=1] = call_module[target=submod_1](args = (%submod_0,), kwargs = {})
    %submod_2 : [#users=1] = call_module[target=submod_2](args = (%submod_1,), kwargs = {})
    return (submod_2,)

---submod_0 graph---
graph():
    %inputs : [#users=1] = placeholder[target=inputs]
    %self_net_0 : [#users=1] = call_module[target=self_net_0](args = (%inputs,), kwargs = {})
    %self_net_1 : [#users=1] = call_module[target=self_net_1](args = (%self_net_0,), kwargs = {})
    return self_net_1

---submod_1 graph---
graph():
    %self_net_1 : [#users=1] = placeholder[target=self_net_1]
    %self_net_2 : [#users=1] = call_module[target=self_net_2](args = (%self_net_1,), kwargs = {})
    %self_net_3 : [#users=1] = call_module[target=self_net_3](args = (%self_net_2,), kwargs = {})
    return self_net_3

---submod_2 graph---
graph():
    %self_net_3 : [#users=1] = placeholder[target=self_net_3]
    %self_net_4 : [#users=1] = call_module[target=self_net_4](args = (%self_net_3,), kwargs = {})
    %self_net_5 : [#users=1] = call_module[target=self_net_5](args = (%self_net_4,), kwargs = {})
    %self_net_6 : [#users=1] = call_module[target=self_net_6](args = (%self_net_5,), kwargs = {})
    %self_net_7 : [#users=1] = call_module[target=self_net_7](args = (%self_net_6,), kwargs = {})
    return self_net_7

---------------
```

Pull Request resolved: pytorch#88480
Approved by: https://github.com/anj-s, https://github.com/davidberard98
@facebook-github-bot facebook-github-bot deleted the gh/wconstab/28/head branch June 8, 2023 19:16
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment

Labels

Projects

None yet

Development

Successfully merging this pull request may close these issues.

5 participants