-
Notifications
You must be signed in to change notification settings - Fork 26.3k
DDPOptimizer replace debug=True/False with using torchdynamo logger #88480
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Conversation
[ghstack-poisoned]
🔗 Helpful Links🧪 See artifacts and rendered test results at hud.pytorch.org/pr/88480
Note: Links to docs will display an error until the docs builds have been completed. ❌ 1 FailuresAs of commit 9988375: The following jobs have failed:
This comment was automatically generated by Dr. CI and updates every 15 minutes. |
…mo logger"
Example output:
```
2022-11-04 05:09:29,525] torch._dynamo.optimizations.distributed: [INFO]
DDPOptimizer bucket assignments
┌─────────┬────────────┬───────────────────┐
│ Index │ Size (b) │ Param Names │
├─────────┼────────────┼───────────────────┤
│ 0 │ 100120020 │ self_net_6_weight │
├─────────┼────────────┼───────────────────┤
│ │ │ self_net_6_bias │
├─────────┼────────────┼───────────────────┤
│ │ │ self_net_4_weight │
├─────────┼────────────┼───────────────────┤
│ │ │ self_net_4_bias │
├─────────┼────────────┼───────────────────┤
│ 1 │ 100020000 │ self_net_2_weight │
├─────────┼────────────┼───────────────────┤
│ │ │ self_net_2_bias │
├─────────┼────────────┼───────────────────┤
│ 2 │ 220000 │ self_net_0_weight │
├─────────┼────────────┼───────────────────┤
│ │ │ self_net_0_bias │
└─────────┴────────────┴───────────────────┘
[2022-11-04 05:09:29,527] torch._dynamo.optimizations.distributed: [DEBUG]
---orig graph---
graph():
%inputs : torch.Tensor [#users=1] = placeholder[target=inputs]
%self_net_0 : [#users=1] = call_module[target=self_net_0](args = (%inputs,), kwargs = {})
%self_net_1 : [#users=1] = call_module[target=self_net_1](args = (%self_net_0,), kwargs = {})
%self_net_2 : [#users=1] = call_module[target=self_net_2](args = (%self_net_1,), kwargs = {})
%self_net_3 : [#users=1] = call_module[target=self_net_3](args = (%self_net_2,), kwargs = {})
%self_net_4 : [#users=1] = call_module[target=self_net_4](args = (%self_net_3,), kwargs = {})
%self_net_5 : [#users=1] = call_module[target=self_net_5](args = (%self_net_4,), kwargs = {})
%self_net_6 : [#users=1] = call_module[target=self_net_6](args = (%self_net_5,), kwargs = {})
%self_net_7 : [#users=1] = call_module[target=self_net_7](args = (%self_net_6,), kwargs = {})
return (self_net_7,)
---split graph---
graph():
%inputs : torch.Tensor [#users=1] = placeholder[target=inputs]
%submod_0 : [#users=1] = call_module[target=submod_0](args = (%inputs,), kwargs = {})
%submod_1 : [#users=1] = call_module[target=submod_1](args = (%submod_0,), kwargs = {})
%submod_2 : [#users=1] = call_module[target=submod_2](args = (%submod_1,), kwargs = {})
return (submod_2,)
---submod_0 graph---
graph():
%inputs : [#users=1] = placeholder[target=inputs]
%self_net_0 : [#users=1] = call_module[target=self_net_0](args = (%inputs,), kwargs = {})
%self_net_1 : [#users=1] = call_module[target=self_net_1](args = (%self_net_0,), kwargs = {})
return self_net_1
---submod_1 graph---
graph():
%self_net_1 : [#users=1] = placeholder[target=self_net_1]
%self_net_2 : [#users=1] = call_module[target=self_net_2](args = (%self_net_1,), kwargs = {})
%self_net_3 : [#users=1] = call_module[target=self_net_3](args = (%self_net_2,), kwargs = {})
return self_net_3
---submod_2 graph---
graph():
%self_net_3 : [#users=1] = placeholder[target=self_net_3]
%self_net_4 : [#users=1] = call_module[target=self_net_4](args = (%self_net_3,), kwargs = {})
%self_net_5 : [#users=1] = call_module[target=self_net_5](args = (%self_net_4,), kwargs = {})
%self_net_6 : [#users=1] = call_module[target=self_net_6](args = (%self_net_5,), kwargs = {})
%self_net_7 : [#users=1] = call_module[target=self_net_7](args = (%self_net_6,), kwargs = {})
return self_net_7
---------------
```
cc mlazos soumith voznesenskym yanboliang penguinwu anijain2305 EikanWang jgong5 Guobing-Chen chunyuan-w XiaobingSuper zhuhaozhe blzheng Xia-Weiwen wenzhe-nrv jiayisunx
[ghstack-poisoned]
2022-11-04 05:09:29,525] torch._dynamo.optimizations.distributed: [INFO]
DDPOptimizer bucket assignments
┌─────────┬────────────┬───────────────────┐
│ Index │ Size (b) │ Param Names │
├─────────┼────────────┼───────────────────┤
│ 0 │ 100120020 │ self_net_6_weight │
├─────────┼────────────┼───────────────────┤
│ │ │ self_net_6_bias │
├─────────┼────────────┼───────────────────┤
│ │ │ self_net_4_weight │
├─────────┼────────────┼───────────────────┤
│ │ │ self_net_4_bias │
├─────────┼────────────┼───────────────────┤
│ 1 │ 100020000 │ self_net_2_weight │
├─────────┼────────────┼───────────────────┤
│ │ │ self_net_2_bias │
├─────────┼────────────┼───────────────────┤
│ 2 │ 220000 │ self_net_0_weight │
├─────────┼────────────┼───────────────────┤
│ │ │ self_net_0_bias │
└─────────┴────────────┴───────────────────┘
[2022-11-04 05:09:29,527] torch._dynamo.optimizations.distributed: [DEBUG]
---orig graph---
graph():
%inputs : torch.Tensor [#users=1] = placeholder[target=inputs]
%self_net_0 : [#users=1] = call_module[target=self_net_0](args = (%inputs,), kwargs = {})
%self_net_1 : [#users=1] = call_module[target=self_net_1](args = (%self_net_0,), kwargs = {})
%self_net_2 : [#users=1] = call_module[target=self_net_2](args = (%self_net_1,), kwargs = {})
%self_net_3 : [#users=1] = call_module[target=self_net_3](args = (%self_net_2,), kwargs = {})
%self_net_4 : [#users=1] = call_module[target=self_net_4](args = (%self_net_3,), kwargs = {})
%self_net_5 : [#users=1] = call_module[target=self_net_5](args = (%self_net_4,), kwargs = {})
%self_net_6 : [#users=1] = call_module[target=self_net_6](args = (%self_net_5,), kwargs = {})
%self_net_7 : [#users=1] = call_module[target=self_net_7](args = (%self_net_6,), kwargs = {})
return (self_net_7,)
---split graph---
graph():
%inputs : torch.Tensor [#users=1] = placeholder[target=inputs]
%submod_0 : [#users=1] = call_module[target=submod_0](args = (%inputs,), kwargs = {})
%submod_1 : [#users=1] = call_module[target=submod_1](args = (%submod_0,), kwargs = {})
%submod_2 : [#users=1] = call_module[target=submod_2](args = (%submod_1,), kwargs = {})
return (submod_2,)
---submod_0 graph---
graph():
%inputs : [#users=1] = placeholder[target=inputs]
%self_net_0 : [#users=1] = call_module[target=self_net_0](args = (%inputs,), kwargs = {})
%self_net_1 : [#users=1] = call_module[target=self_net_1](args = (%self_net_0,), kwargs = {})
return self_net_1
---submod_1 graph---
graph():
%self_net_1 : [#users=1] = placeholder[target=self_net_1]
%self_net_2 : [#users=1] = call_module[target=self_net_2](args = (%self_net_1,), kwargs = {})
%self_net_3 : [#users=1] = call_module[target=self_net_3](args = (%self_net_2,), kwargs = {})
return self_net_3
---submod_2 graph---
graph():
%self_net_3 : [#users=1] = placeholder[target=self_net_3]
%self_net_4 : [#users=1] = call_module[target=self_net_4](args = (%self_net_3,), kwargs = {})
%self_net_5 : [#users=1] = call_module[target=self_net_5](args = (%self_net_4,), kwargs = {})
%self_net_6 : [#users=1] = call_module[target=self_net_6](args = (%self_net_5,), kwargs = {})
%self_net_7 : [#users=1] = call_module[target=self_net_7](args = (%self_net_6,), kwargs = {})
return self_net_7
---------------
ghstack-source-id: 4ee80a8
Pull Request resolved: #88480
…mo logger"
Example output:
```
2022-11-04 05:09:29,525] torch._dynamo.optimizations.distributed: [INFO]
DDPOptimizer bucket assignments
┌─────────┬────────────┬───────────────────┐
│ Index │ Size (b) │ Param Names │
├─────────┼────────────┼───────────────────┤
│ 0 │ 100120020 │ self_net_6_weight │
├─────────┼────────────┼───────────────────┤
│ │ │ self_net_6_bias │
├─────────┼────────────┼───────────────────┤
│ │ │ self_net_4_weight │
├─────────┼────────────┼───────────────────┤
│ │ │ self_net_4_bias │
├─────────┼────────────┼───────────────────┤
│ 1 │ 100020000 │ self_net_2_weight │
├─────────┼────────────┼───────────────────┤
│ │ │ self_net_2_bias │
├─────────┼────────────┼───────────────────┤
│ 2 │ 220000 │ self_net_0_weight │
├─────────┼────────────┼───────────────────┤
│ │ │ self_net_0_bias │
└─────────┴────────────┴───────────────────┘
[2022-11-04 05:09:29,527] torch._dynamo.optimizations.distributed: [DEBUG]
---orig graph---
graph():
%inputs : torch.Tensor [#users=1] = placeholder[target=inputs]
%self_net_0 : [#users=1] = call_module[target=self_net_0](args = (%inputs,), kwargs = {})
%self_net_1 : [#users=1] = call_module[target=self_net_1](args = (%self_net_0,), kwargs = {})
%self_net_2 : [#users=1] = call_module[target=self_net_2](args = (%self_net_1,), kwargs = {})
%self_net_3 : [#users=1] = call_module[target=self_net_3](args = (%self_net_2,), kwargs = {})
%self_net_4 : [#users=1] = call_module[target=self_net_4](args = (%self_net_3,), kwargs = {})
%self_net_5 : [#users=1] = call_module[target=self_net_5](args = (%self_net_4,), kwargs = {})
%self_net_6 : [#users=1] = call_module[target=self_net_6](args = (%self_net_5,), kwargs = {})
%self_net_7 : [#users=1] = call_module[target=self_net_7](args = (%self_net_6,), kwargs = {})
return (self_net_7,)
---split graph---
graph():
%inputs : torch.Tensor [#users=1] = placeholder[target=inputs]
%submod_0 : [#users=1] = call_module[target=submod_0](args = (%inputs,), kwargs = {})
%submod_1 : [#users=1] = call_module[target=submod_1](args = (%submod_0,), kwargs = {})
%submod_2 : [#users=1] = call_module[target=submod_2](args = (%submod_1,), kwargs = {})
return (submod_2,)
---submod_0 graph---
graph():
%inputs : [#users=1] = placeholder[target=inputs]
%self_net_0 : [#users=1] = call_module[target=self_net_0](args = (%inputs,), kwargs = {})
%self_net_1 : [#users=1] = call_module[target=self_net_1](args = (%self_net_0,), kwargs = {})
return self_net_1
---submod_1 graph---
graph():
%self_net_1 : [#users=1] = placeholder[target=self_net_1]
%self_net_2 : [#users=1] = call_module[target=self_net_2](args = (%self_net_1,), kwargs = {})
%self_net_3 : [#users=1] = call_module[target=self_net_3](args = (%self_net_2,), kwargs = {})
return self_net_3
---submod_2 graph---
graph():
%self_net_3 : [#users=1] = placeholder[target=self_net_3]
%self_net_4 : [#users=1] = call_module[target=self_net_4](args = (%self_net_3,), kwargs = {})
%self_net_5 : [#users=1] = call_module[target=self_net_5](args = (%self_net_4,), kwargs = {})
%self_net_6 : [#users=1] = call_module[target=self_net_6](args = (%self_net_5,), kwargs = {})
%self_net_7 : [#users=1] = call_module[target=self_net_7](args = (%self_net_6,), kwargs = {})
return self_net_7
---------------
```
cc mlazos soumith voznesenskym yanboliang penguinwu anijain2305 EikanWang jgong5 Guobing-Chen chunyuan-w XiaobingSuper zhuhaozhe blzheng Xia-Weiwen wenzhe-nrv jiayisunx
[ghstack-poisoned]
2022-11-04 05:09:29,525] torch._dynamo.optimizations.distributed: [INFO]
DDPOptimizer bucket assignments
┌─────────┬────────────┬───────────────────┐
│ Index │ Size (b) │ Param Names │
├─────────┼────────────┼───────────────────┤
│ 0 │ 100120020 │ self_net_6_weight │
├─────────┼────────────┼───────────────────┤
│ │ │ self_net_6_bias │
├─────────┼────────────┼───────────────────┤
│ │ │ self_net_4_weight │
├─────────┼────────────┼───────────────────┤
│ │ │ self_net_4_bias │
├─────────┼────────────┼───────────────────┤
│ 1 │ 100020000 │ self_net_2_weight │
├─────────┼────────────┼───────────────────┤
│ │ │ self_net_2_bias │
├─────────┼────────────┼───────────────────┤
│ 2 │ 220000 │ self_net_0_weight │
├─────────┼────────────┼───────────────────┤
│ │ │ self_net_0_bias │
└─────────┴────────────┴───────────────────┘
[2022-11-04 05:09:29,527] torch._dynamo.optimizations.distributed: [DEBUG]
---orig graph---
graph():
%inputs : torch.Tensor [#users=1] = placeholder[target=inputs]
%self_net_0 : [#users=1] = call_module[target=self_net_0](args = (%inputs,), kwargs = {})
%self_net_1 : [#users=1] = call_module[target=self_net_1](args = (%self_net_0,), kwargs = {})
%self_net_2 : [#users=1] = call_module[target=self_net_2](args = (%self_net_1,), kwargs = {})
%self_net_3 : [#users=1] = call_module[target=self_net_3](args = (%self_net_2,), kwargs = {})
%self_net_4 : [#users=1] = call_module[target=self_net_4](args = (%self_net_3,), kwargs = {})
%self_net_5 : [#users=1] = call_module[target=self_net_5](args = (%self_net_4,), kwargs = {})
%self_net_6 : [#users=1] = call_module[target=self_net_6](args = (%self_net_5,), kwargs = {})
%self_net_7 : [#users=1] = call_module[target=self_net_7](args = (%self_net_6,), kwargs = {})
return (self_net_7,)
---split graph---
graph():
%inputs : torch.Tensor [#users=1] = placeholder[target=inputs]
%submod_0 : [#users=1] = call_module[target=submod_0](args = (%inputs,), kwargs = {})
%submod_1 : [#users=1] = call_module[target=submod_1](args = (%submod_0,), kwargs = {})
%submod_2 : [#users=1] = call_module[target=submod_2](args = (%submod_1,), kwargs = {})
return (submod_2,)
---submod_0 graph---
graph():
%inputs : [#users=1] = placeholder[target=inputs]
%self_net_0 : [#users=1] = call_module[target=self_net_0](args = (%inputs,), kwargs = {})
%self_net_1 : [#users=1] = call_module[target=self_net_1](args = (%self_net_0,), kwargs = {})
return self_net_1
---submod_1 graph---
graph():
%self_net_1 : [#users=1] = placeholder[target=self_net_1]
%self_net_2 : [#users=1] = call_module[target=self_net_2](args = (%self_net_1,), kwargs = {})
%self_net_3 : [#users=1] = call_module[target=self_net_3](args = (%self_net_2,), kwargs = {})
return self_net_3
---submod_2 graph---
graph():
%self_net_3 : [#users=1] = placeholder[target=self_net_3]
%self_net_4 : [#users=1] = call_module[target=self_net_4](args = (%self_net_3,), kwargs = {})
%self_net_5 : [#users=1] = call_module[target=self_net_5](args = (%self_net_4,), kwargs = {})
%self_net_6 : [#users=1] = call_module[target=self_net_6](args = (%self_net_5,), kwargs = {})
%self_net_7 : [#users=1] = call_module[target=self_net_7](args = (%self_net_6,), kwargs = {})
return self_net_7
---------------
ghstack-source-id: b952f27
Pull Request resolved: #88480
anj-s
left a comment
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Nice!
|
@pytorchbot merge |
Merge startedYour change will be merged once all checks pass (ETA 0-4 Hours). Learn more about merging in the wiki. Questions? Feedback? Please reach out to the PyTorch DevX Team |
Merge failedReason: 2 additional jobs have failed, first few of them are: trunk ,trunk / cuda11.6-py3.10-gcc7-sm86 / test (default, 2, 4, linux.g5.4xlarge.nvidia.gpu) Details for Dev Infra teamRaised by workflow job |
|
@pytorchbot merge -f "Flaky CI" |
Merge startedYour change will be merged immediately since you used the force (-f) flag, bypassing any CI checks (ETA: 1-5 minutes). Learn more about merging in the wiki. Questions? Feedback? Please reach out to the PyTorch DevX Team |
…ytorch#88480) Example output: ``` 2022-11-04 05:09:29,525] torch._dynamo.optimizations.distributed: [INFO] DDPOptimizer bucket assignments ┌─────────┬────────────┬───────────────────┐ │ Index │ Size (b) │ Param Names │ ├─────────┼────────────┼───────────────────┤ │ 0 │ 100120020 │ self_net_6_weight │ ├─────────┼────────────┼───────────────────┤ │ │ │ self_net_6_bias │ ├─────────┼────────────┼───────────────────┤ │ │ │ self_net_4_weight │ ├─────────┼────────────┼───────────────────┤ │ │ │ self_net_4_bias │ ├─────────┼────────────┼───────────────────┤ │ 1 │ 100020000 │ self_net_2_weight │ ├─────────┼────────────┼───────────────────┤ │ │ │ self_net_2_bias │ ├─────────┼────────────┼───────────────────┤ │ 2 │ 220000 │ self_net_0_weight │ ├─────────┼────────────┼───────────────────┤ │ │ │ self_net_0_bias │ └─────────┴────────────┴───────────────────┘ [2022-11-04 05:09:29,527] torch._dynamo.optimizations.distributed: [DEBUG] ---orig graph--- graph(): %inputs : torch.Tensor [#users=1] = placeholder[target=inputs] %self_net_0 : [#users=1] = call_module[target=self_net_0](args = (%inputs,), kwargs = {}) %self_net_1 : [#users=1] = call_module[target=self_net_1](args = (%self_net_0,), kwargs = {}) %self_net_2 : [#users=1] = call_module[target=self_net_2](args = (%self_net_1,), kwargs = {}) %self_net_3 : [#users=1] = call_module[target=self_net_3](args = (%self_net_2,), kwargs = {}) %self_net_4 : [#users=1] = call_module[target=self_net_4](args = (%self_net_3,), kwargs = {}) %self_net_5 : [#users=1] = call_module[target=self_net_5](args = (%self_net_4,), kwargs = {}) %self_net_6 : [#users=1] = call_module[target=self_net_6](args = (%self_net_5,), kwargs = {}) %self_net_7 : [#users=1] = call_module[target=self_net_7](args = (%self_net_6,), kwargs = {}) return (self_net_7,) ---split graph--- graph(): %inputs : torch.Tensor [#users=1] = placeholder[target=inputs] %submod_0 : [#users=1] = call_module[target=submod_0](args = (%inputs,), kwargs = {}) %submod_1 : [#users=1] = call_module[target=submod_1](args = (%submod_0,), kwargs = {}) %submod_2 : [#users=1] = call_module[target=submod_2](args = (%submod_1,), kwargs = {}) return (submod_2,) ---submod_0 graph--- graph(): %inputs : [#users=1] = placeholder[target=inputs] %self_net_0 : [#users=1] = call_module[target=self_net_0](args = (%inputs,), kwargs = {}) %self_net_1 : [#users=1] = call_module[target=self_net_1](args = (%self_net_0,), kwargs = {}) return self_net_1 ---submod_1 graph--- graph(): %self_net_1 : [#users=1] = placeholder[target=self_net_1] %self_net_2 : [#users=1] = call_module[target=self_net_2](args = (%self_net_1,), kwargs = {}) %self_net_3 : [#users=1] = call_module[target=self_net_3](args = (%self_net_2,), kwargs = {}) return self_net_3 ---submod_2 graph--- graph(): %self_net_3 : [#users=1] = placeholder[target=self_net_3] %self_net_4 : [#users=1] = call_module[target=self_net_4](args = (%self_net_3,), kwargs = {}) %self_net_5 : [#users=1] = call_module[target=self_net_5](args = (%self_net_4,), kwargs = {}) %self_net_6 : [#users=1] = call_module[target=self_net_6](args = (%self_net_5,), kwargs = {}) %self_net_7 : [#users=1] = call_module[target=self_net_7](args = (%self_net_6,), kwargs = {}) return self_net_7 --------------- ``` Pull Request resolved: pytorch#88480 Approved by: https://github.com/anj-s, https://github.com/davidberard98
…ytorch#88480) Example output: ``` 2022-11-04 05:09:29,525] torch._dynamo.optimizations.distributed: [INFO] DDPOptimizer bucket assignments ┌─────────┬────────────┬───────────────────┐ │ Index │ Size (b) │ Param Names │ ├─────────┼────────────┼───────────────────┤ │ 0 │ 100120020 │ self_net_6_weight │ ├─────────┼────────────┼───────────────────┤ │ │ │ self_net_6_bias │ ├─────────┼────────────┼───────────────────┤ │ │ │ self_net_4_weight │ ├─────────┼────────────┼───────────────────┤ │ │ │ self_net_4_bias │ ├─────────┼────────────┼───────────────────┤ │ 1 │ 100020000 │ self_net_2_weight │ ├─────────┼────────────┼───────────────────┤ │ │ │ self_net_2_bias │ ├─────────┼────────────┼───────────────────┤ │ 2 │ 220000 │ self_net_0_weight │ ├─────────┼────────────┼───────────────────┤ │ │ │ self_net_0_bias │ └─────────┴────────────┴───────────────────┘ [2022-11-04 05:09:29,527] torch._dynamo.optimizations.distributed: [DEBUG] ---orig graph--- graph(): %inputs : torch.Tensor [#users=1] = placeholder[target=inputs] %self_net_0 : [#users=1] = call_module[target=self_net_0](args = (%inputs,), kwargs = {}) %self_net_1 : [#users=1] = call_module[target=self_net_1](args = (%self_net_0,), kwargs = {}) %self_net_2 : [#users=1] = call_module[target=self_net_2](args = (%self_net_1,), kwargs = {}) %self_net_3 : [#users=1] = call_module[target=self_net_3](args = (%self_net_2,), kwargs = {}) %self_net_4 : [#users=1] = call_module[target=self_net_4](args = (%self_net_3,), kwargs = {}) %self_net_5 : [#users=1] = call_module[target=self_net_5](args = (%self_net_4,), kwargs = {}) %self_net_6 : [#users=1] = call_module[target=self_net_6](args = (%self_net_5,), kwargs = {}) %self_net_7 : [#users=1] = call_module[target=self_net_7](args = (%self_net_6,), kwargs = {}) return (self_net_7,) ---split graph--- graph(): %inputs : torch.Tensor [#users=1] = placeholder[target=inputs] %submod_0 : [#users=1] = call_module[target=submod_0](args = (%inputs,), kwargs = {}) %submod_1 : [#users=1] = call_module[target=submod_1](args = (%submod_0,), kwargs = {}) %submod_2 : [#users=1] = call_module[target=submod_2](args = (%submod_1,), kwargs = {}) return (submod_2,) ---submod_0 graph--- graph(): %inputs : [#users=1] = placeholder[target=inputs] %self_net_0 : [#users=1] = call_module[target=self_net_0](args = (%inputs,), kwargs = {}) %self_net_1 : [#users=1] = call_module[target=self_net_1](args = (%self_net_0,), kwargs = {}) return self_net_1 ---submod_1 graph--- graph(): %self_net_1 : [#users=1] = placeholder[target=self_net_1] %self_net_2 : [#users=1] = call_module[target=self_net_2](args = (%self_net_1,), kwargs = {}) %self_net_3 : [#users=1] = call_module[target=self_net_3](args = (%self_net_2,), kwargs = {}) return self_net_3 ---submod_2 graph--- graph(): %self_net_3 : [#users=1] = placeholder[target=self_net_3] %self_net_4 : [#users=1] = call_module[target=self_net_4](args = (%self_net_3,), kwargs = {}) %self_net_5 : [#users=1] = call_module[target=self_net_5](args = (%self_net_4,), kwargs = {}) %self_net_6 : [#users=1] = call_module[target=self_net_6](args = (%self_net_5,), kwargs = {}) %self_net_7 : [#users=1] = call_module[target=self_net_7](args = (%self_net_6,), kwargs = {}) return self_net_7 --------------- ``` Pull Request resolved: pytorch#88480 Approved by: https://github.com/anj-s, https://github.com/davidberard98
Stack from ghstack (oldest at bottom):
Example output:
cc @mlazos @soumith @voznesenskym @yanboliang @penguinwu @anijain2305 @EikanWang @jgong5 @Guobing-Chen @chunyuan-w @XiaobingSuper @zhuhaozhe @blzheng @Xia-Weiwen @wenzhe-nrv @jiayisunx