Skip to content

Conversation

@dskhudia
Copy link
Contributor

@dskhudia dskhudia commented Sep 16, 2020

Stack from ghstack:

fbgemm functions are vectorized and faster

Finished test run: https://our.intern.facebook.com/intern/testinfra/testrun/6473924484856786
Summary (total time 15.08s):
  PASS: 7
  FAIL: 0
  SKIP: 0
  FATAL: 0
  TIMEOUT: 0
  OMIT: 0

Performance Before:

# ----------------------------------------
# PyTorch/Caffe2 Operator Micro-benchmarks
# ----------------------------------------
# Tag : short

# Benchmarking PyTorch: qembeddingbag_byte_prepack
# Mode: Eager
# Name: qembeddingbag_byte_prepack_num_embeddings80_embedding_dim128
# Input: num_embeddings: 80, embedding_dim: 128
Forward Execution Time (us) : 68.727

# Benchmarking PyTorch: qembeddingbag_byte_prepack
# Mode: Eager
# Name: qembeddingbag_byte_prepack_num_embeddings80_embedding_dim256
# Input: num_embeddings: 80, embedding_dim: 256
Forward Execution Time (us) : 131.500

# Benchmarking PyTorch: qembeddingbag_byte_prepack
# Mode: Eager
# Name: qembeddingbag_byte_prepack_num_embeddings80_embedding_dim512
# Input: num_embeddings: 80, embedding_dim: 512
Forward Execution Time (us) : 248.190

# Benchmarking PyTorch: qembeddingbag_4bit_prepack
# Mode: Eager
# Name: qembeddingbag_4bit_prepack_num_embeddings80_embedding_dim128
# Input: num_embeddings: 80, embedding_dim: 128
Forward Execution Time (us) : 172.742

# Benchmarking PyTorch: qembeddingbag_4bit_prepack
# Mode: Eager
# Name: qembeddingbag_4bit_prepack_num_embeddings80_embedding_dim256
# Input: num_embeddings: 80, embedding_dim: 256
Forward Execution Time (us) : 333.008

# Benchmarking PyTorch: qembeddingbag_4bit_prepack
# Mode: Eager
# Name: qembeddingbag_4bit_prepack_num_embeddings80_embedding_dim512
# Input: num_embeddings: 80, embedding_dim: 512
Forward Execution Time (us) : 652.423

# Benchmarking PyTorch: qembeddingbag_2bit_prepack
# Mode: Eager
# Name: qembeddingbag_2bit_prepack_num_embeddings80_embedding_dim128
# Input: num_embeddings: 80, embedding_dim: 128
Forward Execution Time (us) : 167.282

# Benchmarking PyTorch: qembeddingbag_2bit_prepack
# Mode: Eager
# Name: qembeddingbag_2bit_prepack_num_embeddings80_embedding_dim256
# Input: num_embeddings: 80, embedding_dim: 256
Forward Execution Time (us) : 398.901

# Benchmarking PyTorch: qembeddingbag_2bit_prepack
# Mode: Eager
# Name: qembeddingbag_2bit_prepack_num_embeddings80_embedding_dim512
# Input: num_embeddings: 80, embedding_dim: 512
Forward Execution Time (us) : 785.254

# Benchmarking PyTorch: qembeddingbag_byte_unpack
# Mode: Eager
# Name: qembeddingbag_byte_unpack_num_embeddings80_embedding_dim128
# Input: num_embeddings: 80, embedding_dim: 128
Forward Execution Time (us) : 122.653

# Benchmarking PyTorch: qembeddingbag_byte_unpack
# Mode: Eager
# Name: qembeddingbag_byte_unpack_num_embeddings80_embedding_dim256
# Input: num_embeddings: 80, embedding_dim: 256
Forward Execution Time (us) : 230.617

# Benchmarking PyTorch: qembeddingbag_byte_unpack
# Mode: Eager
# Name: qembeddingbag_byte_unpack_num_embeddings80_embedding_dim512
# Input: num_embeddings: 80, embedding_dim: 512
Forward Execution Time (us) : 408.807

# Benchmarking PyTorch: qembeddingbag_4bit_unpack
# Mode: Eager
# Name: qembeddingbag_4bit_unpack_num_embeddings80_embedding_dim128
# Input: num_embeddings: 80, embedding_dim: 128
Forward Execution Time (us) : 176.087

# Benchmarking PyTorch: qembeddingbag_4bit_unpack
# Mode: Eager
# Name: qembeddingbag_4bit_unpack_num_embeddings80_embedding_dim256
# Input: num_embeddings: 80, embedding_dim: 256
Forward Execution Time (us) : 337.514

# Benchmarking PyTorch: qembeddingbag_4bit_unpack
# Mode: Eager
# Name: qembeddingbag_4bit_unpack_num_embeddings80_embedding_dim512
# Input: num_embeddings: 80, embedding_dim: 512
Forward Execution Time (us) : 659.716

# Benchmarking PyTorch: qembeddingbag_2bit_unpack
# Mode: Eager
# Name: qembeddingbag_2bit_unpack_num_embeddings80_embedding_dim128
# Input: num_embeddings: 80, embedding_dim: 128
Forward Execution Time (us) : 342.529

# Benchmarking PyTorch: qembeddingbag_2bit_unpack
# Mode: Eager
# Name: qembeddingbag_2bit_unpack_num_embeddings80_embedding_dim256
# Input: num_embeddings: 80, embedding_dim: 256
Forward Execution Time (us) : 665.197

# Benchmarking PyTorch: qembeddingbag_2bit_unpack
# Mode: Eager
# Name: qembeddingbag_2bit_unpack_num_embeddings80_embedding_dim512
# Input: num_embeddings: 80, embedding_dim: 512
Forward Execution Time (us) : 1307.923

Performance After:

# ----------------------------------------
# PyTorch/Caffe2 Operator Micro-benchmarks
# ----------------------------------------
# Tag : short

# Benchmarking PyTorch: qembeddingbag_byte_prepack
# Mode: Eager
# Name: qembeddingbag_byte_prepack_num_embeddings80_embedding_dim128
# Input: num_embeddings: 80, embedding_dim: 128
Forward Execution Time (us) : 10.782

# Benchmarking PyTorch: qembeddingbag_byte_prepack
# Mode: Eager
# Name: qembeddingbag_byte_prepack_num_embeddings80_embedding_dim256
# Input: num_embeddings: 80, embedding_dim: 256
Forward Execution Time (us) : 17.443

# Benchmarking PyTorch: qembeddingbag_byte_prepack
# Mode: Eager
# Name: qembeddingbag_byte_prepack_num_embeddings80_embedding_dim512
# Input: num_embeddings: 80, embedding_dim: 512
Forward Execution Time (us) : 25.898

# Benchmarking PyTorch: qembeddingbag_4bit_prepack
# Mode: Eager
# Name: qembeddingbag_4bit_prepack_num_embeddings80_embedding_dim128
# Input: num_embeddings: 80, embedding_dim: 128
Forward Execution Time (us) : 13.903

# Benchmarking PyTorch: qembeddingbag_4bit_prepack
# Mode: Eager
# Name: qembeddingbag_4bit_prepack_num_embeddings80_embedding_dim256
# Input: num_embeddings: 80, embedding_dim: 256
Forward Execution Time (us) : 18.575

# Benchmarking PyTorch: qembeddingbag_4bit_prepack
# Mode: Eager
# Name: qembeddingbag_4bit_prepack_num_embeddings80_embedding_dim512
# Input: num_embeddings: 80, embedding_dim: 512
Forward Execution Time (us) : 30.650

# Benchmarking PyTorch: qembeddingbag_2bit_prepack
# Mode: Eager
# Name: qembeddingbag_2bit_prepack_num_embeddings80_embedding_dim128
# Input: num_embeddings: 80, embedding_dim: 128
Forward Execution Time (us) : 14.158

# Benchmarking PyTorch: qembeddingbag_2bit_prepack
# Mode: Eager
# Name: qembeddingbag_2bit_prepack_num_embeddings80_embedding_dim256
# Input: num_embeddings: 80, embedding_dim: 256
Forward Execution Time (us) : 19.818

# Benchmarking PyTorch: qembeddingbag_2bit_prepack
# Mode: Eager
# Name: qembeddingbag_2bit_prepack_num_embeddings80_embedding_dim512
# Input: num_embeddings: 80, embedding_dim: 512
Forward Execution Time (us) : 30.852

# Benchmarking PyTorch: qembeddingbag_byte_unpack
# Mode: Eager
# Name: qembeddingbag_byte_unpack_num_embeddings80_embedding_dim128
# Input: num_embeddings: 80, embedding_dim: 128
Forward Execution Time (us) : 47.596

# Benchmarking PyTorch: qembeddingbag_byte_unpack
# Mode: Eager
# Name: qembeddingbag_byte_unpack_num_embeddings80_embedding_dim256
# Input: num_embeddings: 80, embedding_dim: 256
Forward Execution Time (us) : 91.025

# Benchmarking PyTorch: qembeddingbag_byte_unpack
# Mode: Eager
# Name: qembeddingbag_byte_unpack_num_embeddings80_embedding_dim512
# Input: num_embeddings: 80, embedding_dim: 512
Forward Execution Time (us) : 131.425

# Benchmarking PyTorch: qembeddingbag_4bit_unpack
# Mode: Eager
# Name: qembeddingbag_4bit_unpack_num_embeddings80_embedding_dim128
# Input: num_embeddings: 80, embedding_dim: 128
Forward Execution Time (us) : 12.637

# Benchmarking PyTorch: qembeddingbag_4bit_unpack
# Mode: Eager
# Name: qembeddingbag_4bit_unpack_num_embeddings80_embedding_dim256
# Input: num_embeddings: 80, embedding_dim: 256
Forward Execution Time (us) : 20.856

# Benchmarking PyTorch: qembeddingbag_4bit_unpack
# Mode: Eager
# Name: qembeddingbag_4bit_unpack_num_embeddings80_embedding_dim512
# Input: num_embeddings: 80, embedding_dim: 512
Forward Execution Time (us) : 33.944

# Benchmarking PyTorch: qembeddingbag_2bit_unpack
# Mode: Eager
# Name: qembeddingbag_2bit_unpack_num_embeddings80_embedding_dim128
# Input: num_embeddings: 80, embedding_dim: 128
Forward Execution Time (us) : 21.181

# Benchmarking PyTorch: qembeddingbag_2bit_unpack
# Mode: Eager
# Name: qembeddingbag_2bit_unpack_num_embeddings80_embedding_dim256
# Input: num_embeddings: 80, embedding_dim: 256
Forward Execution Time (us) : 34.213

# Benchmarking PyTorch: qembeddingbag_2bit_unpack
# Mode: Eager
# Name: qembeddingbag_2bit_unpack_num_embeddings80_embedding_dim512
# Input: num_embeddings: 80, embedding_dim: 512
Forward Execution Time (us) : 59.622

Differential Revision: D23675777

fbgemm functions are vectorized and faster

```
Finished test run: https://our.intern.facebook.com/intern/testinfra/testrun/6473924484856786
Summary (total time 15.08s):
  PASS: 7
  FAIL: 0
  SKIP: 0
  FATAL: 0
  TIMEOUT: 0
  OMIT: 0
```

Performance Before:
```
# ----------------------------------------
# PyTorch/Caffe2 Operator Micro-benchmarks
# ----------------------------------------
# Tag : short

# Benchmarking PyTorch: qembeddingbag_byte_prepack
# Mode: Eager
# Name: qembeddingbag_byte_prepack_num_embeddings80_embedding_dim128
# Input: num_embeddings: 80, embedding_dim: 128
Forward Execution Time (us) : 68.727

# Benchmarking PyTorch: qembeddingbag_byte_prepack
# Mode: Eager
# Name: qembeddingbag_byte_prepack_num_embeddings80_embedding_dim256
# Input: num_embeddings: 80, embedding_dim: 256
Forward Execution Time (us) : 131.500

# Benchmarking PyTorch: qembeddingbag_byte_prepack
# Mode: Eager
# Name: qembeddingbag_byte_prepack_num_embeddings80_embedding_dim512
# Input: num_embeddings: 80, embedding_dim: 512
Forward Execution Time (us) : 248.190

# Benchmarking PyTorch: qembeddingbag_4bit_prepack
# Mode: Eager
# Name: qembeddingbag_4bit_prepack_num_embeddings80_embedding_dim128
# Input: num_embeddings: 80, embedding_dim: 128
Forward Execution Time (us) : 172.742

# Benchmarking PyTorch: qembeddingbag_4bit_prepack
# Mode: Eager
# Name: qembeddingbag_4bit_prepack_num_embeddings80_embedding_dim256
# Input: num_embeddings: 80, embedding_dim: 256
Forward Execution Time (us) : 333.008

# Benchmarking PyTorch: qembeddingbag_4bit_prepack
# Mode: Eager
# Name: qembeddingbag_4bit_prepack_num_embeddings80_embedding_dim512
# Input: num_embeddings: 80, embedding_dim: 512
Forward Execution Time (us) : 652.423

# Benchmarking PyTorch: qembeddingbag_2bit_prepack
# Mode: Eager
# Name: qembeddingbag_2bit_prepack_num_embeddings80_embedding_dim128
# Input: num_embeddings: 80, embedding_dim: 128
Forward Execution Time (us) : 167.282

# Benchmarking PyTorch: qembeddingbag_2bit_prepack
# Mode: Eager
# Name: qembeddingbag_2bit_prepack_num_embeddings80_embedding_dim256
# Input: num_embeddings: 80, embedding_dim: 256
Forward Execution Time (us) : 398.901

# Benchmarking PyTorch: qembeddingbag_2bit_prepack
# Mode: Eager
# Name: qembeddingbag_2bit_prepack_num_embeddings80_embedding_dim512
# Input: num_embeddings: 80, embedding_dim: 512
Forward Execution Time (us) : 785.254

# Benchmarking PyTorch: qembeddingbag_byte_unpack
# Mode: Eager
# Name: qembeddingbag_byte_unpack_num_embeddings80_embedding_dim128
# Input: num_embeddings: 80, embedding_dim: 128
Forward Execution Time (us) : 122.653

# Benchmarking PyTorch: qembeddingbag_byte_unpack
# Mode: Eager
# Name: qembeddingbag_byte_unpack_num_embeddings80_embedding_dim256
# Input: num_embeddings: 80, embedding_dim: 256
Forward Execution Time (us) : 230.617

# Benchmarking PyTorch: qembeddingbag_byte_unpack
# Mode: Eager
# Name: qembeddingbag_byte_unpack_num_embeddings80_embedding_dim512
# Input: num_embeddings: 80, embedding_dim: 512
Forward Execution Time (us) : 408.807

# Benchmarking PyTorch: qembeddingbag_4bit_unpack
# Mode: Eager
# Name: qembeddingbag_4bit_unpack_num_embeddings80_embedding_dim128
# Input: num_embeddings: 80, embedding_dim: 128
Forward Execution Time (us) : 176.087

# Benchmarking PyTorch: qembeddingbag_4bit_unpack
# Mode: Eager
# Name: qembeddingbag_4bit_unpack_num_embeddings80_embedding_dim256
# Input: num_embeddings: 80, embedding_dim: 256
Forward Execution Time (us) : 337.514

# Benchmarking PyTorch: qembeddingbag_4bit_unpack
# Mode: Eager
# Name: qembeddingbag_4bit_unpack_num_embeddings80_embedding_dim512
# Input: num_embeddings: 80, embedding_dim: 512
Forward Execution Time (us) : 659.716

# Benchmarking PyTorch: qembeddingbag_2bit_unpack
# Mode: Eager
# Name: qembeddingbag_2bit_unpack_num_embeddings80_embedding_dim128
# Input: num_embeddings: 80, embedding_dim: 128
Forward Execution Time (us) : 342.529

# Benchmarking PyTorch: qembeddingbag_2bit_unpack
# Mode: Eager
# Name: qembeddingbag_2bit_unpack_num_embeddings80_embedding_dim256
# Input: num_embeddings: 80, embedding_dim: 256
Forward Execution Time (us) : 665.197

# Benchmarking PyTorch: qembeddingbag_2bit_unpack
# Mode: Eager
# Name: qembeddingbag_2bit_unpack_num_embeddings80_embedding_dim512
# Input: num_embeddings: 80, embedding_dim: 512
Forward Execution Time (us) : 1307.923
```

Performance After:
```
# ----------------------------------------
# PyTorch/Caffe2 Operator Micro-benchmarks
# ----------------------------------------
# Tag : short

# Benchmarking PyTorch: qembeddingbag_byte_prepack
# Mode: Eager
# Name: qembeddingbag_byte_prepack_num_embeddings80_embedding_dim128
# Input: num_embeddings: 80, embedding_dim: 128
Forward Execution Time (us) : 10.782

# Benchmarking PyTorch: qembeddingbag_byte_prepack
# Mode: Eager
# Name: qembeddingbag_byte_prepack_num_embeddings80_embedding_dim256
# Input: num_embeddings: 80, embedding_dim: 256
Forward Execution Time (us) : 17.443

# Benchmarking PyTorch: qembeddingbag_byte_prepack
# Mode: Eager
# Name: qembeddingbag_byte_prepack_num_embeddings80_embedding_dim512
# Input: num_embeddings: 80, embedding_dim: 512
Forward Execution Time (us) : 25.898

# Benchmarking PyTorch: qembeddingbag_4bit_prepack
# Mode: Eager
# Name: qembeddingbag_4bit_prepack_num_embeddings80_embedding_dim128
# Input: num_embeddings: 80, embedding_dim: 128
Forward Execution Time (us) : 13.903

# Benchmarking PyTorch: qembeddingbag_4bit_prepack
# Mode: Eager
# Name: qembeddingbag_4bit_prepack_num_embeddings80_embedding_dim256
# Input: num_embeddings: 80, embedding_dim: 256
Forward Execution Time (us) : 18.575

# Benchmarking PyTorch: qembeddingbag_4bit_prepack
# Mode: Eager
# Name: qembeddingbag_4bit_prepack_num_embeddings80_embedding_dim512
# Input: num_embeddings: 80, embedding_dim: 512
Forward Execution Time (us) : 30.650

# Benchmarking PyTorch: qembeddingbag_2bit_prepack
# Mode: Eager
# Name: qembeddingbag_2bit_prepack_num_embeddings80_embedding_dim128
# Input: num_embeddings: 80, embedding_dim: 128
Forward Execution Time (us) : 14.158

# Benchmarking PyTorch: qembeddingbag_2bit_prepack
# Mode: Eager
# Name: qembeddingbag_2bit_prepack_num_embeddings80_embedding_dim256
# Input: num_embeddings: 80, embedding_dim: 256
Forward Execution Time (us) : 19.818

# Benchmarking PyTorch: qembeddingbag_2bit_prepack
# Mode: Eager
# Name: qembeddingbag_2bit_prepack_num_embeddings80_embedding_dim512
# Input: num_embeddings: 80, embedding_dim: 512
Forward Execution Time (us) : 30.852

# Benchmarking PyTorch: qembeddingbag_byte_unpack
# Mode: Eager
# Name: qembeddingbag_byte_unpack_num_embeddings80_embedding_dim128
# Input: num_embeddings: 80, embedding_dim: 128
Forward Execution Time (us) : 47.596

# Benchmarking PyTorch: qembeddingbag_byte_unpack
# Mode: Eager
# Name: qembeddingbag_byte_unpack_num_embeddings80_embedding_dim256
# Input: num_embeddings: 80, embedding_dim: 256
Forward Execution Time (us) : 91.025

# Benchmarking PyTorch: qembeddingbag_byte_unpack
# Mode: Eager
# Name: qembeddingbag_byte_unpack_num_embeddings80_embedding_dim512
# Input: num_embeddings: 80, embedding_dim: 512
Forward Execution Time (us) : 131.425

# Benchmarking PyTorch: qembeddingbag_4bit_unpack
# Mode: Eager
# Name: qembeddingbag_4bit_unpack_num_embeddings80_embedding_dim128
# Input: num_embeddings: 80, embedding_dim: 128
Forward Execution Time (us) : 12.637

# Benchmarking PyTorch: qembeddingbag_4bit_unpack
# Mode: Eager
# Name: qembeddingbag_4bit_unpack_num_embeddings80_embedding_dim256
# Input: num_embeddings: 80, embedding_dim: 256
Forward Execution Time (us) : 20.856

# Benchmarking PyTorch: qembeddingbag_4bit_unpack
# Mode: Eager
# Name: qembeddingbag_4bit_unpack_num_embeddings80_embedding_dim512
# Input: num_embeddings: 80, embedding_dim: 512
Forward Execution Time (us) : 33.944

# Benchmarking PyTorch: qembeddingbag_2bit_unpack
# Mode: Eager
# Name: qembeddingbag_2bit_unpack_num_embeddings80_embedding_dim128
# Input: num_embeddings: 80, embedding_dim: 128
Forward Execution Time (us) : 21.181

# Benchmarking PyTorch: qembeddingbag_2bit_unpack
# Mode: Eager
# Name: qembeddingbag_2bit_unpack_num_embeddings80_embedding_dim256
# Input: num_embeddings: 80, embedding_dim: 256
Forward Execution Time (us) : 34.213

# Benchmarking PyTorch: qembeddingbag_2bit_unpack
# Mode: Eager
# Name: qembeddingbag_2bit_unpack_num_embeddings80_embedding_dim512
# Input: num_embeddings: 80, embedding_dim: 512
Forward Execution Time (us) : 59.622
```

Differential Revision: [D23675777](https://our.internmc.facebook.com/intern/diff/D23675777/)

[ghstack-poisoned]
dskhudia added a commit that referenced this pull request Sep 16, 2020
fbgemm functions are vectorized and faster

```
Finished test run: https://our.intern.facebook.com/intern/testinfra/testrun/6473924484856786
Summary (total time 15.08s):
  PASS: 7
  FAIL: 0
  SKIP: 0
  FATAL: 0
  TIMEOUT: 0
  OMIT: 0
```

Performance Before:
```
# ----------------------------------------
# PyTorch/Caffe2 Operator Micro-benchmarks
# ----------------------------------------
# Tag : short

# Benchmarking PyTorch: qembeddingbag_byte_prepack
# Mode: Eager
# Name: qembeddingbag_byte_prepack_num_embeddings80_embedding_dim128
# Input: num_embeddings: 80, embedding_dim: 128
Forward Execution Time (us) : 68.727

# Benchmarking PyTorch: qembeddingbag_byte_prepack
# Mode: Eager
# Name: qembeddingbag_byte_prepack_num_embeddings80_embedding_dim256
# Input: num_embeddings: 80, embedding_dim: 256
Forward Execution Time (us) : 131.500

# Benchmarking PyTorch: qembeddingbag_byte_prepack
# Mode: Eager
# Name: qembeddingbag_byte_prepack_num_embeddings80_embedding_dim512
# Input: num_embeddings: 80, embedding_dim: 512
Forward Execution Time (us) : 248.190

# Benchmarking PyTorch: qembeddingbag_4bit_prepack
# Mode: Eager
# Name: qembeddingbag_4bit_prepack_num_embeddings80_embedding_dim128
# Input: num_embeddings: 80, embedding_dim: 128
Forward Execution Time (us) : 172.742

# Benchmarking PyTorch: qembeddingbag_4bit_prepack
# Mode: Eager
# Name: qembeddingbag_4bit_prepack_num_embeddings80_embedding_dim256
# Input: num_embeddings: 80, embedding_dim: 256
Forward Execution Time (us) : 333.008

# Benchmarking PyTorch: qembeddingbag_4bit_prepack
# Mode: Eager
# Name: qembeddingbag_4bit_prepack_num_embeddings80_embedding_dim512
# Input: num_embeddings: 80, embedding_dim: 512
Forward Execution Time (us) : 652.423

# Benchmarking PyTorch: qembeddingbag_2bit_prepack
# Mode: Eager
# Name: qembeddingbag_2bit_prepack_num_embeddings80_embedding_dim128
# Input: num_embeddings: 80, embedding_dim: 128
Forward Execution Time (us) : 167.282

# Benchmarking PyTorch: qembeddingbag_2bit_prepack
# Mode: Eager
# Name: qembeddingbag_2bit_prepack_num_embeddings80_embedding_dim256
# Input: num_embeddings: 80, embedding_dim: 256
Forward Execution Time (us) : 398.901

# Benchmarking PyTorch: qembeddingbag_2bit_prepack
# Mode: Eager
# Name: qembeddingbag_2bit_prepack_num_embeddings80_embedding_dim512
# Input: num_embeddings: 80, embedding_dim: 512
Forward Execution Time (us) : 785.254

# Benchmarking PyTorch: qembeddingbag_byte_unpack
# Mode: Eager
# Name: qembeddingbag_byte_unpack_num_embeddings80_embedding_dim128
# Input: num_embeddings: 80, embedding_dim: 128
Forward Execution Time (us) : 122.653

# Benchmarking PyTorch: qembeddingbag_byte_unpack
# Mode: Eager
# Name: qembeddingbag_byte_unpack_num_embeddings80_embedding_dim256
# Input: num_embeddings: 80, embedding_dim: 256
Forward Execution Time (us) : 230.617

# Benchmarking PyTorch: qembeddingbag_byte_unpack
# Mode: Eager
# Name: qembeddingbag_byte_unpack_num_embeddings80_embedding_dim512
# Input: num_embeddings: 80, embedding_dim: 512
Forward Execution Time (us) : 408.807

# Benchmarking PyTorch: qembeddingbag_4bit_unpack
# Mode: Eager
# Name: qembeddingbag_4bit_unpack_num_embeddings80_embedding_dim128
# Input: num_embeddings: 80, embedding_dim: 128
Forward Execution Time (us) : 176.087

# Benchmarking PyTorch: qembeddingbag_4bit_unpack
# Mode: Eager
# Name: qembeddingbag_4bit_unpack_num_embeddings80_embedding_dim256
# Input: num_embeddings: 80, embedding_dim: 256
Forward Execution Time (us) : 337.514

# Benchmarking PyTorch: qembeddingbag_4bit_unpack
# Mode: Eager
# Name: qembeddingbag_4bit_unpack_num_embeddings80_embedding_dim512
# Input: num_embeddings: 80, embedding_dim: 512
Forward Execution Time (us) : 659.716

# Benchmarking PyTorch: qembeddingbag_2bit_unpack
# Mode: Eager
# Name: qembeddingbag_2bit_unpack_num_embeddings80_embedding_dim128
# Input: num_embeddings: 80, embedding_dim: 128
Forward Execution Time (us) : 342.529

# Benchmarking PyTorch: qembeddingbag_2bit_unpack
# Mode: Eager
# Name: qembeddingbag_2bit_unpack_num_embeddings80_embedding_dim256
# Input: num_embeddings: 80, embedding_dim: 256
Forward Execution Time (us) : 665.197

# Benchmarking PyTorch: qembeddingbag_2bit_unpack
# Mode: Eager
# Name: qembeddingbag_2bit_unpack_num_embeddings80_embedding_dim512
# Input: num_embeddings: 80, embedding_dim: 512
Forward Execution Time (us) : 1307.923
```

Performance After:
```
# ----------------------------------------
# PyTorch/Caffe2 Operator Micro-benchmarks
# ----------------------------------------
# Tag : short

# Benchmarking PyTorch: qembeddingbag_byte_prepack
# Mode: Eager
# Name: qembeddingbag_byte_prepack_num_embeddings80_embedding_dim128
# Input: num_embeddings: 80, embedding_dim: 128
Forward Execution Time (us) : 10.782

# Benchmarking PyTorch: qembeddingbag_byte_prepack
# Mode: Eager
# Name: qembeddingbag_byte_prepack_num_embeddings80_embedding_dim256
# Input: num_embeddings: 80, embedding_dim: 256
Forward Execution Time (us) : 17.443

# Benchmarking PyTorch: qembeddingbag_byte_prepack
# Mode: Eager
# Name: qembeddingbag_byte_prepack_num_embeddings80_embedding_dim512
# Input: num_embeddings: 80, embedding_dim: 512
Forward Execution Time (us) : 25.898

# Benchmarking PyTorch: qembeddingbag_4bit_prepack
# Mode: Eager
# Name: qembeddingbag_4bit_prepack_num_embeddings80_embedding_dim128
# Input: num_embeddings: 80, embedding_dim: 128
Forward Execution Time (us) : 13.903

# Benchmarking PyTorch: qembeddingbag_4bit_prepack
# Mode: Eager
# Name: qembeddingbag_4bit_prepack_num_embeddings80_embedding_dim256
# Input: num_embeddings: 80, embedding_dim: 256
Forward Execution Time (us) : 18.575

# Benchmarking PyTorch: qembeddingbag_4bit_prepack
# Mode: Eager
# Name: qembeddingbag_4bit_prepack_num_embeddings80_embedding_dim512
# Input: num_embeddings: 80, embedding_dim: 512
Forward Execution Time (us) : 30.650

# Benchmarking PyTorch: qembeddingbag_2bit_prepack
# Mode: Eager
# Name: qembeddingbag_2bit_prepack_num_embeddings80_embedding_dim128
# Input: num_embeddings: 80, embedding_dim: 128
Forward Execution Time (us) : 14.158

# Benchmarking PyTorch: qembeddingbag_2bit_prepack
# Mode: Eager
# Name: qembeddingbag_2bit_prepack_num_embeddings80_embedding_dim256
# Input: num_embeddings: 80, embedding_dim: 256
Forward Execution Time (us) : 19.818

# Benchmarking PyTorch: qembeddingbag_2bit_prepack
# Mode: Eager
# Name: qembeddingbag_2bit_prepack_num_embeddings80_embedding_dim512
# Input: num_embeddings: 80, embedding_dim: 512
Forward Execution Time (us) : 30.852

# Benchmarking PyTorch: qembeddingbag_byte_unpack
# Mode: Eager
# Name: qembeddingbag_byte_unpack_num_embeddings80_embedding_dim128
# Input: num_embeddings: 80, embedding_dim: 128
Forward Execution Time (us) : 47.596

# Benchmarking PyTorch: qembeddingbag_byte_unpack
# Mode: Eager
# Name: qembeddingbag_byte_unpack_num_embeddings80_embedding_dim256
# Input: num_embeddings: 80, embedding_dim: 256
Forward Execution Time (us) : 91.025

# Benchmarking PyTorch: qembeddingbag_byte_unpack
# Mode: Eager
# Name: qembeddingbag_byte_unpack_num_embeddings80_embedding_dim512
# Input: num_embeddings: 80, embedding_dim: 512
Forward Execution Time (us) : 131.425

# Benchmarking PyTorch: qembeddingbag_4bit_unpack
# Mode: Eager
# Name: qembeddingbag_4bit_unpack_num_embeddings80_embedding_dim128
# Input: num_embeddings: 80, embedding_dim: 128
Forward Execution Time (us) : 12.637

# Benchmarking PyTorch: qembeddingbag_4bit_unpack
# Mode: Eager
# Name: qembeddingbag_4bit_unpack_num_embeddings80_embedding_dim256
# Input: num_embeddings: 80, embedding_dim: 256
Forward Execution Time (us) : 20.856

# Benchmarking PyTorch: qembeddingbag_4bit_unpack
# Mode: Eager
# Name: qembeddingbag_4bit_unpack_num_embeddings80_embedding_dim512
# Input: num_embeddings: 80, embedding_dim: 512
Forward Execution Time (us) : 33.944

# Benchmarking PyTorch: qembeddingbag_2bit_unpack
# Mode: Eager
# Name: qembeddingbag_2bit_unpack_num_embeddings80_embedding_dim128
# Input: num_embeddings: 80, embedding_dim: 128
Forward Execution Time (us) : 21.181

# Benchmarking PyTorch: qembeddingbag_2bit_unpack
# Mode: Eager
# Name: qembeddingbag_2bit_unpack_num_embeddings80_embedding_dim256
# Input: num_embeddings: 80, embedding_dim: 256
Forward Execution Time (us) : 34.213

# Benchmarking PyTorch: qembeddingbag_2bit_unpack
# Mode: Eager
# Name: qembeddingbag_2bit_unpack_num_embeddings80_embedding_dim512
# Input: num_embeddings: 80, embedding_dim: 512
Forward Execution Time (us) : 59.622
```

Differential Revision: [D23675777](https://our.internmc.facebook.com/intern/diff/D23675777/)

ghstack-source-id: 112188571
Pull Request resolved: #44845
@dr-ci
Copy link

dr-ci bot commented Sep 16, 2020

💊 CI failures summary and remediations

As of commit 168d4f8 (more details on the Dr. CI page):


💚 💚 Looks good so far! There are no failures yet. 💚 💚


This comment was automatically generated by Dr. CI (expand for details).Follow this link to opt-out of these comments for your Pull Requests.

Please report bugs/suggestions on the GitHub issue tracker or post in the (internal) Dr. CI Users group.

See how this bot performed.

This comment has been revised 28 times.

@codecov
Copy link

codecov bot commented Sep 17, 2020

Codecov Report

❗ No coverage uploaded for pull request base (gh/dskhudia/26/base@1116d8e). Click here to learn what that means.
The diff coverage is n/a.

Impacted file tree graph

@@                  Coverage Diff                   @@
##             gh/dskhudia/26/base   #44845   +/-   ##
======================================================
  Coverage                       ?   68.06%           
======================================================
  Files                          ?      393           
  Lines                          ?    50918           
  Branches                       ?        0           
======================================================
  Hits                           ?    34655           
  Misses                         ?    16263           
  Partials                       ?        0           

Continue to review full report at Codecov.

Legend - Click here to learn more
Δ = absolute <relative> (impact), ø = not affected, ? = missing data
Powered by Codecov. Last update 1116d8e...168d4f8. Read the comment docs.

fbgemm functions are vectorized and faster

```
Finished test run: https://our.intern.facebook.com/intern/testinfra/testrun/6473924484856786
Summary (total time 15.08s):
  PASS: 7
  FAIL: 0
  SKIP: 0
  FATAL: 0
  TIMEOUT: 0
  OMIT: 0
```

Performance Before:
```
# ----------------------------------------
# PyTorch/Caffe2 Operator Micro-benchmarks
# ----------------------------------------
# Tag : short

# Benchmarking PyTorch: qembeddingbag_byte_prepack
# Mode: Eager
# Name: qembeddingbag_byte_prepack_num_embeddings80_embedding_dim128
# Input: num_embeddings: 80, embedding_dim: 128
Forward Execution Time (us) : 68.727

# Benchmarking PyTorch: qembeddingbag_byte_prepack
# Mode: Eager
# Name: qembeddingbag_byte_prepack_num_embeddings80_embedding_dim256
# Input: num_embeddings: 80, embedding_dim: 256
Forward Execution Time (us) : 131.500

# Benchmarking PyTorch: qembeddingbag_byte_prepack
# Mode: Eager
# Name: qembeddingbag_byte_prepack_num_embeddings80_embedding_dim512
# Input: num_embeddings: 80, embedding_dim: 512
Forward Execution Time (us) : 248.190

# Benchmarking PyTorch: qembeddingbag_4bit_prepack
# Mode: Eager
# Name: qembeddingbag_4bit_prepack_num_embeddings80_embedding_dim128
# Input: num_embeddings: 80, embedding_dim: 128
Forward Execution Time (us) : 172.742

# Benchmarking PyTorch: qembeddingbag_4bit_prepack
# Mode: Eager
# Name: qembeddingbag_4bit_prepack_num_embeddings80_embedding_dim256
# Input: num_embeddings: 80, embedding_dim: 256
Forward Execution Time (us) : 333.008

# Benchmarking PyTorch: qembeddingbag_4bit_prepack
# Mode: Eager
# Name: qembeddingbag_4bit_prepack_num_embeddings80_embedding_dim512
# Input: num_embeddings: 80, embedding_dim: 512
Forward Execution Time (us) : 652.423

# Benchmarking PyTorch: qembeddingbag_2bit_prepack
# Mode: Eager
# Name: qembeddingbag_2bit_prepack_num_embeddings80_embedding_dim128
# Input: num_embeddings: 80, embedding_dim: 128
Forward Execution Time (us) : 167.282

# Benchmarking PyTorch: qembeddingbag_2bit_prepack
# Mode: Eager
# Name: qembeddingbag_2bit_prepack_num_embeddings80_embedding_dim256
# Input: num_embeddings: 80, embedding_dim: 256
Forward Execution Time (us) : 398.901

# Benchmarking PyTorch: qembeddingbag_2bit_prepack
# Mode: Eager
# Name: qembeddingbag_2bit_prepack_num_embeddings80_embedding_dim512
# Input: num_embeddings: 80, embedding_dim: 512
Forward Execution Time (us) : 785.254

# Benchmarking PyTorch: qembeddingbag_byte_unpack
# Mode: Eager
# Name: qembeddingbag_byte_unpack_num_embeddings80_embedding_dim128
# Input: num_embeddings: 80, embedding_dim: 128
Forward Execution Time (us) : 122.653

# Benchmarking PyTorch: qembeddingbag_byte_unpack
# Mode: Eager
# Name: qembeddingbag_byte_unpack_num_embeddings80_embedding_dim256
# Input: num_embeddings: 80, embedding_dim: 256
Forward Execution Time (us) : 230.617

# Benchmarking PyTorch: qembeddingbag_byte_unpack
# Mode: Eager
# Name: qembeddingbag_byte_unpack_num_embeddings80_embedding_dim512
# Input: num_embeddings: 80, embedding_dim: 512
Forward Execution Time (us) : 408.807

# Benchmarking PyTorch: qembeddingbag_4bit_unpack
# Mode: Eager
# Name: qembeddingbag_4bit_unpack_num_embeddings80_embedding_dim128
# Input: num_embeddings: 80, embedding_dim: 128
Forward Execution Time (us) : 176.087

# Benchmarking PyTorch: qembeddingbag_4bit_unpack
# Mode: Eager
# Name: qembeddingbag_4bit_unpack_num_embeddings80_embedding_dim256
# Input: num_embeddings: 80, embedding_dim: 256
Forward Execution Time (us) : 337.514

# Benchmarking PyTorch: qembeddingbag_4bit_unpack
# Mode: Eager
# Name: qembeddingbag_4bit_unpack_num_embeddings80_embedding_dim512
# Input: num_embeddings: 80, embedding_dim: 512
Forward Execution Time (us) : 659.716

# Benchmarking PyTorch: qembeddingbag_2bit_unpack
# Mode: Eager
# Name: qembeddingbag_2bit_unpack_num_embeddings80_embedding_dim128
# Input: num_embeddings: 80, embedding_dim: 128
Forward Execution Time (us) : 342.529

# Benchmarking PyTorch: qembeddingbag_2bit_unpack
# Mode: Eager
# Name: qembeddingbag_2bit_unpack_num_embeddings80_embedding_dim256
# Input: num_embeddings: 80, embedding_dim: 256
Forward Execution Time (us) : 665.197

# Benchmarking PyTorch: qembeddingbag_2bit_unpack
# Mode: Eager
# Name: qembeddingbag_2bit_unpack_num_embeddings80_embedding_dim512
# Input: num_embeddings: 80, embedding_dim: 512
Forward Execution Time (us) : 1307.923
```

Performance After:
```
# ----------------------------------------
# PyTorch/Caffe2 Operator Micro-benchmarks
# ----------------------------------------
# Tag : short

# Benchmarking PyTorch: qembeddingbag_byte_prepack
# Mode: Eager
# Name: qembeddingbag_byte_prepack_num_embeddings80_embedding_dim128
# Input: num_embeddings: 80, embedding_dim: 128
Forward Execution Time (us) : 10.782

# Benchmarking PyTorch: qembeddingbag_byte_prepack
# Mode: Eager
# Name: qembeddingbag_byte_prepack_num_embeddings80_embedding_dim256
# Input: num_embeddings: 80, embedding_dim: 256
Forward Execution Time (us) : 17.443

# Benchmarking PyTorch: qembeddingbag_byte_prepack
# Mode: Eager
# Name: qembeddingbag_byte_prepack_num_embeddings80_embedding_dim512
# Input: num_embeddings: 80, embedding_dim: 512
Forward Execution Time (us) : 25.898

# Benchmarking PyTorch: qembeddingbag_4bit_prepack
# Mode: Eager
# Name: qembeddingbag_4bit_prepack_num_embeddings80_embedding_dim128
# Input: num_embeddings: 80, embedding_dim: 128
Forward Execution Time (us) : 13.903

# Benchmarking PyTorch: qembeddingbag_4bit_prepack
# Mode: Eager
# Name: qembeddingbag_4bit_prepack_num_embeddings80_embedding_dim256
# Input: num_embeddings: 80, embedding_dim: 256
Forward Execution Time (us) : 18.575

# Benchmarking PyTorch: qembeddingbag_4bit_prepack
# Mode: Eager
# Name: qembeddingbag_4bit_prepack_num_embeddings80_embedding_dim512
# Input: num_embeddings: 80, embedding_dim: 512
Forward Execution Time (us) : 30.650

# Benchmarking PyTorch: qembeddingbag_2bit_prepack
# Mode: Eager
# Name: qembeddingbag_2bit_prepack_num_embeddings80_embedding_dim128
# Input: num_embeddings: 80, embedding_dim: 128
Forward Execution Time (us) : 14.158

# Benchmarking PyTorch: qembeddingbag_2bit_prepack
# Mode: Eager
# Name: qembeddingbag_2bit_prepack_num_embeddings80_embedding_dim256
# Input: num_embeddings: 80, embedding_dim: 256
Forward Execution Time (us) : 19.818

# Benchmarking PyTorch: qembeddingbag_2bit_prepack
# Mode: Eager
# Name: qembeddingbag_2bit_prepack_num_embeddings80_embedding_dim512
# Input: num_embeddings: 80, embedding_dim: 512
Forward Execution Time (us) : 30.852

# Benchmarking PyTorch: qembeddingbag_byte_unpack
# Mode: Eager
# Name: qembeddingbag_byte_unpack_num_embeddings80_embedding_dim128
# Input: num_embeddings: 80, embedding_dim: 128
Forward Execution Time (us) : 47.596

# Benchmarking PyTorch: qembeddingbag_byte_unpack
# Mode: Eager
# Name: qembeddingbag_byte_unpack_num_embeddings80_embedding_dim256
# Input: num_embeddings: 80, embedding_dim: 256
Forward Execution Time (us) : 91.025

# Benchmarking PyTorch: qembeddingbag_byte_unpack
# Mode: Eager
# Name: qembeddingbag_byte_unpack_num_embeddings80_embedding_dim512
# Input: num_embeddings: 80, embedding_dim: 512
Forward Execution Time (us) : 131.425

# Benchmarking PyTorch: qembeddingbag_4bit_unpack
# Mode: Eager
# Name: qembeddingbag_4bit_unpack_num_embeddings80_embedding_dim128
# Input: num_embeddings: 80, embedding_dim: 128
Forward Execution Time (us) : 12.637

# Benchmarking PyTorch: qembeddingbag_4bit_unpack
# Mode: Eager
# Name: qembeddingbag_4bit_unpack_num_embeddings80_embedding_dim256
# Input: num_embeddings: 80, embedding_dim: 256
Forward Execution Time (us) : 20.856

# Benchmarking PyTorch: qembeddingbag_4bit_unpack
# Mode: Eager
# Name: qembeddingbag_4bit_unpack_num_embeddings80_embedding_dim512
# Input: num_embeddings: 80, embedding_dim: 512
Forward Execution Time (us) : 33.944

# Benchmarking PyTorch: qembeddingbag_2bit_unpack
# Mode: Eager
# Name: qembeddingbag_2bit_unpack_num_embeddings80_embedding_dim128
# Input: num_embeddings: 80, embedding_dim: 128
Forward Execution Time (us) : 21.181

# Benchmarking PyTorch: qembeddingbag_2bit_unpack
# Mode: Eager
# Name: qembeddingbag_2bit_unpack_num_embeddings80_embedding_dim256
# Input: num_embeddings: 80, embedding_dim: 256
Forward Execution Time (us) : 34.213

# Benchmarking PyTorch: qembeddingbag_2bit_unpack
# Mode: Eager
# Name: qembeddingbag_2bit_unpack_num_embeddings80_embedding_dim512
# Input: num_embeddings: 80, embedding_dim: 512
Forward Execution Time (us) : 59.622
```

Differential Revision: [D23675777](https://our.internmc.facebook.com/intern/diff/D23675777/)

[ghstack-poisoned]
dskhudia added a commit that referenced this pull request Sep 17, 2020
Pull Request resolved: #44845


fbgemm functions are vectorized and faster

```
Finished test run: https://our.intern.facebook.com/intern/testinfra/testrun/6473924484856786
Summary (total time 15.08s):
  PASS: 7
  FAIL: 0
  SKIP: 0
  FATAL: 0
  TIMEOUT: 0
  OMIT: 0
```

Performance Before:
```
# ----------------------------------------
# PyTorch/Caffe2 Operator Micro-benchmarks
# ----------------------------------------
# Tag : short

# Benchmarking PyTorch: qembeddingbag_byte_prepack
# Mode: Eager
# Name: qembeddingbag_byte_prepack_num_embeddings80_embedding_dim128
# Input: num_embeddings: 80, embedding_dim: 128
Forward Execution Time (us) : 68.727

# Benchmarking PyTorch: qembeddingbag_byte_prepack
# Mode: Eager
# Name: qembeddingbag_byte_prepack_num_embeddings80_embedding_dim256
# Input: num_embeddings: 80, embedding_dim: 256
Forward Execution Time (us) : 131.500

# Benchmarking PyTorch: qembeddingbag_byte_prepack
# Mode: Eager
# Name: qembeddingbag_byte_prepack_num_embeddings80_embedding_dim512
# Input: num_embeddings: 80, embedding_dim: 512
Forward Execution Time (us) : 248.190

# Benchmarking PyTorch: qembeddingbag_4bit_prepack
# Mode: Eager
# Name: qembeddingbag_4bit_prepack_num_embeddings80_embedding_dim128
# Input: num_embeddings: 80, embedding_dim: 128
Forward Execution Time (us) : 172.742

# Benchmarking PyTorch: qembeddingbag_4bit_prepack
# Mode: Eager
# Name: qembeddingbag_4bit_prepack_num_embeddings80_embedding_dim256
# Input: num_embeddings: 80, embedding_dim: 256
Forward Execution Time (us) : 333.008

# Benchmarking PyTorch: qembeddingbag_4bit_prepack
# Mode: Eager
# Name: qembeddingbag_4bit_prepack_num_embeddings80_embedding_dim512
# Input: num_embeddings: 80, embedding_dim: 512
Forward Execution Time (us) : 652.423

# Benchmarking PyTorch: qembeddingbag_2bit_prepack
# Mode: Eager
# Name: qembeddingbag_2bit_prepack_num_embeddings80_embedding_dim128
# Input: num_embeddings: 80, embedding_dim: 128
Forward Execution Time (us) : 167.282

# Benchmarking PyTorch: qembeddingbag_2bit_prepack
# Mode: Eager
# Name: qembeddingbag_2bit_prepack_num_embeddings80_embedding_dim256
# Input: num_embeddings: 80, embedding_dim: 256
Forward Execution Time (us) : 398.901

# Benchmarking PyTorch: qembeddingbag_2bit_prepack
# Mode: Eager
# Name: qembeddingbag_2bit_prepack_num_embeddings80_embedding_dim512
# Input: num_embeddings: 80, embedding_dim: 512
Forward Execution Time (us) : 785.254

# Benchmarking PyTorch: qembeddingbag_byte_unpack
# Mode: Eager
# Name: qembeddingbag_byte_unpack_num_embeddings80_embedding_dim128
# Input: num_embeddings: 80, embedding_dim: 128
Forward Execution Time (us) : 122.653

# Benchmarking PyTorch: qembeddingbag_byte_unpack
# Mode: Eager
# Name: qembeddingbag_byte_unpack_num_embeddings80_embedding_dim256
# Input: num_embeddings: 80, embedding_dim: 256
Forward Execution Time (us) : 230.617

# Benchmarking PyTorch: qembeddingbag_byte_unpack
# Mode: Eager
# Name: qembeddingbag_byte_unpack_num_embeddings80_embedding_dim512
# Input: num_embeddings: 80, embedding_dim: 512
Forward Execution Time (us) : 408.807

# Benchmarking PyTorch: qembeddingbag_4bit_unpack
# Mode: Eager
# Name: qembeddingbag_4bit_unpack_num_embeddings80_embedding_dim128
# Input: num_embeddings: 80, embedding_dim: 128
Forward Execution Time (us) : 176.087

# Benchmarking PyTorch: qembeddingbag_4bit_unpack
# Mode: Eager
# Name: qembeddingbag_4bit_unpack_num_embeddings80_embedding_dim256
# Input: num_embeddings: 80, embedding_dim: 256
Forward Execution Time (us) : 337.514

# Benchmarking PyTorch: qembeddingbag_4bit_unpack
# Mode: Eager
# Name: qembeddingbag_4bit_unpack_num_embeddings80_embedding_dim512
# Input: num_embeddings: 80, embedding_dim: 512
Forward Execution Time (us) : 659.716

# Benchmarking PyTorch: qembeddingbag_2bit_unpack
# Mode: Eager
# Name: qembeddingbag_2bit_unpack_num_embeddings80_embedding_dim128
# Input: num_embeddings: 80, embedding_dim: 128
Forward Execution Time (us) : 342.529

# Benchmarking PyTorch: qembeddingbag_2bit_unpack
# Mode: Eager
# Name: qembeddingbag_2bit_unpack_num_embeddings80_embedding_dim256
# Input: num_embeddings: 80, embedding_dim: 256
Forward Execution Time (us) : 665.197

# Benchmarking PyTorch: qembeddingbag_2bit_unpack
# Mode: Eager
# Name: qembeddingbag_2bit_unpack_num_embeddings80_embedding_dim512
# Input: num_embeddings: 80, embedding_dim: 512
Forward Execution Time (us) : 1307.923
```

Performance After:
```
# ----------------------------------------
# PyTorch/Caffe2 Operator Micro-benchmarks
# ----------------------------------------
# Tag : short

# Benchmarking PyTorch: qembeddingbag_byte_prepack
# Mode: Eager
# Name: qembeddingbag_byte_prepack_num_embeddings80_embedding_dim128
# Input: num_embeddings: 80, embedding_dim: 128
Forward Execution Time (us) : 10.782

# Benchmarking PyTorch: qembeddingbag_byte_prepack
# Mode: Eager
# Name: qembeddingbag_byte_prepack_num_embeddings80_embedding_dim256
# Input: num_embeddings: 80, embedding_dim: 256
Forward Execution Time (us) : 17.443

# Benchmarking PyTorch: qembeddingbag_byte_prepack
# Mode: Eager
# Name: qembeddingbag_byte_prepack_num_embeddings80_embedding_dim512
# Input: num_embeddings: 80, embedding_dim: 512
Forward Execution Time (us) : 25.898

# Benchmarking PyTorch: qembeddingbag_4bit_prepack
# Mode: Eager
# Name: qembeddingbag_4bit_prepack_num_embeddings80_embedding_dim128
# Input: num_embeddings: 80, embedding_dim: 128
Forward Execution Time (us) : 13.903

# Benchmarking PyTorch: qembeddingbag_4bit_prepack
# Mode: Eager
# Name: qembeddingbag_4bit_prepack_num_embeddings80_embedding_dim256
# Input: num_embeddings: 80, embedding_dim: 256
Forward Execution Time (us) : 18.575

# Benchmarking PyTorch: qembeddingbag_4bit_prepack
# Mode: Eager
# Name: qembeddingbag_4bit_prepack_num_embeddings80_embedding_dim512
# Input: num_embeddings: 80, embedding_dim: 512
Forward Execution Time (us) : 30.650

# Benchmarking PyTorch: qembeddingbag_2bit_prepack
# Mode: Eager
# Name: qembeddingbag_2bit_prepack_num_embeddings80_embedding_dim128
# Input: num_embeddings: 80, embedding_dim: 128
Forward Execution Time (us) : 14.158

# Benchmarking PyTorch: qembeddingbag_2bit_prepack
# Mode: Eager
# Name: qembeddingbag_2bit_prepack_num_embeddings80_embedding_dim256
# Input: num_embeddings: 80, embedding_dim: 256
Forward Execution Time (us) : 19.818

# Benchmarking PyTorch: qembeddingbag_2bit_prepack
# Mode: Eager
# Name: qembeddingbag_2bit_prepack_num_embeddings80_embedding_dim512
# Input: num_embeddings: 80, embedding_dim: 512
Forward Execution Time (us) : 30.852

# Benchmarking PyTorch: qembeddingbag_byte_unpack
# Mode: Eager
# Name: qembeddingbag_byte_unpack_num_embeddings80_embedding_dim128
# Input: num_embeddings: 80, embedding_dim: 128
Forward Execution Time (us) : 47.596

# Benchmarking PyTorch: qembeddingbag_byte_unpack
# Mode: Eager
# Name: qembeddingbag_byte_unpack_num_embeddings80_embedding_dim256
# Input: num_embeddings: 80, embedding_dim: 256
Forward Execution Time (us) : 91.025

# Benchmarking PyTorch: qembeddingbag_byte_unpack
# Mode: Eager
# Name: qembeddingbag_byte_unpack_num_embeddings80_embedding_dim512
# Input: num_embeddings: 80, embedding_dim: 512
Forward Execution Time (us) : 131.425

# Benchmarking PyTorch: qembeddingbag_4bit_unpack
# Mode: Eager
# Name: qembeddingbag_4bit_unpack_num_embeddings80_embedding_dim128
# Input: num_embeddings: 80, embedding_dim: 128
Forward Execution Time (us) : 12.637

# Benchmarking PyTorch: qembeddingbag_4bit_unpack
# Mode: Eager
# Name: qembeddingbag_4bit_unpack_num_embeddings80_embedding_dim256
# Input: num_embeddings: 80, embedding_dim: 256
Forward Execution Time (us) : 20.856

# Benchmarking PyTorch: qembeddingbag_4bit_unpack
# Mode: Eager
# Name: qembeddingbag_4bit_unpack_num_embeddings80_embedding_dim512
# Input: num_embeddings: 80, embedding_dim: 512
Forward Execution Time (us) : 33.944

# Benchmarking PyTorch: qembeddingbag_2bit_unpack
# Mode: Eager
# Name: qembeddingbag_2bit_unpack_num_embeddings80_embedding_dim128
# Input: num_embeddings: 80, embedding_dim: 128
Forward Execution Time (us) : 21.181

# Benchmarking PyTorch: qembeddingbag_2bit_unpack
# Mode: Eager
# Name: qembeddingbag_2bit_unpack_num_embeddings80_embedding_dim256
# Input: num_embeddings: 80, embedding_dim: 256
Forward Execution Time (us) : 34.213

# Benchmarking PyTorch: qembeddingbag_2bit_unpack
# Mode: Eager
# Name: qembeddingbag_2bit_unpack_num_embeddings80_embedding_dim512
# Input: num_embeddings: 80, embedding_dim: 512
Forward Execution Time (us) : 59.622
```
ghstack-source-id: 112295758

Differential Revision: [D23675777](https://our.internmc.facebook.com/intern/diff/D23675777/)
Copy link
Contributor

@raghuramank100 raghuramank100 left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Nice speedup!

fbgemm functions are vectorized and faster

```
Finished test run: https://our.intern.facebook.com/intern/testinfra/testrun/6473924484856786
Summary (total time 15.08s):
  PASS: 7
  FAIL: 0
  SKIP: 0
  FATAL: 0
  TIMEOUT: 0
  OMIT: 0
```

Performance Before:
```
# ----------------------------------------
# PyTorch/Caffe2 Operator Micro-benchmarks
# ----------------------------------------
# Tag : short

# Benchmarking PyTorch: qembeddingbag_byte_prepack
# Mode: Eager
# Name: qembeddingbag_byte_prepack_num_embeddings80_embedding_dim128
# Input: num_embeddings: 80, embedding_dim: 128
Forward Execution Time (us) : 68.727

# Benchmarking PyTorch: qembeddingbag_byte_prepack
# Mode: Eager
# Name: qembeddingbag_byte_prepack_num_embeddings80_embedding_dim256
# Input: num_embeddings: 80, embedding_dim: 256
Forward Execution Time (us) : 131.500

# Benchmarking PyTorch: qembeddingbag_byte_prepack
# Mode: Eager
# Name: qembeddingbag_byte_prepack_num_embeddings80_embedding_dim512
# Input: num_embeddings: 80, embedding_dim: 512
Forward Execution Time (us) : 248.190

# Benchmarking PyTorch: qembeddingbag_4bit_prepack
# Mode: Eager
# Name: qembeddingbag_4bit_prepack_num_embeddings80_embedding_dim128
# Input: num_embeddings: 80, embedding_dim: 128
Forward Execution Time (us) : 172.742

# Benchmarking PyTorch: qembeddingbag_4bit_prepack
# Mode: Eager
# Name: qembeddingbag_4bit_prepack_num_embeddings80_embedding_dim256
# Input: num_embeddings: 80, embedding_dim: 256
Forward Execution Time (us) : 333.008

# Benchmarking PyTorch: qembeddingbag_4bit_prepack
# Mode: Eager
# Name: qembeddingbag_4bit_prepack_num_embeddings80_embedding_dim512
# Input: num_embeddings: 80, embedding_dim: 512
Forward Execution Time (us) : 652.423

# Benchmarking PyTorch: qembeddingbag_2bit_prepack
# Mode: Eager
# Name: qembeddingbag_2bit_prepack_num_embeddings80_embedding_dim128
# Input: num_embeddings: 80, embedding_dim: 128
Forward Execution Time (us) : 167.282

# Benchmarking PyTorch: qembeddingbag_2bit_prepack
# Mode: Eager
# Name: qembeddingbag_2bit_prepack_num_embeddings80_embedding_dim256
# Input: num_embeddings: 80, embedding_dim: 256
Forward Execution Time (us) : 398.901

# Benchmarking PyTorch: qembeddingbag_2bit_prepack
# Mode: Eager
# Name: qembeddingbag_2bit_prepack_num_embeddings80_embedding_dim512
# Input: num_embeddings: 80, embedding_dim: 512
Forward Execution Time (us) : 785.254

# Benchmarking PyTorch: qembeddingbag_byte_unpack
# Mode: Eager
# Name: qembeddingbag_byte_unpack_num_embeddings80_embedding_dim128
# Input: num_embeddings: 80, embedding_dim: 128
Forward Execution Time (us) : 122.653

# Benchmarking PyTorch: qembeddingbag_byte_unpack
# Mode: Eager
# Name: qembeddingbag_byte_unpack_num_embeddings80_embedding_dim256
# Input: num_embeddings: 80, embedding_dim: 256
Forward Execution Time (us) : 230.617

# Benchmarking PyTorch: qembeddingbag_byte_unpack
# Mode: Eager
# Name: qembeddingbag_byte_unpack_num_embeddings80_embedding_dim512
# Input: num_embeddings: 80, embedding_dim: 512
Forward Execution Time (us) : 408.807

# Benchmarking PyTorch: qembeddingbag_4bit_unpack
# Mode: Eager
# Name: qembeddingbag_4bit_unpack_num_embeddings80_embedding_dim128
# Input: num_embeddings: 80, embedding_dim: 128
Forward Execution Time (us) : 176.087

# Benchmarking PyTorch: qembeddingbag_4bit_unpack
# Mode: Eager
# Name: qembeddingbag_4bit_unpack_num_embeddings80_embedding_dim256
# Input: num_embeddings: 80, embedding_dim: 256
Forward Execution Time (us) : 337.514

# Benchmarking PyTorch: qembeddingbag_4bit_unpack
# Mode: Eager
# Name: qembeddingbag_4bit_unpack_num_embeddings80_embedding_dim512
# Input: num_embeddings: 80, embedding_dim: 512
Forward Execution Time (us) : 659.716

# Benchmarking PyTorch: qembeddingbag_2bit_unpack
# Mode: Eager
# Name: qembeddingbag_2bit_unpack_num_embeddings80_embedding_dim128
# Input: num_embeddings: 80, embedding_dim: 128
Forward Execution Time (us) : 342.529

# Benchmarking PyTorch: qembeddingbag_2bit_unpack
# Mode: Eager
# Name: qembeddingbag_2bit_unpack_num_embeddings80_embedding_dim256
# Input: num_embeddings: 80, embedding_dim: 256
Forward Execution Time (us) : 665.197

# Benchmarking PyTorch: qembeddingbag_2bit_unpack
# Mode: Eager
# Name: qembeddingbag_2bit_unpack_num_embeddings80_embedding_dim512
# Input: num_embeddings: 80, embedding_dim: 512
Forward Execution Time (us) : 1307.923
```

Performance After:
```
# ----------------------------------------
# PyTorch/Caffe2 Operator Micro-benchmarks
# ----------------------------------------
# Tag : short

# Benchmarking PyTorch: qembeddingbag_byte_prepack
# Mode: Eager
# Name: qembeddingbag_byte_prepack_num_embeddings80_embedding_dim128
# Input: num_embeddings: 80, embedding_dim: 128
Forward Execution Time (us) : 10.782

# Benchmarking PyTorch: qembeddingbag_byte_prepack
# Mode: Eager
# Name: qembeddingbag_byte_prepack_num_embeddings80_embedding_dim256
# Input: num_embeddings: 80, embedding_dim: 256
Forward Execution Time (us) : 17.443

# Benchmarking PyTorch: qembeddingbag_byte_prepack
# Mode: Eager
# Name: qembeddingbag_byte_prepack_num_embeddings80_embedding_dim512
# Input: num_embeddings: 80, embedding_dim: 512
Forward Execution Time (us) : 25.898

# Benchmarking PyTorch: qembeddingbag_4bit_prepack
# Mode: Eager
# Name: qembeddingbag_4bit_prepack_num_embeddings80_embedding_dim128
# Input: num_embeddings: 80, embedding_dim: 128
Forward Execution Time (us) : 13.903

# Benchmarking PyTorch: qembeddingbag_4bit_prepack
# Mode: Eager
# Name: qembeddingbag_4bit_prepack_num_embeddings80_embedding_dim256
# Input: num_embeddings: 80, embedding_dim: 256
Forward Execution Time (us) : 18.575

# Benchmarking PyTorch: qembeddingbag_4bit_prepack
# Mode: Eager
# Name: qembeddingbag_4bit_prepack_num_embeddings80_embedding_dim512
# Input: num_embeddings: 80, embedding_dim: 512
Forward Execution Time (us) : 30.650

# Benchmarking PyTorch: qembeddingbag_2bit_prepack
# Mode: Eager
# Name: qembeddingbag_2bit_prepack_num_embeddings80_embedding_dim128
# Input: num_embeddings: 80, embedding_dim: 128
Forward Execution Time (us) : 14.158

# Benchmarking PyTorch: qembeddingbag_2bit_prepack
# Mode: Eager
# Name: qembeddingbag_2bit_prepack_num_embeddings80_embedding_dim256
# Input: num_embeddings: 80, embedding_dim: 256
Forward Execution Time (us) : 19.818

# Benchmarking PyTorch: qembeddingbag_2bit_prepack
# Mode: Eager
# Name: qembeddingbag_2bit_prepack_num_embeddings80_embedding_dim512
# Input: num_embeddings: 80, embedding_dim: 512
Forward Execution Time (us) : 30.852

# Benchmarking PyTorch: qembeddingbag_byte_unpack
# Mode: Eager
# Name: qembeddingbag_byte_unpack_num_embeddings80_embedding_dim128
# Input: num_embeddings: 80, embedding_dim: 128
Forward Execution Time (us) : 47.596

# Benchmarking PyTorch: qembeddingbag_byte_unpack
# Mode: Eager
# Name: qembeddingbag_byte_unpack_num_embeddings80_embedding_dim256
# Input: num_embeddings: 80, embedding_dim: 256
Forward Execution Time (us) : 91.025

# Benchmarking PyTorch: qembeddingbag_byte_unpack
# Mode: Eager
# Name: qembeddingbag_byte_unpack_num_embeddings80_embedding_dim512
# Input: num_embeddings: 80, embedding_dim: 512
Forward Execution Time (us) : 131.425

# Benchmarking PyTorch: qembeddingbag_4bit_unpack
# Mode: Eager
# Name: qembeddingbag_4bit_unpack_num_embeddings80_embedding_dim128
# Input: num_embeddings: 80, embedding_dim: 128
Forward Execution Time (us) : 12.637

# Benchmarking PyTorch: qembeddingbag_4bit_unpack
# Mode: Eager
# Name: qembeddingbag_4bit_unpack_num_embeddings80_embedding_dim256
# Input: num_embeddings: 80, embedding_dim: 256
Forward Execution Time (us) : 20.856

# Benchmarking PyTorch: qembeddingbag_4bit_unpack
# Mode: Eager
# Name: qembeddingbag_4bit_unpack_num_embeddings80_embedding_dim512
# Input: num_embeddings: 80, embedding_dim: 512
Forward Execution Time (us) : 33.944

# Benchmarking PyTorch: qembeddingbag_2bit_unpack
# Mode: Eager
# Name: qembeddingbag_2bit_unpack_num_embeddings80_embedding_dim128
# Input: num_embeddings: 80, embedding_dim: 128
Forward Execution Time (us) : 21.181

# Benchmarking PyTorch: qembeddingbag_2bit_unpack
# Mode: Eager
# Name: qembeddingbag_2bit_unpack_num_embeddings80_embedding_dim256
# Input: num_embeddings: 80, embedding_dim: 256
Forward Execution Time (us) : 34.213

# Benchmarking PyTorch: qembeddingbag_2bit_unpack
# Mode: Eager
# Name: qembeddingbag_2bit_unpack_num_embeddings80_embedding_dim512
# Input: num_embeddings: 80, embedding_dim: 512
Forward Execution Time (us) : 59.622
```

Differential Revision: [D23675777](https://our.internmc.facebook.com/intern/diff/D23675777/)

[ghstack-poisoned]
dskhudia added a commit that referenced this pull request Sep 21, 2020
Pull Request resolved: #44845


fbgemm functions are vectorized and faster

```
Finished test run: https://our.intern.facebook.com/intern/testinfra/testrun/6473924484856786
Summary (total time 15.08s):
  PASS: 7
  FAIL: 0
  SKIP: 0
  FATAL: 0
  TIMEOUT: 0
  OMIT: 0
```

Performance Before:
```
# ----------------------------------------
# PyTorch/Caffe2 Operator Micro-benchmarks
# ----------------------------------------
# Tag : short

# Benchmarking PyTorch: qembeddingbag_byte_prepack
# Mode: Eager
# Name: qembeddingbag_byte_prepack_num_embeddings80_embedding_dim128
# Input: num_embeddings: 80, embedding_dim: 128
Forward Execution Time (us) : 68.727

# Benchmarking PyTorch: qembeddingbag_byte_prepack
# Mode: Eager
# Name: qembeddingbag_byte_prepack_num_embeddings80_embedding_dim256
# Input: num_embeddings: 80, embedding_dim: 256
Forward Execution Time (us) : 131.500

# Benchmarking PyTorch: qembeddingbag_byte_prepack
# Mode: Eager
# Name: qembeddingbag_byte_prepack_num_embeddings80_embedding_dim512
# Input: num_embeddings: 80, embedding_dim: 512
Forward Execution Time (us) : 248.190

# Benchmarking PyTorch: qembeddingbag_4bit_prepack
# Mode: Eager
# Name: qembeddingbag_4bit_prepack_num_embeddings80_embedding_dim128
# Input: num_embeddings: 80, embedding_dim: 128
Forward Execution Time (us) : 172.742

# Benchmarking PyTorch: qembeddingbag_4bit_prepack
# Mode: Eager
# Name: qembeddingbag_4bit_prepack_num_embeddings80_embedding_dim256
# Input: num_embeddings: 80, embedding_dim: 256
Forward Execution Time (us) : 333.008

# Benchmarking PyTorch: qembeddingbag_4bit_prepack
# Mode: Eager
# Name: qembeddingbag_4bit_prepack_num_embeddings80_embedding_dim512
# Input: num_embeddings: 80, embedding_dim: 512
Forward Execution Time (us) : 652.423

# Benchmarking PyTorch: qembeddingbag_2bit_prepack
# Mode: Eager
# Name: qembeddingbag_2bit_prepack_num_embeddings80_embedding_dim128
# Input: num_embeddings: 80, embedding_dim: 128
Forward Execution Time (us) : 167.282

# Benchmarking PyTorch: qembeddingbag_2bit_prepack
# Mode: Eager
# Name: qembeddingbag_2bit_prepack_num_embeddings80_embedding_dim256
# Input: num_embeddings: 80, embedding_dim: 256
Forward Execution Time (us) : 398.901

# Benchmarking PyTorch: qembeddingbag_2bit_prepack
# Mode: Eager
# Name: qembeddingbag_2bit_prepack_num_embeddings80_embedding_dim512
# Input: num_embeddings: 80, embedding_dim: 512
Forward Execution Time (us) : 785.254

# Benchmarking PyTorch: qembeddingbag_byte_unpack
# Mode: Eager
# Name: qembeddingbag_byte_unpack_num_embeddings80_embedding_dim128
# Input: num_embeddings: 80, embedding_dim: 128
Forward Execution Time (us) : 122.653

# Benchmarking PyTorch: qembeddingbag_byte_unpack
# Mode: Eager
# Name: qembeddingbag_byte_unpack_num_embeddings80_embedding_dim256
# Input: num_embeddings: 80, embedding_dim: 256
Forward Execution Time (us) : 230.617

# Benchmarking PyTorch: qembeddingbag_byte_unpack
# Mode: Eager
# Name: qembeddingbag_byte_unpack_num_embeddings80_embedding_dim512
# Input: num_embeddings: 80, embedding_dim: 512
Forward Execution Time (us) : 408.807

# Benchmarking PyTorch: qembeddingbag_4bit_unpack
# Mode: Eager
# Name: qembeddingbag_4bit_unpack_num_embeddings80_embedding_dim128
# Input: num_embeddings: 80, embedding_dim: 128
Forward Execution Time (us) : 176.087

# Benchmarking PyTorch: qembeddingbag_4bit_unpack
# Mode: Eager
# Name: qembeddingbag_4bit_unpack_num_embeddings80_embedding_dim256
# Input: num_embeddings: 80, embedding_dim: 256
Forward Execution Time (us) : 337.514

# Benchmarking PyTorch: qembeddingbag_4bit_unpack
# Mode: Eager
# Name: qembeddingbag_4bit_unpack_num_embeddings80_embedding_dim512
# Input: num_embeddings: 80, embedding_dim: 512
Forward Execution Time (us) : 659.716

# Benchmarking PyTorch: qembeddingbag_2bit_unpack
# Mode: Eager
# Name: qembeddingbag_2bit_unpack_num_embeddings80_embedding_dim128
# Input: num_embeddings: 80, embedding_dim: 128
Forward Execution Time (us) : 342.529

# Benchmarking PyTorch: qembeddingbag_2bit_unpack
# Mode: Eager
# Name: qembeddingbag_2bit_unpack_num_embeddings80_embedding_dim256
# Input: num_embeddings: 80, embedding_dim: 256
Forward Execution Time (us) : 665.197

# Benchmarking PyTorch: qembeddingbag_2bit_unpack
# Mode: Eager
# Name: qembeddingbag_2bit_unpack_num_embeddings80_embedding_dim512
# Input: num_embeddings: 80, embedding_dim: 512
Forward Execution Time (us) : 1307.923
```

Performance After:
```
# ----------------------------------------
# PyTorch/Caffe2 Operator Micro-benchmarks
# ----------------------------------------
# Tag : short

# Benchmarking PyTorch: qembeddingbag_byte_prepack
# Mode: Eager
# Name: qembeddingbag_byte_prepack_num_embeddings80_embedding_dim128
# Input: num_embeddings: 80, embedding_dim: 128
Forward Execution Time (us) : 10.782

# Benchmarking PyTorch: qembeddingbag_byte_prepack
# Mode: Eager
# Name: qembeddingbag_byte_prepack_num_embeddings80_embedding_dim256
# Input: num_embeddings: 80, embedding_dim: 256
Forward Execution Time (us) : 17.443

# Benchmarking PyTorch: qembeddingbag_byte_prepack
# Mode: Eager
# Name: qembeddingbag_byte_prepack_num_embeddings80_embedding_dim512
# Input: num_embeddings: 80, embedding_dim: 512
Forward Execution Time (us) : 25.898

# Benchmarking PyTorch: qembeddingbag_4bit_prepack
# Mode: Eager
# Name: qembeddingbag_4bit_prepack_num_embeddings80_embedding_dim128
# Input: num_embeddings: 80, embedding_dim: 128
Forward Execution Time (us) : 13.903

# Benchmarking PyTorch: qembeddingbag_4bit_prepack
# Mode: Eager
# Name: qembeddingbag_4bit_prepack_num_embeddings80_embedding_dim256
# Input: num_embeddings: 80, embedding_dim: 256
Forward Execution Time (us) : 18.575

# Benchmarking PyTorch: qembeddingbag_4bit_prepack
# Mode: Eager
# Name: qembeddingbag_4bit_prepack_num_embeddings80_embedding_dim512
# Input: num_embeddings: 80, embedding_dim: 512
Forward Execution Time (us) : 30.650

# Benchmarking PyTorch: qembeddingbag_2bit_prepack
# Mode: Eager
# Name: qembeddingbag_2bit_prepack_num_embeddings80_embedding_dim128
# Input: num_embeddings: 80, embedding_dim: 128
Forward Execution Time (us) : 14.158

# Benchmarking PyTorch: qembeddingbag_2bit_prepack
# Mode: Eager
# Name: qembeddingbag_2bit_prepack_num_embeddings80_embedding_dim256
# Input: num_embeddings: 80, embedding_dim: 256
Forward Execution Time (us) : 19.818

# Benchmarking PyTorch: qembeddingbag_2bit_prepack
# Mode: Eager
# Name: qembeddingbag_2bit_prepack_num_embeddings80_embedding_dim512
# Input: num_embeddings: 80, embedding_dim: 512
Forward Execution Time (us) : 30.852

# Benchmarking PyTorch: qembeddingbag_byte_unpack
# Mode: Eager
# Name: qembeddingbag_byte_unpack_num_embeddings80_embedding_dim128
# Input: num_embeddings: 80, embedding_dim: 128
Forward Execution Time (us) : 47.596

# Benchmarking PyTorch: qembeddingbag_byte_unpack
# Mode: Eager
# Name: qembeddingbag_byte_unpack_num_embeddings80_embedding_dim256
# Input: num_embeddings: 80, embedding_dim: 256
Forward Execution Time (us) : 91.025

# Benchmarking PyTorch: qembeddingbag_byte_unpack
# Mode: Eager
# Name: qembeddingbag_byte_unpack_num_embeddings80_embedding_dim512
# Input: num_embeddings: 80, embedding_dim: 512
Forward Execution Time (us) : 131.425

# Benchmarking PyTorch: qembeddingbag_4bit_unpack
# Mode: Eager
# Name: qembeddingbag_4bit_unpack_num_embeddings80_embedding_dim128
# Input: num_embeddings: 80, embedding_dim: 128
Forward Execution Time (us) : 12.637

# Benchmarking PyTorch: qembeddingbag_4bit_unpack
# Mode: Eager
# Name: qembeddingbag_4bit_unpack_num_embeddings80_embedding_dim256
# Input: num_embeddings: 80, embedding_dim: 256
Forward Execution Time (us) : 20.856

# Benchmarking PyTorch: qembeddingbag_4bit_unpack
# Mode: Eager
# Name: qembeddingbag_4bit_unpack_num_embeddings80_embedding_dim512
# Input: num_embeddings: 80, embedding_dim: 512
Forward Execution Time (us) : 33.944

# Benchmarking PyTorch: qembeddingbag_2bit_unpack
# Mode: Eager
# Name: qembeddingbag_2bit_unpack_num_embeddings80_embedding_dim128
# Input: num_embeddings: 80, embedding_dim: 128
Forward Execution Time (us) : 21.181

# Benchmarking PyTorch: qembeddingbag_2bit_unpack
# Mode: Eager
# Name: qembeddingbag_2bit_unpack_num_embeddings80_embedding_dim256
# Input: num_embeddings: 80, embedding_dim: 256
Forward Execution Time (us) : 34.213

# Benchmarking PyTorch: qembeddingbag_2bit_unpack
# Mode: Eager
# Name: qembeddingbag_2bit_unpack_num_embeddings80_embedding_dim512
# Input: num_embeddings: 80, embedding_dim: 512
Forward Execution Time (us) : 59.622
```
ghstack-source-id: 112470869

Differential Revision: [D23675777](https://our.internmc.facebook.com/intern/diff/D23675777/)
fbgemm functions are vectorized and faster

```
Finished test run: https://our.intern.facebook.com/intern/testinfra/testrun/6473924484856786
Summary (total time 15.08s):
  PASS: 7
  FAIL: 0
  SKIP: 0
  FATAL: 0
  TIMEOUT: 0
  OMIT: 0
```

Performance Before:
```
# ----------------------------------------
# PyTorch/Caffe2 Operator Micro-benchmarks
# ----------------------------------------
# Tag : short

# Benchmarking PyTorch: qembeddingbag_byte_prepack
# Mode: Eager
# Name: qembeddingbag_byte_prepack_num_embeddings80_embedding_dim128
# Input: num_embeddings: 80, embedding_dim: 128
Forward Execution Time (us) : 68.727

# Benchmarking PyTorch: qembeddingbag_byte_prepack
# Mode: Eager
# Name: qembeddingbag_byte_prepack_num_embeddings80_embedding_dim256
# Input: num_embeddings: 80, embedding_dim: 256
Forward Execution Time (us) : 131.500

# Benchmarking PyTorch: qembeddingbag_byte_prepack
# Mode: Eager
# Name: qembeddingbag_byte_prepack_num_embeddings80_embedding_dim512
# Input: num_embeddings: 80, embedding_dim: 512
Forward Execution Time (us) : 248.190

# Benchmarking PyTorch: qembeddingbag_4bit_prepack
# Mode: Eager
# Name: qembeddingbag_4bit_prepack_num_embeddings80_embedding_dim128
# Input: num_embeddings: 80, embedding_dim: 128
Forward Execution Time (us) : 172.742

# Benchmarking PyTorch: qembeddingbag_4bit_prepack
# Mode: Eager
# Name: qembeddingbag_4bit_prepack_num_embeddings80_embedding_dim256
# Input: num_embeddings: 80, embedding_dim: 256
Forward Execution Time (us) : 333.008

# Benchmarking PyTorch: qembeddingbag_4bit_prepack
# Mode: Eager
# Name: qembeddingbag_4bit_prepack_num_embeddings80_embedding_dim512
# Input: num_embeddings: 80, embedding_dim: 512
Forward Execution Time (us) : 652.423

# Benchmarking PyTorch: qembeddingbag_2bit_prepack
# Mode: Eager
# Name: qembeddingbag_2bit_prepack_num_embeddings80_embedding_dim128
# Input: num_embeddings: 80, embedding_dim: 128
Forward Execution Time (us) : 167.282

# Benchmarking PyTorch: qembeddingbag_2bit_prepack
# Mode: Eager
# Name: qembeddingbag_2bit_prepack_num_embeddings80_embedding_dim256
# Input: num_embeddings: 80, embedding_dim: 256
Forward Execution Time (us) : 398.901

# Benchmarking PyTorch: qembeddingbag_2bit_prepack
# Mode: Eager
# Name: qembeddingbag_2bit_prepack_num_embeddings80_embedding_dim512
# Input: num_embeddings: 80, embedding_dim: 512
Forward Execution Time (us) : 785.254

# Benchmarking PyTorch: qembeddingbag_byte_unpack
# Mode: Eager
# Name: qembeddingbag_byte_unpack_num_embeddings80_embedding_dim128
# Input: num_embeddings: 80, embedding_dim: 128
Forward Execution Time (us) : 122.653

# Benchmarking PyTorch: qembeddingbag_byte_unpack
# Mode: Eager
# Name: qembeddingbag_byte_unpack_num_embeddings80_embedding_dim256
# Input: num_embeddings: 80, embedding_dim: 256
Forward Execution Time (us) : 230.617

# Benchmarking PyTorch: qembeddingbag_byte_unpack
# Mode: Eager
# Name: qembeddingbag_byte_unpack_num_embeddings80_embedding_dim512
# Input: num_embeddings: 80, embedding_dim: 512
Forward Execution Time (us) : 408.807

# Benchmarking PyTorch: qembeddingbag_4bit_unpack
# Mode: Eager
# Name: qembeddingbag_4bit_unpack_num_embeddings80_embedding_dim128
# Input: num_embeddings: 80, embedding_dim: 128
Forward Execution Time (us) : 176.087

# Benchmarking PyTorch: qembeddingbag_4bit_unpack
# Mode: Eager
# Name: qembeddingbag_4bit_unpack_num_embeddings80_embedding_dim256
# Input: num_embeddings: 80, embedding_dim: 256
Forward Execution Time (us) : 337.514

# Benchmarking PyTorch: qembeddingbag_4bit_unpack
# Mode: Eager
# Name: qembeddingbag_4bit_unpack_num_embeddings80_embedding_dim512
# Input: num_embeddings: 80, embedding_dim: 512
Forward Execution Time (us) : 659.716

# Benchmarking PyTorch: qembeddingbag_2bit_unpack
# Mode: Eager
# Name: qembeddingbag_2bit_unpack_num_embeddings80_embedding_dim128
# Input: num_embeddings: 80, embedding_dim: 128
Forward Execution Time (us) : 342.529

# Benchmarking PyTorch: qembeddingbag_2bit_unpack
# Mode: Eager
# Name: qembeddingbag_2bit_unpack_num_embeddings80_embedding_dim256
# Input: num_embeddings: 80, embedding_dim: 256
Forward Execution Time (us) : 665.197

# Benchmarking PyTorch: qembeddingbag_2bit_unpack
# Mode: Eager
# Name: qembeddingbag_2bit_unpack_num_embeddings80_embedding_dim512
# Input: num_embeddings: 80, embedding_dim: 512
Forward Execution Time (us) : 1307.923
```

Performance After:
```
# ----------------------------------------
# PyTorch/Caffe2 Operator Micro-benchmarks
# ----------------------------------------
# Tag : short

# Benchmarking PyTorch: qembeddingbag_byte_prepack
# Mode: Eager
# Name: qembeddingbag_byte_prepack_num_embeddings80_embedding_dim128
# Input: num_embeddings: 80, embedding_dim: 128
Forward Execution Time (us) : 10.782

# Benchmarking PyTorch: qembeddingbag_byte_prepack
# Mode: Eager
# Name: qembeddingbag_byte_prepack_num_embeddings80_embedding_dim256
# Input: num_embeddings: 80, embedding_dim: 256
Forward Execution Time (us) : 17.443

# Benchmarking PyTorch: qembeddingbag_byte_prepack
# Mode: Eager
# Name: qembeddingbag_byte_prepack_num_embeddings80_embedding_dim512
# Input: num_embeddings: 80, embedding_dim: 512
Forward Execution Time (us) : 25.898

# Benchmarking PyTorch: qembeddingbag_4bit_prepack
# Mode: Eager
# Name: qembeddingbag_4bit_prepack_num_embeddings80_embedding_dim128
# Input: num_embeddings: 80, embedding_dim: 128
Forward Execution Time (us) : 13.903

# Benchmarking PyTorch: qembeddingbag_4bit_prepack
# Mode: Eager
# Name: qembeddingbag_4bit_prepack_num_embeddings80_embedding_dim256
# Input: num_embeddings: 80, embedding_dim: 256
Forward Execution Time (us) : 18.575

# Benchmarking PyTorch: qembeddingbag_4bit_prepack
# Mode: Eager
# Name: qembeddingbag_4bit_prepack_num_embeddings80_embedding_dim512
# Input: num_embeddings: 80, embedding_dim: 512
Forward Execution Time (us) : 30.650

# Benchmarking PyTorch: qembeddingbag_2bit_prepack
# Mode: Eager
# Name: qembeddingbag_2bit_prepack_num_embeddings80_embedding_dim128
# Input: num_embeddings: 80, embedding_dim: 128
Forward Execution Time (us) : 14.158

# Benchmarking PyTorch: qembeddingbag_2bit_prepack
# Mode: Eager
# Name: qembeddingbag_2bit_prepack_num_embeddings80_embedding_dim256
# Input: num_embeddings: 80, embedding_dim: 256
Forward Execution Time (us) : 19.818

# Benchmarking PyTorch: qembeddingbag_2bit_prepack
# Mode: Eager
# Name: qembeddingbag_2bit_prepack_num_embeddings80_embedding_dim512
# Input: num_embeddings: 80, embedding_dim: 512
Forward Execution Time (us) : 30.852

# Benchmarking PyTorch: qembeddingbag_byte_unpack
# Mode: Eager
# Name: qembeddingbag_byte_unpack_num_embeddings80_embedding_dim128
# Input: num_embeddings: 80, embedding_dim: 128
Forward Execution Time (us) : 47.596

# Benchmarking PyTorch: qembeddingbag_byte_unpack
# Mode: Eager
# Name: qembeddingbag_byte_unpack_num_embeddings80_embedding_dim256
# Input: num_embeddings: 80, embedding_dim: 256
Forward Execution Time (us) : 91.025

# Benchmarking PyTorch: qembeddingbag_byte_unpack
# Mode: Eager
# Name: qembeddingbag_byte_unpack_num_embeddings80_embedding_dim512
# Input: num_embeddings: 80, embedding_dim: 512
Forward Execution Time (us) : 131.425

# Benchmarking PyTorch: qembeddingbag_4bit_unpack
# Mode: Eager
# Name: qembeddingbag_4bit_unpack_num_embeddings80_embedding_dim128
# Input: num_embeddings: 80, embedding_dim: 128
Forward Execution Time (us) : 12.637

# Benchmarking PyTorch: qembeddingbag_4bit_unpack
# Mode: Eager
# Name: qembeddingbag_4bit_unpack_num_embeddings80_embedding_dim256
# Input: num_embeddings: 80, embedding_dim: 256
Forward Execution Time (us) : 20.856

# Benchmarking PyTorch: qembeddingbag_4bit_unpack
# Mode: Eager
# Name: qembeddingbag_4bit_unpack_num_embeddings80_embedding_dim512
# Input: num_embeddings: 80, embedding_dim: 512
Forward Execution Time (us) : 33.944

# Benchmarking PyTorch: qembeddingbag_2bit_unpack
# Mode: Eager
# Name: qembeddingbag_2bit_unpack_num_embeddings80_embedding_dim128
# Input: num_embeddings: 80, embedding_dim: 128
Forward Execution Time (us) : 21.181

# Benchmarking PyTorch: qembeddingbag_2bit_unpack
# Mode: Eager
# Name: qembeddingbag_2bit_unpack_num_embeddings80_embedding_dim256
# Input: num_embeddings: 80, embedding_dim: 256
Forward Execution Time (us) : 34.213

# Benchmarking PyTorch: qembeddingbag_2bit_unpack
# Mode: Eager
# Name: qembeddingbag_2bit_unpack_num_embeddings80_embedding_dim512
# Input: num_embeddings: 80, embedding_dim: 512
Forward Execution Time (us) : 59.622
```

Differential Revision: [D23675777](https://our.internmc.facebook.com/intern/diff/D23675777/)

[ghstack-poisoned]
dskhudia added a commit that referenced this pull request Sep 21, 2020
Pull Request resolved: #44845


fbgemm functions are vectorized and faster

```
Finished test run: https://our.intern.facebook.com/intern/testinfra/testrun/6473924484856786
Summary (total time 15.08s):
  PASS: 7
  FAIL: 0
  SKIP: 0
  FATAL: 0
  TIMEOUT: 0
  OMIT: 0
```

Performance Before:
```
# ----------------------------------------
# PyTorch/Caffe2 Operator Micro-benchmarks
# ----------------------------------------
# Tag : short

# Benchmarking PyTorch: qembeddingbag_byte_prepack
# Mode: Eager
# Name: qembeddingbag_byte_prepack_num_embeddings80_embedding_dim128
# Input: num_embeddings: 80, embedding_dim: 128
Forward Execution Time (us) : 68.727

# Benchmarking PyTorch: qembeddingbag_byte_prepack
# Mode: Eager
# Name: qembeddingbag_byte_prepack_num_embeddings80_embedding_dim256
# Input: num_embeddings: 80, embedding_dim: 256
Forward Execution Time (us) : 131.500

# Benchmarking PyTorch: qembeddingbag_byte_prepack
# Mode: Eager
# Name: qembeddingbag_byte_prepack_num_embeddings80_embedding_dim512
# Input: num_embeddings: 80, embedding_dim: 512
Forward Execution Time (us) : 248.190

# Benchmarking PyTorch: qembeddingbag_4bit_prepack
# Mode: Eager
# Name: qembeddingbag_4bit_prepack_num_embeddings80_embedding_dim128
# Input: num_embeddings: 80, embedding_dim: 128
Forward Execution Time (us) : 172.742

# Benchmarking PyTorch: qembeddingbag_4bit_prepack
# Mode: Eager
# Name: qembeddingbag_4bit_prepack_num_embeddings80_embedding_dim256
# Input: num_embeddings: 80, embedding_dim: 256
Forward Execution Time (us) : 333.008

# Benchmarking PyTorch: qembeddingbag_4bit_prepack
# Mode: Eager
# Name: qembeddingbag_4bit_prepack_num_embeddings80_embedding_dim512
# Input: num_embeddings: 80, embedding_dim: 512
Forward Execution Time (us) : 652.423

# Benchmarking PyTorch: qembeddingbag_2bit_prepack
# Mode: Eager
# Name: qembeddingbag_2bit_prepack_num_embeddings80_embedding_dim128
# Input: num_embeddings: 80, embedding_dim: 128
Forward Execution Time (us) : 167.282

# Benchmarking PyTorch: qembeddingbag_2bit_prepack
# Mode: Eager
# Name: qembeddingbag_2bit_prepack_num_embeddings80_embedding_dim256
# Input: num_embeddings: 80, embedding_dim: 256
Forward Execution Time (us) : 398.901

# Benchmarking PyTorch: qembeddingbag_2bit_prepack
# Mode: Eager
# Name: qembeddingbag_2bit_prepack_num_embeddings80_embedding_dim512
# Input: num_embeddings: 80, embedding_dim: 512
Forward Execution Time (us) : 785.254

# Benchmarking PyTorch: qembeddingbag_byte_unpack
# Mode: Eager
# Name: qembeddingbag_byte_unpack_num_embeddings80_embedding_dim128
# Input: num_embeddings: 80, embedding_dim: 128
Forward Execution Time (us) : 122.653

# Benchmarking PyTorch: qembeddingbag_byte_unpack
# Mode: Eager
# Name: qembeddingbag_byte_unpack_num_embeddings80_embedding_dim256
# Input: num_embeddings: 80, embedding_dim: 256
Forward Execution Time (us) : 230.617

# Benchmarking PyTorch: qembeddingbag_byte_unpack
# Mode: Eager
# Name: qembeddingbag_byte_unpack_num_embeddings80_embedding_dim512
# Input: num_embeddings: 80, embedding_dim: 512
Forward Execution Time (us) : 408.807

# Benchmarking PyTorch: qembeddingbag_4bit_unpack
# Mode: Eager
# Name: qembeddingbag_4bit_unpack_num_embeddings80_embedding_dim128
# Input: num_embeddings: 80, embedding_dim: 128
Forward Execution Time (us) : 176.087

# Benchmarking PyTorch: qembeddingbag_4bit_unpack
# Mode: Eager
# Name: qembeddingbag_4bit_unpack_num_embeddings80_embedding_dim256
# Input: num_embeddings: 80, embedding_dim: 256
Forward Execution Time (us) : 337.514

# Benchmarking PyTorch: qembeddingbag_4bit_unpack
# Mode: Eager
# Name: qembeddingbag_4bit_unpack_num_embeddings80_embedding_dim512
# Input: num_embeddings: 80, embedding_dim: 512
Forward Execution Time (us) : 659.716

# Benchmarking PyTorch: qembeddingbag_2bit_unpack
# Mode: Eager
# Name: qembeddingbag_2bit_unpack_num_embeddings80_embedding_dim128
# Input: num_embeddings: 80, embedding_dim: 128
Forward Execution Time (us) : 342.529

# Benchmarking PyTorch: qembeddingbag_2bit_unpack
# Mode: Eager
# Name: qembeddingbag_2bit_unpack_num_embeddings80_embedding_dim256
# Input: num_embeddings: 80, embedding_dim: 256
Forward Execution Time (us) : 665.197

# Benchmarking PyTorch: qembeddingbag_2bit_unpack
# Mode: Eager
# Name: qembeddingbag_2bit_unpack_num_embeddings80_embedding_dim512
# Input: num_embeddings: 80, embedding_dim: 512
Forward Execution Time (us) : 1307.923
```

Performance After:
```
# ----------------------------------------
# PyTorch/Caffe2 Operator Micro-benchmarks
# ----------------------------------------
# Tag : short

# Benchmarking PyTorch: qembeddingbag_byte_prepack
# Mode: Eager
# Name: qembeddingbag_byte_prepack_num_embeddings80_embedding_dim128
# Input: num_embeddings: 80, embedding_dim: 128
Forward Execution Time (us) : 10.782

# Benchmarking PyTorch: qembeddingbag_byte_prepack
# Mode: Eager
# Name: qembeddingbag_byte_prepack_num_embeddings80_embedding_dim256
# Input: num_embeddings: 80, embedding_dim: 256
Forward Execution Time (us) : 17.443

# Benchmarking PyTorch: qembeddingbag_byte_prepack
# Mode: Eager
# Name: qembeddingbag_byte_prepack_num_embeddings80_embedding_dim512
# Input: num_embeddings: 80, embedding_dim: 512
Forward Execution Time (us) : 25.898

# Benchmarking PyTorch: qembeddingbag_4bit_prepack
# Mode: Eager
# Name: qembeddingbag_4bit_prepack_num_embeddings80_embedding_dim128
# Input: num_embeddings: 80, embedding_dim: 128
Forward Execution Time (us) : 13.903

# Benchmarking PyTorch: qembeddingbag_4bit_prepack
# Mode: Eager
# Name: qembeddingbag_4bit_prepack_num_embeddings80_embedding_dim256
# Input: num_embeddings: 80, embedding_dim: 256
Forward Execution Time (us) : 18.575

# Benchmarking PyTorch: qembeddingbag_4bit_prepack
# Mode: Eager
# Name: qembeddingbag_4bit_prepack_num_embeddings80_embedding_dim512
# Input: num_embeddings: 80, embedding_dim: 512
Forward Execution Time (us) : 30.650

# Benchmarking PyTorch: qembeddingbag_2bit_prepack
# Mode: Eager
# Name: qembeddingbag_2bit_prepack_num_embeddings80_embedding_dim128
# Input: num_embeddings: 80, embedding_dim: 128
Forward Execution Time (us) : 14.158

# Benchmarking PyTorch: qembeddingbag_2bit_prepack
# Mode: Eager
# Name: qembeddingbag_2bit_prepack_num_embeddings80_embedding_dim256
# Input: num_embeddings: 80, embedding_dim: 256
Forward Execution Time (us) : 19.818

# Benchmarking PyTorch: qembeddingbag_2bit_prepack
# Mode: Eager
# Name: qembeddingbag_2bit_prepack_num_embeddings80_embedding_dim512
# Input: num_embeddings: 80, embedding_dim: 512
Forward Execution Time (us) : 30.852

# Benchmarking PyTorch: qembeddingbag_byte_unpack
# Mode: Eager
# Name: qembeddingbag_byte_unpack_num_embeddings80_embedding_dim128
# Input: num_embeddings: 80, embedding_dim: 128
Forward Execution Time (us) : 47.596

# Benchmarking PyTorch: qembeddingbag_byte_unpack
# Mode: Eager
# Name: qembeddingbag_byte_unpack_num_embeddings80_embedding_dim256
# Input: num_embeddings: 80, embedding_dim: 256
Forward Execution Time (us) : 91.025

# Benchmarking PyTorch: qembeddingbag_byte_unpack
# Mode: Eager
# Name: qembeddingbag_byte_unpack_num_embeddings80_embedding_dim512
# Input: num_embeddings: 80, embedding_dim: 512
Forward Execution Time (us) : 131.425

# Benchmarking PyTorch: qembeddingbag_4bit_unpack
# Mode: Eager
# Name: qembeddingbag_4bit_unpack_num_embeddings80_embedding_dim128
# Input: num_embeddings: 80, embedding_dim: 128
Forward Execution Time (us) : 12.637

# Benchmarking PyTorch: qembeddingbag_4bit_unpack
# Mode: Eager
# Name: qembeddingbag_4bit_unpack_num_embeddings80_embedding_dim256
# Input: num_embeddings: 80, embedding_dim: 256
Forward Execution Time (us) : 20.856

# Benchmarking PyTorch: qembeddingbag_4bit_unpack
# Mode: Eager
# Name: qembeddingbag_4bit_unpack_num_embeddings80_embedding_dim512
# Input: num_embeddings: 80, embedding_dim: 512
Forward Execution Time (us) : 33.944

# Benchmarking PyTorch: qembeddingbag_2bit_unpack
# Mode: Eager
# Name: qembeddingbag_2bit_unpack_num_embeddings80_embedding_dim128
# Input: num_embeddings: 80, embedding_dim: 128
Forward Execution Time (us) : 21.181

# Benchmarking PyTorch: qembeddingbag_2bit_unpack
# Mode: Eager
# Name: qembeddingbag_2bit_unpack_num_embeddings80_embedding_dim256
# Input: num_embeddings: 80, embedding_dim: 256
Forward Execution Time (us) : 34.213

# Benchmarking PyTorch: qembeddingbag_2bit_unpack
# Mode: Eager
# Name: qembeddingbag_2bit_unpack_num_embeddings80_embedding_dim512
# Input: num_embeddings: 80, embedding_dim: 512
Forward Execution Time (us) : 59.622
```
ghstack-source-id: 112496321

Differential Revision: [D23675777](https://our.internmc.facebook.com/intern/diff/D23675777/)
fbgemm functions are vectorized and faster

```
Finished test run: https://our.intern.facebook.com/intern/testinfra/testrun/6473924484856786
Summary (total time 15.08s):
  PASS: 7
  FAIL: 0
  SKIP: 0
  FATAL: 0
  TIMEOUT: 0
  OMIT: 0
```

Performance Before:
```
# ----------------------------------------
# PyTorch/Caffe2 Operator Micro-benchmarks
# ----------------------------------------
# Tag : short

# Benchmarking PyTorch: qembeddingbag_byte_prepack
# Mode: Eager
# Name: qembeddingbag_byte_prepack_num_embeddings80_embedding_dim128
# Input: num_embeddings: 80, embedding_dim: 128
Forward Execution Time (us) : 68.727

# Benchmarking PyTorch: qembeddingbag_byte_prepack
# Mode: Eager
# Name: qembeddingbag_byte_prepack_num_embeddings80_embedding_dim256
# Input: num_embeddings: 80, embedding_dim: 256
Forward Execution Time (us) : 131.500

# Benchmarking PyTorch: qembeddingbag_byte_prepack
# Mode: Eager
# Name: qembeddingbag_byte_prepack_num_embeddings80_embedding_dim512
# Input: num_embeddings: 80, embedding_dim: 512
Forward Execution Time (us) : 248.190

# Benchmarking PyTorch: qembeddingbag_4bit_prepack
# Mode: Eager
# Name: qembeddingbag_4bit_prepack_num_embeddings80_embedding_dim128
# Input: num_embeddings: 80, embedding_dim: 128
Forward Execution Time (us) : 172.742

# Benchmarking PyTorch: qembeddingbag_4bit_prepack
# Mode: Eager
# Name: qembeddingbag_4bit_prepack_num_embeddings80_embedding_dim256
# Input: num_embeddings: 80, embedding_dim: 256
Forward Execution Time (us) : 333.008

# Benchmarking PyTorch: qembeddingbag_4bit_prepack
# Mode: Eager
# Name: qembeddingbag_4bit_prepack_num_embeddings80_embedding_dim512
# Input: num_embeddings: 80, embedding_dim: 512
Forward Execution Time (us) : 652.423

# Benchmarking PyTorch: qembeddingbag_2bit_prepack
# Mode: Eager
# Name: qembeddingbag_2bit_prepack_num_embeddings80_embedding_dim128
# Input: num_embeddings: 80, embedding_dim: 128
Forward Execution Time (us) : 167.282

# Benchmarking PyTorch: qembeddingbag_2bit_prepack
# Mode: Eager
# Name: qembeddingbag_2bit_prepack_num_embeddings80_embedding_dim256
# Input: num_embeddings: 80, embedding_dim: 256
Forward Execution Time (us) : 398.901

# Benchmarking PyTorch: qembeddingbag_2bit_prepack
# Mode: Eager
# Name: qembeddingbag_2bit_prepack_num_embeddings80_embedding_dim512
# Input: num_embeddings: 80, embedding_dim: 512
Forward Execution Time (us) : 785.254

# Benchmarking PyTorch: qembeddingbag_byte_unpack
# Mode: Eager
# Name: qembeddingbag_byte_unpack_num_embeddings80_embedding_dim128
# Input: num_embeddings: 80, embedding_dim: 128
Forward Execution Time (us) : 122.653

# Benchmarking PyTorch: qembeddingbag_byte_unpack
# Mode: Eager
# Name: qembeddingbag_byte_unpack_num_embeddings80_embedding_dim256
# Input: num_embeddings: 80, embedding_dim: 256
Forward Execution Time (us) : 230.617

# Benchmarking PyTorch: qembeddingbag_byte_unpack
# Mode: Eager
# Name: qembeddingbag_byte_unpack_num_embeddings80_embedding_dim512
# Input: num_embeddings: 80, embedding_dim: 512
Forward Execution Time (us) : 408.807

# Benchmarking PyTorch: qembeddingbag_4bit_unpack
# Mode: Eager
# Name: qembeddingbag_4bit_unpack_num_embeddings80_embedding_dim128
# Input: num_embeddings: 80, embedding_dim: 128
Forward Execution Time (us) : 176.087

# Benchmarking PyTorch: qembeddingbag_4bit_unpack
# Mode: Eager
# Name: qembeddingbag_4bit_unpack_num_embeddings80_embedding_dim256
# Input: num_embeddings: 80, embedding_dim: 256
Forward Execution Time (us) : 337.514

# Benchmarking PyTorch: qembeddingbag_4bit_unpack
# Mode: Eager
# Name: qembeddingbag_4bit_unpack_num_embeddings80_embedding_dim512
# Input: num_embeddings: 80, embedding_dim: 512
Forward Execution Time (us) : 659.716

# Benchmarking PyTorch: qembeddingbag_2bit_unpack
# Mode: Eager
# Name: qembeddingbag_2bit_unpack_num_embeddings80_embedding_dim128
# Input: num_embeddings: 80, embedding_dim: 128
Forward Execution Time (us) : 342.529

# Benchmarking PyTorch: qembeddingbag_2bit_unpack
# Mode: Eager
# Name: qembeddingbag_2bit_unpack_num_embeddings80_embedding_dim256
# Input: num_embeddings: 80, embedding_dim: 256
Forward Execution Time (us) : 665.197

# Benchmarking PyTorch: qembeddingbag_2bit_unpack
# Mode: Eager
# Name: qembeddingbag_2bit_unpack_num_embeddings80_embedding_dim512
# Input: num_embeddings: 80, embedding_dim: 512
Forward Execution Time (us) : 1307.923
```

Performance After:
```
# ----------------------------------------
# PyTorch/Caffe2 Operator Micro-benchmarks
# ----------------------------------------
# Tag : short

# Benchmarking PyTorch: qembeddingbag_byte_prepack
# Mode: Eager
# Name: qembeddingbag_byte_prepack_num_embeddings80_embedding_dim128
# Input: num_embeddings: 80, embedding_dim: 128
Forward Execution Time (us) : 10.782

# Benchmarking PyTorch: qembeddingbag_byte_prepack
# Mode: Eager
# Name: qembeddingbag_byte_prepack_num_embeddings80_embedding_dim256
# Input: num_embeddings: 80, embedding_dim: 256
Forward Execution Time (us) : 17.443

# Benchmarking PyTorch: qembeddingbag_byte_prepack
# Mode: Eager
# Name: qembeddingbag_byte_prepack_num_embeddings80_embedding_dim512
# Input: num_embeddings: 80, embedding_dim: 512
Forward Execution Time (us) : 25.898

# Benchmarking PyTorch: qembeddingbag_4bit_prepack
# Mode: Eager
# Name: qembeddingbag_4bit_prepack_num_embeddings80_embedding_dim128
# Input: num_embeddings: 80, embedding_dim: 128
Forward Execution Time (us) : 13.903

# Benchmarking PyTorch: qembeddingbag_4bit_prepack
# Mode: Eager
# Name: qembeddingbag_4bit_prepack_num_embeddings80_embedding_dim256
# Input: num_embeddings: 80, embedding_dim: 256
Forward Execution Time (us) : 18.575

# Benchmarking PyTorch: qembeddingbag_4bit_prepack
# Mode: Eager
# Name: qembeddingbag_4bit_prepack_num_embeddings80_embedding_dim512
# Input: num_embeddings: 80, embedding_dim: 512
Forward Execution Time (us) : 30.650

# Benchmarking PyTorch: qembeddingbag_2bit_prepack
# Mode: Eager
# Name: qembeddingbag_2bit_prepack_num_embeddings80_embedding_dim128
# Input: num_embeddings: 80, embedding_dim: 128
Forward Execution Time (us) : 14.158

# Benchmarking PyTorch: qembeddingbag_2bit_prepack
# Mode: Eager
# Name: qembeddingbag_2bit_prepack_num_embeddings80_embedding_dim256
# Input: num_embeddings: 80, embedding_dim: 256
Forward Execution Time (us) : 19.818

# Benchmarking PyTorch: qembeddingbag_2bit_prepack
# Mode: Eager
# Name: qembeddingbag_2bit_prepack_num_embeddings80_embedding_dim512
# Input: num_embeddings: 80, embedding_dim: 512
Forward Execution Time (us) : 30.852

# Benchmarking PyTorch: qembeddingbag_byte_unpack
# Mode: Eager
# Name: qembeddingbag_byte_unpack_num_embeddings80_embedding_dim128
# Input: num_embeddings: 80, embedding_dim: 128
Forward Execution Time (us) : 47.596

# Benchmarking PyTorch: qembeddingbag_byte_unpack
# Mode: Eager
# Name: qembeddingbag_byte_unpack_num_embeddings80_embedding_dim256
# Input: num_embeddings: 80, embedding_dim: 256
Forward Execution Time (us) : 91.025

# Benchmarking PyTorch: qembeddingbag_byte_unpack
# Mode: Eager
# Name: qembeddingbag_byte_unpack_num_embeddings80_embedding_dim512
# Input: num_embeddings: 80, embedding_dim: 512
Forward Execution Time (us) : 131.425

# Benchmarking PyTorch: qembeddingbag_4bit_unpack
# Mode: Eager
# Name: qembeddingbag_4bit_unpack_num_embeddings80_embedding_dim128
# Input: num_embeddings: 80, embedding_dim: 128
Forward Execution Time (us) : 12.637

# Benchmarking PyTorch: qembeddingbag_4bit_unpack
# Mode: Eager
# Name: qembeddingbag_4bit_unpack_num_embeddings80_embedding_dim256
# Input: num_embeddings: 80, embedding_dim: 256
Forward Execution Time (us) : 20.856

# Benchmarking PyTorch: qembeddingbag_4bit_unpack
# Mode: Eager
# Name: qembeddingbag_4bit_unpack_num_embeddings80_embedding_dim512
# Input: num_embeddings: 80, embedding_dim: 512
Forward Execution Time (us) : 33.944

# Benchmarking PyTorch: qembeddingbag_2bit_unpack
# Mode: Eager
# Name: qembeddingbag_2bit_unpack_num_embeddings80_embedding_dim128
# Input: num_embeddings: 80, embedding_dim: 128
Forward Execution Time (us) : 21.181

# Benchmarking PyTorch: qembeddingbag_2bit_unpack
# Mode: Eager
# Name: qembeddingbag_2bit_unpack_num_embeddings80_embedding_dim256
# Input: num_embeddings: 80, embedding_dim: 256
Forward Execution Time (us) : 34.213

# Benchmarking PyTorch: qembeddingbag_2bit_unpack
# Mode: Eager
# Name: qembeddingbag_2bit_unpack_num_embeddings80_embedding_dim512
# Input: num_embeddings: 80, embedding_dim: 512
Forward Execution Time (us) : 59.622
```

Differential Revision: [D23675777](https://our.internmc.facebook.com/intern/diff/D23675777/)

[ghstack-poisoned]
dskhudia added a commit that referenced this pull request Sep 23, 2020
Pull Request resolved: #44845


fbgemm functions are vectorized and faster

```
Finished test run: https://our.intern.facebook.com/intern/testinfra/testrun/6473924484856786
Summary (total time 15.08s):
  PASS: 7
  FAIL: 0
  SKIP: 0
  FATAL: 0
  TIMEOUT: 0
  OMIT: 0
```

Performance Before:
```
# ----------------------------------------
# PyTorch/Caffe2 Operator Micro-benchmarks
# ----------------------------------------
# Tag : short

# Benchmarking PyTorch: qembeddingbag_byte_prepack
# Mode: Eager
# Name: qembeddingbag_byte_prepack_num_embeddings80_embedding_dim128
# Input: num_embeddings: 80, embedding_dim: 128
Forward Execution Time (us) : 68.727

# Benchmarking PyTorch: qembeddingbag_byte_prepack
# Mode: Eager
# Name: qembeddingbag_byte_prepack_num_embeddings80_embedding_dim256
# Input: num_embeddings: 80, embedding_dim: 256
Forward Execution Time (us) : 131.500

# Benchmarking PyTorch: qembeddingbag_byte_prepack
# Mode: Eager
# Name: qembeddingbag_byte_prepack_num_embeddings80_embedding_dim512
# Input: num_embeddings: 80, embedding_dim: 512
Forward Execution Time (us) : 248.190

# Benchmarking PyTorch: qembeddingbag_4bit_prepack
# Mode: Eager
# Name: qembeddingbag_4bit_prepack_num_embeddings80_embedding_dim128
# Input: num_embeddings: 80, embedding_dim: 128
Forward Execution Time (us) : 172.742

# Benchmarking PyTorch: qembeddingbag_4bit_prepack
# Mode: Eager
# Name: qembeddingbag_4bit_prepack_num_embeddings80_embedding_dim256
# Input: num_embeddings: 80, embedding_dim: 256
Forward Execution Time (us) : 333.008

# Benchmarking PyTorch: qembeddingbag_4bit_prepack
# Mode: Eager
# Name: qembeddingbag_4bit_prepack_num_embeddings80_embedding_dim512
# Input: num_embeddings: 80, embedding_dim: 512
Forward Execution Time (us) : 652.423

# Benchmarking PyTorch: qembeddingbag_2bit_prepack
# Mode: Eager
# Name: qembeddingbag_2bit_prepack_num_embeddings80_embedding_dim128
# Input: num_embeddings: 80, embedding_dim: 128
Forward Execution Time (us) : 167.282

# Benchmarking PyTorch: qembeddingbag_2bit_prepack
# Mode: Eager
# Name: qembeddingbag_2bit_prepack_num_embeddings80_embedding_dim256
# Input: num_embeddings: 80, embedding_dim: 256
Forward Execution Time (us) : 398.901

# Benchmarking PyTorch: qembeddingbag_2bit_prepack
# Mode: Eager
# Name: qembeddingbag_2bit_prepack_num_embeddings80_embedding_dim512
# Input: num_embeddings: 80, embedding_dim: 512
Forward Execution Time (us) : 785.254

# Benchmarking PyTorch: qembeddingbag_byte_unpack
# Mode: Eager
# Name: qembeddingbag_byte_unpack_num_embeddings80_embedding_dim128
# Input: num_embeddings: 80, embedding_dim: 128
Forward Execution Time (us) : 122.653

# Benchmarking PyTorch: qembeddingbag_byte_unpack
# Mode: Eager
# Name: qembeddingbag_byte_unpack_num_embeddings80_embedding_dim256
# Input: num_embeddings: 80, embedding_dim: 256
Forward Execution Time (us) : 230.617

# Benchmarking PyTorch: qembeddingbag_byte_unpack
# Mode: Eager
# Name: qembeddingbag_byte_unpack_num_embeddings80_embedding_dim512
# Input: num_embeddings: 80, embedding_dim: 512
Forward Execution Time (us) : 408.807

# Benchmarking PyTorch: qembeddingbag_4bit_unpack
# Mode: Eager
# Name: qembeddingbag_4bit_unpack_num_embeddings80_embedding_dim128
# Input: num_embeddings: 80, embedding_dim: 128
Forward Execution Time (us) : 176.087

# Benchmarking PyTorch: qembeddingbag_4bit_unpack
# Mode: Eager
# Name: qembeddingbag_4bit_unpack_num_embeddings80_embedding_dim256
# Input: num_embeddings: 80, embedding_dim: 256
Forward Execution Time (us) : 337.514

# Benchmarking PyTorch: qembeddingbag_4bit_unpack
# Mode: Eager
# Name: qembeddingbag_4bit_unpack_num_embeddings80_embedding_dim512
# Input: num_embeddings: 80, embedding_dim: 512
Forward Execution Time (us) : 659.716

# Benchmarking PyTorch: qembeddingbag_2bit_unpack
# Mode: Eager
# Name: qembeddingbag_2bit_unpack_num_embeddings80_embedding_dim128
# Input: num_embeddings: 80, embedding_dim: 128
Forward Execution Time (us) : 342.529

# Benchmarking PyTorch: qembeddingbag_2bit_unpack
# Mode: Eager
# Name: qembeddingbag_2bit_unpack_num_embeddings80_embedding_dim256
# Input: num_embeddings: 80, embedding_dim: 256
Forward Execution Time (us) : 665.197

# Benchmarking PyTorch: qembeddingbag_2bit_unpack
# Mode: Eager
# Name: qembeddingbag_2bit_unpack_num_embeddings80_embedding_dim512
# Input: num_embeddings: 80, embedding_dim: 512
Forward Execution Time (us) : 1307.923
```

Performance After:
```
# ----------------------------------------
# PyTorch/Caffe2 Operator Micro-benchmarks
# ----------------------------------------
# Tag : short

# Benchmarking PyTorch: qembeddingbag_byte_prepack
# Mode: Eager
# Name: qembeddingbag_byte_prepack_num_embeddings80_embedding_dim128
# Input: num_embeddings: 80, embedding_dim: 128
Forward Execution Time (us) : 10.782

# Benchmarking PyTorch: qembeddingbag_byte_prepack
# Mode: Eager
# Name: qembeddingbag_byte_prepack_num_embeddings80_embedding_dim256
# Input: num_embeddings: 80, embedding_dim: 256
Forward Execution Time (us) : 17.443

# Benchmarking PyTorch: qembeddingbag_byte_prepack
# Mode: Eager
# Name: qembeddingbag_byte_prepack_num_embeddings80_embedding_dim512
# Input: num_embeddings: 80, embedding_dim: 512
Forward Execution Time (us) : 25.898

# Benchmarking PyTorch: qembeddingbag_4bit_prepack
# Mode: Eager
# Name: qembeddingbag_4bit_prepack_num_embeddings80_embedding_dim128
# Input: num_embeddings: 80, embedding_dim: 128
Forward Execution Time (us) : 13.903

# Benchmarking PyTorch: qembeddingbag_4bit_prepack
# Mode: Eager
# Name: qembeddingbag_4bit_prepack_num_embeddings80_embedding_dim256
# Input: num_embeddings: 80, embedding_dim: 256
Forward Execution Time (us) : 18.575

# Benchmarking PyTorch: qembeddingbag_4bit_prepack
# Mode: Eager
# Name: qembeddingbag_4bit_prepack_num_embeddings80_embedding_dim512
# Input: num_embeddings: 80, embedding_dim: 512
Forward Execution Time (us) : 30.650

# Benchmarking PyTorch: qembeddingbag_2bit_prepack
# Mode: Eager
# Name: qembeddingbag_2bit_prepack_num_embeddings80_embedding_dim128
# Input: num_embeddings: 80, embedding_dim: 128
Forward Execution Time (us) : 14.158

# Benchmarking PyTorch: qembeddingbag_2bit_prepack
# Mode: Eager
# Name: qembeddingbag_2bit_prepack_num_embeddings80_embedding_dim256
# Input: num_embeddings: 80, embedding_dim: 256
Forward Execution Time (us) : 19.818

# Benchmarking PyTorch: qembeddingbag_2bit_prepack
# Mode: Eager
# Name: qembeddingbag_2bit_prepack_num_embeddings80_embedding_dim512
# Input: num_embeddings: 80, embedding_dim: 512
Forward Execution Time (us) : 30.852

# Benchmarking PyTorch: qembeddingbag_byte_unpack
# Mode: Eager
# Name: qembeddingbag_byte_unpack_num_embeddings80_embedding_dim128
# Input: num_embeddings: 80, embedding_dim: 128
Forward Execution Time (us) : 47.596

# Benchmarking PyTorch: qembeddingbag_byte_unpack
# Mode: Eager
# Name: qembeddingbag_byte_unpack_num_embeddings80_embedding_dim256
# Input: num_embeddings: 80, embedding_dim: 256
Forward Execution Time (us) : 91.025

# Benchmarking PyTorch: qembeddingbag_byte_unpack
# Mode: Eager
# Name: qembeddingbag_byte_unpack_num_embeddings80_embedding_dim512
# Input: num_embeddings: 80, embedding_dim: 512
Forward Execution Time (us) : 131.425

# Benchmarking PyTorch: qembeddingbag_4bit_unpack
# Mode: Eager
# Name: qembeddingbag_4bit_unpack_num_embeddings80_embedding_dim128
# Input: num_embeddings: 80, embedding_dim: 128
Forward Execution Time (us) : 12.637

# Benchmarking PyTorch: qembeddingbag_4bit_unpack
# Mode: Eager
# Name: qembeddingbag_4bit_unpack_num_embeddings80_embedding_dim256
# Input: num_embeddings: 80, embedding_dim: 256
Forward Execution Time (us) : 20.856

# Benchmarking PyTorch: qembeddingbag_4bit_unpack
# Mode: Eager
# Name: qembeddingbag_4bit_unpack_num_embeddings80_embedding_dim512
# Input: num_embeddings: 80, embedding_dim: 512
Forward Execution Time (us) : 33.944

# Benchmarking PyTorch: qembeddingbag_2bit_unpack
# Mode: Eager
# Name: qembeddingbag_2bit_unpack_num_embeddings80_embedding_dim128
# Input: num_embeddings: 80, embedding_dim: 128
Forward Execution Time (us) : 21.181

# Benchmarking PyTorch: qembeddingbag_2bit_unpack
# Mode: Eager
# Name: qembeddingbag_2bit_unpack_num_embeddings80_embedding_dim256
# Input: num_embeddings: 80, embedding_dim: 256
Forward Execution Time (us) : 34.213

# Benchmarking PyTorch: qembeddingbag_2bit_unpack
# Mode: Eager
# Name: qembeddingbag_2bit_unpack_num_embeddings80_embedding_dim512
# Input: num_embeddings: 80, embedding_dim: 512
Forward Execution Time (us) : 59.622
```
ghstack-source-id: 112664490

Differential Revision: [D23675777](https://our.internmc.facebook.com/intern/diff/D23675777/)
fbgemm functions are vectorized and faster

```
Finished test run: https://our.intern.facebook.com/intern/testinfra/testrun/6473924484856786
Summary (total time 15.08s):
  PASS: 7
  FAIL: 0
  SKIP: 0
  FATAL: 0
  TIMEOUT: 0
  OMIT: 0
```

Performance Before:
```
# ----------------------------------------
# PyTorch/Caffe2 Operator Micro-benchmarks
# ----------------------------------------
# Tag : short

# Benchmarking PyTorch: qembeddingbag_byte_prepack
# Mode: Eager
# Name: qembeddingbag_byte_prepack_num_embeddings80_embedding_dim128
# Input: num_embeddings: 80, embedding_dim: 128
Forward Execution Time (us) : 68.727

# Benchmarking PyTorch: qembeddingbag_byte_prepack
# Mode: Eager
# Name: qembeddingbag_byte_prepack_num_embeddings80_embedding_dim256
# Input: num_embeddings: 80, embedding_dim: 256
Forward Execution Time (us) : 131.500

# Benchmarking PyTorch: qembeddingbag_byte_prepack
# Mode: Eager
# Name: qembeddingbag_byte_prepack_num_embeddings80_embedding_dim512
# Input: num_embeddings: 80, embedding_dim: 512
Forward Execution Time (us) : 248.190

# Benchmarking PyTorch: qembeddingbag_4bit_prepack
# Mode: Eager
# Name: qembeddingbag_4bit_prepack_num_embeddings80_embedding_dim128
# Input: num_embeddings: 80, embedding_dim: 128
Forward Execution Time (us) : 172.742

# Benchmarking PyTorch: qembeddingbag_4bit_prepack
# Mode: Eager
# Name: qembeddingbag_4bit_prepack_num_embeddings80_embedding_dim256
# Input: num_embeddings: 80, embedding_dim: 256
Forward Execution Time (us) : 333.008

# Benchmarking PyTorch: qembeddingbag_4bit_prepack
# Mode: Eager
# Name: qembeddingbag_4bit_prepack_num_embeddings80_embedding_dim512
# Input: num_embeddings: 80, embedding_dim: 512
Forward Execution Time (us) : 652.423

# Benchmarking PyTorch: qembeddingbag_2bit_prepack
# Mode: Eager
# Name: qembeddingbag_2bit_prepack_num_embeddings80_embedding_dim128
# Input: num_embeddings: 80, embedding_dim: 128
Forward Execution Time (us) : 167.282

# Benchmarking PyTorch: qembeddingbag_2bit_prepack
# Mode: Eager
# Name: qembeddingbag_2bit_prepack_num_embeddings80_embedding_dim256
# Input: num_embeddings: 80, embedding_dim: 256
Forward Execution Time (us) : 398.901

# Benchmarking PyTorch: qembeddingbag_2bit_prepack
# Mode: Eager
# Name: qembeddingbag_2bit_prepack_num_embeddings80_embedding_dim512
# Input: num_embeddings: 80, embedding_dim: 512
Forward Execution Time (us) : 785.254

# Benchmarking PyTorch: qembeddingbag_byte_unpack
# Mode: Eager
# Name: qembeddingbag_byte_unpack_num_embeddings80_embedding_dim128
# Input: num_embeddings: 80, embedding_dim: 128
Forward Execution Time (us) : 122.653

# Benchmarking PyTorch: qembeddingbag_byte_unpack
# Mode: Eager
# Name: qembeddingbag_byte_unpack_num_embeddings80_embedding_dim256
# Input: num_embeddings: 80, embedding_dim: 256
Forward Execution Time (us) : 230.617

# Benchmarking PyTorch: qembeddingbag_byte_unpack
# Mode: Eager
# Name: qembeddingbag_byte_unpack_num_embeddings80_embedding_dim512
# Input: num_embeddings: 80, embedding_dim: 512
Forward Execution Time (us) : 408.807

# Benchmarking PyTorch: qembeddingbag_4bit_unpack
# Mode: Eager
# Name: qembeddingbag_4bit_unpack_num_embeddings80_embedding_dim128
# Input: num_embeddings: 80, embedding_dim: 128
Forward Execution Time (us) : 176.087

# Benchmarking PyTorch: qembeddingbag_4bit_unpack
# Mode: Eager
# Name: qembeddingbag_4bit_unpack_num_embeddings80_embedding_dim256
# Input: num_embeddings: 80, embedding_dim: 256
Forward Execution Time (us) : 337.514

# Benchmarking PyTorch: qembeddingbag_4bit_unpack
# Mode: Eager
# Name: qembeddingbag_4bit_unpack_num_embeddings80_embedding_dim512
# Input: num_embeddings: 80, embedding_dim: 512
Forward Execution Time (us) : 659.716

# Benchmarking PyTorch: qembeddingbag_2bit_unpack
# Mode: Eager
# Name: qembeddingbag_2bit_unpack_num_embeddings80_embedding_dim128
# Input: num_embeddings: 80, embedding_dim: 128
Forward Execution Time (us) : 342.529

# Benchmarking PyTorch: qembeddingbag_2bit_unpack
# Mode: Eager
# Name: qembeddingbag_2bit_unpack_num_embeddings80_embedding_dim256
# Input: num_embeddings: 80, embedding_dim: 256
Forward Execution Time (us) : 665.197

# Benchmarking PyTorch: qembeddingbag_2bit_unpack
# Mode: Eager
# Name: qembeddingbag_2bit_unpack_num_embeddings80_embedding_dim512
# Input: num_embeddings: 80, embedding_dim: 512
Forward Execution Time (us) : 1307.923
```

Performance After:
```
# ----------------------------------------
# PyTorch/Caffe2 Operator Micro-benchmarks
# ----------------------------------------
# Tag : short

# Benchmarking PyTorch: qembeddingbag_byte_prepack
# Mode: Eager
# Name: qembeddingbag_byte_prepack_num_embeddings80_embedding_dim128
# Input: num_embeddings: 80, embedding_dim: 128
Forward Execution Time (us) : 10.782

# Benchmarking PyTorch: qembeddingbag_byte_prepack
# Mode: Eager
# Name: qembeddingbag_byte_prepack_num_embeddings80_embedding_dim256
# Input: num_embeddings: 80, embedding_dim: 256
Forward Execution Time (us) : 17.443

# Benchmarking PyTorch: qembeddingbag_byte_prepack
# Mode: Eager
# Name: qembeddingbag_byte_prepack_num_embeddings80_embedding_dim512
# Input: num_embeddings: 80, embedding_dim: 512
Forward Execution Time (us) : 25.898

# Benchmarking PyTorch: qembeddingbag_4bit_prepack
# Mode: Eager
# Name: qembeddingbag_4bit_prepack_num_embeddings80_embedding_dim128
# Input: num_embeddings: 80, embedding_dim: 128
Forward Execution Time (us) : 13.903

# Benchmarking PyTorch: qembeddingbag_4bit_prepack
# Mode: Eager
# Name: qembeddingbag_4bit_prepack_num_embeddings80_embedding_dim256
# Input: num_embeddings: 80, embedding_dim: 256
Forward Execution Time (us) : 18.575

# Benchmarking PyTorch: qembeddingbag_4bit_prepack
# Mode: Eager
# Name: qembeddingbag_4bit_prepack_num_embeddings80_embedding_dim512
# Input: num_embeddings: 80, embedding_dim: 512
Forward Execution Time (us) : 30.650

# Benchmarking PyTorch: qembeddingbag_2bit_prepack
# Mode: Eager
# Name: qembeddingbag_2bit_prepack_num_embeddings80_embedding_dim128
# Input: num_embeddings: 80, embedding_dim: 128
Forward Execution Time (us) : 14.158

# Benchmarking PyTorch: qembeddingbag_2bit_prepack
# Mode: Eager
# Name: qembeddingbag_2bit_prepack_num_embeddings80_embedding_dim256
# Input: num_embeddings: 80, embedding_dim: 256
Forward Execution Time (us) : 19.818

# Benchmarking PyTorch: qembeddingbag_2bit_prepack
# Mode: Eager
# Name: qembeddingbag_2bit_prepack_num_embeddings80_embedding_dim512
# Input: num_embeddings: 80, embedding_dim: 512
Forward Execution Time (us) : 30.852

# Benchmarking PyTorch: qembeddingbag_byte_unpack
# Mode: Eager
# Name: qembeddingbag_byte_unpack_num_embeddings80_embedding_dim128
# Input: num_embeddings: 80, embedding_dim: 128
Forward Execution Time (us) : 47.596

# Benchmarking PyTorch: qembeddingbag_byte_unpack
# Mode: Eager
# Name: qembeddingbag_byte_unpack_num_embeddings80_embedding_dim256
# Input: num_embeddings: 80, embedding_dim: 256
Forward Execution Time (us) : 91.025

# Benchmarking PyTorch: qembeddingbag_byte_unpack
# Mode: Eager
# Name: qembeddingbag_byte_unpack_num_embeddings80_embedding_dim512
# Input: num_embeddings: 80, embedding_dim: 512
Forward Execution Time (us) : 131.425

# Benchmarking PyTorch: qembeddingbag_4bit_unpack
# Mode: Eager
# Name: qembeddingbag_4bit_unpack_num_embeddings80_embedding_dim128
# Input: num_embeddings: 80, embedding_dim: 128
Forward Execution Time (us) : 12.637

# Benchmarking PyTorch: qembeddingbag_4bit_unpack
# Mode: Eager
# Name: qembeddingbag_4bit_unpack_num_embeddings80_embedding_dim256
# Input: num_embeddings: 80, embedding_dim: 256
Forward Execution Time (us) : 20.856

# Benchmarking PyTorch: qembeddingbag_4bit_unpack
# Mode: Eager
# Name: qembeddingbag_4bit_unpack_num_embeddings80_embedding_dim512
# Input: num_embeddings: 80, embedding_dim: 512
Forward Execution Time (us) : 33.944

# Benchmarking PyTorch: qembeddingbag_2bit_unpack
# Mode: Eager
# Name: qembeddingbag_2bit_unpack_num_embeddings80_embedding_dim128
# Input: num_embeddings: 80, embedding_dim: 128
Forward Execution Time (us) : 21.181

# Benchmarking PyTorch: qembeddingbag_2bit_unpack
# Mode: Eager
# Name: qembeddingbag_2bit_unpack_num_embeddings80_embedding_dim256
# Input: num_embeddings: 80, embedding_dim: 256
Forward Execution Time (us) : 34.213

# Benchmarking PyTorch: qembeddingbag_2bit_unpack
# Mode: Eager
# Name: qembeddingbag_2bit_unpack_num_embeddings80_embedding_dim512
# Input: num_embeddings: 80, embedding_dim: 512
Forward Execution Time (us) : 59.622
```

Differential Revision: [D23675777](https://our.internmc.facebook.com/intern/diff/D23675777/)

[ghstack-poisoned]
dskhudia added a commit that referenced this pull request Sep 23, 2020
Pull Request resolved: #44845


fbgemm functions are vectorized and faster

```
Finished test run: https://our.intern.facebook.com/intern/testinfra/testrun/6473924484856786
Summary (total time 15.08s):
  PASS: 7
  FAIL: 0
  SKIP: 0
  FATAL: 0
  TIMEOUT: 0
  OMIT: 0
```

Performance Before:
```
# ----------------------------------------
# PyTorch/Caffe2 Operator Micro-benchmarks
# ----------------------------------------
# Tag : short

# Benchmarking PyTorch: qembeddingbag_byte_prepack
# Mode: Eager
# Name: qembeddingbag_byte_prepack_num_embeddings80_embedding_dim128
# Input: num_embeddings: 80, embedding_dim: 128
Forward Execution Time (us) : 68.727

# Benchmarking PyTorch: qembeddingbag_byte_prepack
# Mode: Eager
# Name: qembeddingbag_byte_prepack_num_embeddings80_embedding_dim256
# Input: num_embeddings: 80, embedding_dim: 256
Forward Execution Time (us) : 131.500

# Benchmarking PyTorch: qembeddingbag_byte_prepack
# Mode: Eager
# Name: qembeddingbag_byte_prepack_num_embeddings80_embedding_dim512
# Input: num_embeddings: 80, embedding_dim: 512
Forward Execution Time (us) : 248.190

# Benchmarking PyTorch: qembeddingbag_4bit_prepack
# Mode: Eager
# Name: qembeddingbag_4bit_prepack_num_embeddings80_embedding_dim128
# Input: num_embeddings: 80, embedding_dim: 128
Forward Execution Time (us) : 172.742

# Benchmarking PyTorch: qembeddingbag_4bit_prepack
# Mode: Eager
# Name: qembeddingbag_4bit_prepack_num_embeddings80_embedding_dim256
# Input: num_embeddings: 80, embedding_dim: 256
Forward Execution Time (us) : 333.008

# Benchmarking PyTorch: qembeddingbag_4bit_prepack
# Mode: Eager
# Name: qembeddingbag_4bit_prepack_num_embeddings80_embedding_dim512
# Input: num_embeddings: 80, embedding_dim: 512
Forward Execution Time (us) : 652.423

# Benchmarking PyTorch: qembeddingbag_2bit_prepack
# Mode: Eager
# Name: qembeddingbag_2bit_prepack_num_embeddings80_embedding_dim128
# Input: num_embeddings: 80, embedding_dim: 128
Forward Execution Time (us) : 167.282

# Benchmarking PyTorch: qembeddingbag_2bit_prepack
# Mode: Eager
# Name: qembeddingbag_2bit_prepack_num_embeddings80_embedding_dim256
# Input: num_embeddings: 80, embedding_dim: 256
Forward Execution Time (us) : 398.901

# Benchmarking PyTorch: qembeddingbag_2bit_prepack
# Mode: Eager
# Name: qembeddingbag_2bit_prepack_num_embeddings80_embedding_dim512
# Input: num_embeddings: 80, embedding_dim: 512
Forward Execution Time (us) : 785.254

# Benchmarking PyTorch: qembeddingbag_byte_unpack
# Mode: Eager
# Name: qembeddingbag_byte_unpack_num_embeddings80_embedding_dim128
# Input: num_embeddings: 80, embedding_dim: 128
Forward Execution Time (us) : 122.653

# Benchmarking PyTorch: qembeddingbag_byte_unpack
# Mode: Eager
# Name: qembeddingbag_byte_unpack_num_embeddings80_embedding_dim256
# Input: num_embeddings: 80, embedding_dim: 256
Forward Execution Time (us) : 230.617

# Benchmarking PyTorch: qembeddingbag_byte_unpack
# Mode: Eager
# Name: qembeddingbag_byte_unpack_num_embeddings80_embedding_dim512
# Input: num_embeddings: 80, embedding_dim: 512
Forward Execution Time (us) : 408.807

# Benchmarking PyTorch: qembeddingbag_4bit_unpack
# Mode: Eager
# Name: qembeddingbag_4bit_unpack_num_embeddings80_embedding_dim128
# Input: num_embeddings: 80, embedding_dim: 128
Forward Execution Time (us) : 176.087

# Benchmarking PyTorch: qembeddingbag_4bit_unpack
# Mode: Eager
# Name: qembeddingbag_4bit_unpack_num_embeddings80_embedding_dim256
# Input: num_embeddings: 80, embedding_dim: 256
Forward Execution Time (us) : 337.514

# Benchmarking PyTorch: qembeddingbag_4bit_unpack
# Mode: Eager
# Name: qembeddingbag_4bit_unpack_num_embeddings80_embedding_dim512
# Input: num_embeddings: 80, embedding_dim: 512
Forward Execution Time (us) : 659.716

# Benchmarking PyTorch: qembeddingbag_2bit_unpack
# Mode: Eager
# Name: qembeddingbag_2bit_unpack_num_embeddings80_embedding_dim128
# Input: num_embeddings: 80, embedding_dim: 128
Forward Execution Time (us) : 342.529

# Benchmarking PyTorch: qembeddingbag_2bit_unpack
# Mode: Eager
# Name: qembeddingbag_2bit_unpack_num_embeddings80_embedding_dim256
# Input: num_embeddings: 80, embedding_dim: 256
Forward Execution Time (us) : 665.197

# Benchmarking PyTorch: qembeddingbag_2bit_unpack
# Mode: Eager
# Name: qembeddingbag_2bit_unpack_num_embeddings80_embedding_dim512
# Input: num_embeddings: 80, embedding_dim: 512
Forward Execution Time (us) : 1307.923
```

Performance After:
```
# ----------------------------------------
# PyTorch/Caffe2 Operator Micro-benchmarks
# ----------------------------------------
# Tag : short

# Benchmarking PyTorch: qembeddingbag_byte_prepack
# Mode: Eager
# Name: qembeddingbag_byte_prepack_num_embeddings80_embedding_dim128
# Input: num_embeddings: 80, embedding_dim: 128
Forward Execution Time (us) : 10.782

# Benchmarking PyTorch: qembeddingbag_byte_prepack
# Mode: Eager
# Name: qembeddingbag_byte_prepack_num_embeddings80_embedding_dim256
# Input: num_embeddings: 80, embedding_dim: 256
Forward Execution Time (us) : 17.443

# Benchmarking PyTorch: qembeddingbag_byte_prepack
# Mode: Eager
# Name: qembeddingbag_byte_prepack_num_embeddings80_embedding_dim512
# Input: num_embeddings: 80, embedding_dim: 512
Forward Execution Time (us) : 25.898

# Benchmarking PyTorch: qembeddingbag_4bit_prepack
# Mode: Eager
# Name: qembeddingbag_4bit_prepack_num_embeddings80_embedding_dim128
# Input: num_embeddings: 80, embedding_dim: 128
Forward Execution Time (us) : 13.903

# Benchmarking PyTorch: qembeddingbag_4bit_prepack
# Mode: Eager
# Name: qembeddingbag_4bit_prepack_num_embeddings80_embedding_dim256
# Input: num_embeddings: 80, embedding_dim: 256
Forward Execution Time (us) : 18.575

# Benchmarking PyTorch: qembeddingbag_4bit_prepack
# Mode: Eager
# Name: qembeddingbag_4bit_prepack_num_embeddings80_embedding_dim512
# Input: num_embeddings: 80, embedding_dim: 512
Forward Execution Time (us) : 30.650

# Benchmarking PyTorch: qembeddingbag_2bit_prepack
# Mode: Eager
# Name: qembeddingbag_2bit_prepack_num_embeddings80_embedding_dim128
# Input: num_embeddings: 80, embedding_dim: 128
Forward Execution Time (us) : 14.158

# Benchmarking PyTorch: qembeddingbag_2bit_prepack
# Mode: Eager
# Name: qembeddingbag_2bit_prepack_num_embeddings80_embedding_dim256
# Input: num_embeddings: 80, embedding_dim: 256
Forward Execution Time (us) : 19.818

# Benchmarking PyTorch: qembeddingbag_2bit_prepack
# Mode: Eager
# Name: qembeddingbag_2bit_prepack_num_embeddings80_embedding_dim512
# Input: num_embeddings: 80, embedding_dim: 512
Forward Execution Time (us) : 30.852

# Benchmarking PyTorch: qembeddingbag_byte_unpack
# Mode: Eager
# Name: qembeddingbag_byte_unpack_num_embeddings80_embedding_dim128
# Input: num_embeddings: 80, embedding_dim: 128
Forward Execution Time (us) : 47.596

# Benchmarking PyTorch: qembeddingbag_byte_unpack
# Mode: Eager
# Name: qembeddingbag_byte_unpack_num_embeddings80_embedding_dim256
# Input: num_embeddings: 80, embedding_dim: 256
Forward Execution Time (us) : 91.025

# Benchmarking PyTorch: qembeddingbag_byte_unpack
# Mode: Eager
# Name: qembeddingbag_byte_unpack_num_embeddings80_embedding_dim512
# Input: num_embeddings: 80, embedding_dim: 512
Forward Execution Time (us) : 131.425

# Benchmarking PyTorch: qembeddingbag_4bit_unpack
# Mode: Eager
# Name: qembeddingbag_4bit_unpack_num_embeddings80_embedding_dim128
# Input: num_embeddings: 80, embedding_dim: 128
Forward Execution Time (us) : 12.637

# Benchmarking PyTorch: qembeddingbag_4bit_unpack
# Mode: Eager
# Name: qembeddingbag_4bit_unpack_num_embeddings80_embedding_dim256
# Input: num_embeddings: 80, embedding_dim: 256
Forward Execution Time (us) : 20.856

# Benchmarking PyTorch: qembeddingbag_4bit_unpack
# Mode: Eager
# Name: qembeddingbag_4bit_unpack_num_embeddings80_embedding_dim512
# Input: num_embeddings: 80, embedding_dim: 512
Forward Execution Time (us) : 33.944

# Benchmarking PyTorch: qembeddingbag_2bit_unpack
# Mode: Eager
# Name: qembeddingbag_2bit_unpack_num_embeddings80_embedding_dim128
# Input: num_embeddings: 80, embedding_dim: 128
Forward Execution Time (us) : 21.181

# Benchmarking PyTorch: qembeddingbag_2bit_unpack
# Mode: Eager
# Name: qembeddingbag_2bit_unpack_num_embeddings80_embedding_dim256
# Input: num_embeddings: 80, embedding_dim: 256
Forward Execution Time (us) : 34.213

# Benchmarking PyTorch: qembeddingbag_2bit_unpack
# Mode: Eager
# Name: qembeddingbag_2bit_unpack_num_embeddings80_embedding_dim512
# Input: num_embeddings: 80, embedding_dim: 512
Forward Execution Time (us) : 59.622
```
ghstack-source-id: 112699964

Differential Revision: [D23675777](https://our.internmc.facebook.com/intern/diff/D23675777/)
fbgemm functions are vectorized and faster

```
Finished test run: https://our.intern.facebook.com/intern/testinfra/testrun/6473924484856786
Summary (total time 15.08s):
  PASS: 7
  FAIL: 0
  SKIP: 0
  FATAL: 0
  TIMEOUT: 0
  OMIT: 0
```

Performance Before:
```
# ----------------------------------------
# PyTorch/Caffe2 Operator Micro-benchmarks
# ----------------------------------------
# Tag : short

# Benchmarking PyTorch: qembeddingbag_byte_prepack
# Mode: Eager
# Name: qembeddingbag_byte_prepack_num_embeddings80_embedding_dim128
# Input: num_embeddings: 80, embedding_dim: 128
Forward Execution Time (us) : 68.727

# Benchmarking PyTorch: qembeddingbag_byte_prepack
# Mode: Eager
# Name: qembeddingbag_byte_prepack_num_embeddings80_embedding_dim256
# Input: num_embeddings: 80, embedding_dim: 256
Forward Execution Time (us) : 131.500

# Benchmarking PyTorch: qembeddingbag_byte_prepack
# Mode: Eager
# Name: qembeddingbag_byte_prepack_num_embeddings80_embedding_dim512
# Input: num_embeddings: 80, embedding_dim: 512
Forward Execution Time (us) : 248.190

# Benchmarking PyTorch: qembeddingbag_4bit_prepack
# Mode: Eager
# Name: qembeddingbag_4bit_prepack_num_embeddings80_embedding_dim128
# Input: num_embeddings: 80, embedding_dim: 128
Forward Execution Time (us) : 172.742

# Benchmarking PyTorch: qembeddingbag_4bit_prepack
# Mode: Eager
# Name: qembeddingbag_4bit_prepack_num_embeddings80_embedding_dim256
# Input: num_embeddings: 80, embedding_dim: 256
Forward Execution Time (us) : 333.008

# Benchmarking PyTorch: qembeddingbag_4bit_prepack
# Mode: Eager
# Name: qembeddingbag_4bit_prepack_num_embeddings80_embedding_dim512
# Input: num_embeddings: 80, embedding_dim: 512
Forward Execution Time (us) : 652.423

# Benchmarking PyTorch: qembeddingbag_2bit_prepack
# Mode: Eager
# Name: qembeddingbag_2bit_prepack_num_embeddings80_embedding_dim128
# Input: num_embeddings: 80, embedding_dim: 128
Forward Execution Time (us) : 167.282

# Benchmarking PyTorch: qembeddingbag_2bit_prepack
# Mode: Eager
# Name: qembeddingbag_2bit_prepack_num_embeddings80_embedding_dim256
# Input: num_embeddings: 80, embedding_dim: 256
Forward Execution Time (us) : 398.901

# Benchmarking PyTorch: qembeddingbag_2bit_prepack
# Mode: Eager
# Name: qembeddingbag_2bit_prepack_num_embeddings80_embedding_dim512
# Input: num_embeddings: 80, embedding_dim: 512
Forward Execution Time (us) : 785.254

# Benchmarking PyTorch: qembeddingbag_byte_unpack
# Mode: Eager
# Name: qembeddingbag_byte_unpack_num_embeddings80_embedding_dim128
# Input: num_embeddings: 80, embedding_dim: 128
Forward Execution Time (us) : 122.653

# Benchmarking PyTorch: qembeddingbag_byte_unpack
# Mode: Eager
# Name: qembeddingbag_byte_unpack_num_embeddings80_embedding_dim256
# Input: num_embeddings: 80, embedding_dim: 256
Forward Execution Time (us) : 230.617

# Benchmarking PyTorch: qembeddingbag_byte_unpack
# Mode: Eager
# Name: qembeddingbag_byte_unpack_num_embeddings80_embedding_dim512
# Input: num_embeddings: 80, embedding_dim: 512
Forward Execution Time (us) : 408.807

# Benchmarking PyTorch: qembeddingbag_4bit_unpack
# Mode: Eager
# Name: qembeddingbag_4bit_unpack_num_embeddings80_embedding_dim128
# Input: num_embeddings: 80, embedding_dim: 128
Forward Execution Time (us) : 176.087

# Benchmarking PyTorch: qembeddingbag_4bit_unpack
# Mode: Eager
# Name: qembeddingbag_4bit_unpack_num_embeddings80_embedding_dim256
# Input: num_embeddings: 80, embedding_dim: 256
Forward Execution Time (us) : 337.514

# Benchmarking PyTorch: qembeddingbag_4bit_unpack
# Mode: Eager
# Name: qembeddingbag_4bit_unpack_num_embeddings80_embedding_dim512
# Input: num_embeddings: 80, embedding_dim: 512
Forward Execution Time (us) : 659.716

# Benchmarking PyTorch: qembeddingbag_2bit_unpack
# Mode: Eager
# Name: qembeddingbag_2bit_unpack_num_embeddings80_embedding_dim128
# Input: num_embeddings: 80, embedding_dim: 128
Forward Execution Time (us) : 342.529

# Benchmarking PyTorch: qembeddingbag_2bit_unpack
# Mode: Eager
# Name: qembeddingbag_2bit_unpack_num_embeddings80_embedding_dim256
# Input: num_embeddings: 80, embedding_dim: 256
Forward Execution Time (us) : 665.197

# Benchmarking PyTorch: qembeddingbag_2bit_unpack
# Mode: Eager
# Name: qembeddingbag_2bit_unpack_num_embeddings80_embedding_dim512
# Input: num_embeddings: 80, embedding_dim: 512
Forward Execution Time (us) : 1307.923
```

Performance After:
```
# ----------------------------------------
# PyTorch/Caffe2 Operator Micro-benchmarks
# ----------------------------------------
# Tag : short

# Benchmarking PyTorch: qembeddingbag_byte_prepack
# Mode: Eager
# Name: qembeddingbag_byte_prepack_num_embeddings80_embedding_dim128
# Input: num_embeddings: 80, embedding_dim: 128
Forward Execution Time (us) : 10.782

# Benchmarking PyTorch: qembeddingbag_byte_prepack
# Mode: Eager
# Name: qembeddingbag_byte_prepack_num_embeddings80_embedding_dim256
# Input: num_embeddings: 80, embedding_dim: 256
Forward Execution Time (us) : 17.443

# Benchmarking PyTorch: qembeddingbag_byte_prepack
# Mode: Eager
# Name: qembeddingbag_byte_prepack_num_embeddings80_embedding_dim512
# Input: num_embeddings: 80, embedding_dim: 512
Forward Execution Time (us) : 25.898

# Benchmarking PyTorch: qembeddingbag_4bit_prepack
# Mode: Eager
# Name: qembeddingbag_4bit_prepack_num_embeddings80_embedding_dim128
# Input: num_embeddings: 80, embedding_dim: 128
Forward Execution Time (us) : 13.903

# Benchmarking PyTorch: qembeddingbag_4bit_prepack
# Mode: Eager
# Name: qembeddingbag_4bit_prepack_num_embeddings80_embedding_dim256
# Input: num_embeddings: 80, embedding_dim: 256
Forward Execution Time (us) : 18.575

# Benchmarking PyTorch: qembeddingbag_4bit_prepack
# Mode: Eager
# Name: qembeddingbag_4bit_prepack_num_embeddings80_embedding_dim512
# Input: num_embeddings: 80, embedding_dim: 512
Forward Execution Time (us) : 30.650

# Benchmarking PyTorch: qembeddingbag_2bit_prepack
# Mode: Eager
# Name: qembeddingbag_2bit_prepack_num_embeddings80_embedding_dim128
# Input: num_embeddings: 80, embedding_dim: 128
Forward Execution Time (us) : 14.158

# Benchmarking PyTorch: qembeddingbag_2bit_prepack
# Mode: Eager
# Name: qembeddingbag_2bit_prepack_num_embeddings80_embedding_dim256
# Input: num_embeddings: 80, embedding_dim: 256
Forward Execution Time (us) : 19.818

# Benchmarking PyTorch: qembeddingbag_2bit_prepack
# Mode: Eager
# Name: qembeddingbag_2bit_prepack_num_embeddings80_embedding_dim512
# Input: num_embeddings: 80, embedding_dim: 512
Forward Execution Time (us) : 30.852

# Benchmarking PyTorch: qembeddingbag_byte_unpack
# Mode: Eager
# Name: qembeddingbag_byte_unpack_num_embeddings80_embedding_dim128
# Input: num_embeddings: 80, embedding_dim: 128
Forward Execution Time (us) : 47.596

# Benchmarking PyTorch: qembeddingbag_byte_unpack
# Mode: Eager
# Name: qembeddingbag_byte_unpack_num_embeddings80_embedding_dim256
# Input: num_embeddings: 80, embedding_dim: 256
Forward Execution Time (us) : 91.025

# Benchmarking PyTorch: qembeddingbag_byte_unpack
# Mode: Eager
# Name: qembeddingbag_byte_unpack_num_embeddings80_embedding_dim512
# Input: num_embeddings: 80, embedding_dim: 512
Forward Execution Time (us) : 131.425

# Benchmarking PyTorch: qembeddingbag_4bit_unpack
# Mode: Eager
# Name: qembeddingbag_4bit_unpack_num_embeddings80_embedding_dim128
# Input: num_embeddings: 80, embedding_dim: 128
Forward Execution Time (us) : 12.637

# Benchmarking PyTorch: qembeddingbag_4bit_unpack
# Mode: Eager
# Name: qembeddingbag_4bit_unpack_num_embeddings80_embedding_dim256
# Input: num_embeddings: 80, embedding_dim: 256
Forward Execution Time (us) : 20.856

# Benchmarking PyTorch: qembeddingbag_4bit_unpack
# Mode: Eager
# Name: qembeddingbag_4bit_unpack_num_embeddings80_embedding_dim512
# Input: num_embeddings: 80, embedding_dim: 512
Forward Execution Time (us) : 33.944

# Benchmarking PyTorch: qembeddingbag_2bit_unpack
# Mode: Eager
# Name: qembeddingbag_2bit_unpack_num_embeddings80_embedding_dim128
# Input: num_embeddings: 80, embedding_dim: 128
Forward Execution Time (us) : 21.181

# Benchmarking PyTorch: qembeddingbag_2bit_unpack
# Mode: Eager
# Name: qembeddingbag_2bit_unpack_num_embeddings80_embedding_dim256
# Input: num_embeddings: 80, embedding_dim: 256
Forward Execution Time (us) : 34.213

# Benchmarking PyTorch: qembeddingbag_2bit_unpack
# Mode: Eager
# Name: qembeddingbag_2bit_unpack_num_embeddings80_embedding_dim512
# Input: num_embeddings: 80, embedding_dim: 512
Forward Execution Time (us) : 59.622
```

Differential Revision: [D23675777](https://our.internmc.facebook.com/intern/diff/D23675777/)

[ghstack-poisoned]
dskhudia added a commit that referenced this pull request Sep 24, 2020
Pull Request resolved: #44845


fbgemm functions are vectorized and faster

```
Finished test run: https://our.intern.facebook.com/intern/testinfra/testrun/6473924484856786
Summary (total time 15.08s):
  PASS: 7
  FAIL: 0
  SKIP: 0
  FATAL: 0
  TIMEOUT: 0
  OMIT: 0
```

Performance Before:
```
# ----------------------------------------
# PyTorch/Caffe2 Operator Micro-benchmarks
# ----------------------------------------
# Tag : short

# Benchmarking PyTorch: qembeddingbag_byte_prepack
# Mode: Eager
# Name: qembeddingbag_byte_prepack_num_embeddings80_embedding_dim128
# Input: num_embeddings: 80, embedding_dim: 128
Forward Execution Time (us) : 68.727

# Benchmarking PyTorch: qembeddingbag_byte_prepack
# Mode: Eager
# Name: qembeddingbag_byte_prepack_num_embeddings80_embedding_dim256
# Input: num_embeddings: 80, embedding_dim: 256
Forward Execution Time (us) : 131.500

# Benchmarking PyTorch: qembeddingbag_byte_prepack
# Mode: Eager
# Name: qembeddingbag_byte_prepack_num_embeddings80_embedding_dim512
# Input: num_embeddings: 80, embedding_dim: 512
Forward Execution Time (us) : 248.190

# Benchmarking PyTorch: qembeddingbag_4bit_prepack
# Mode: Eager
# Name: qembeddingbag_4bit_prepack_num_embeddings80_embedding_dim128
# Input: num_embeddings: 80, embedding_dim: 128
Forward Execution Time (us) : 172.742

# Benchmarking PyTorch: qembeddingbag_4bit_prepack
# Mode: Eager
# Name: qembeddingbag_4bit_prepack_num_embeddings80_embedding_dim256
# Input: num_embeddings: 80, embedding_dim: 256
Forward Execution Time (us) : 333.008

# Benchmarking PyTorch: qembeddingbag_4bit_prepack
# Mode: Eager
# Name: qembeddingbag_4bit_prepack_num_embeddings80_embedding_dim512
# Input: num_embeddings: 80, embedding_dim: 512
Forward Execution Time (us) : 652.423

# Benchmarking PyTorch: qembeddingbag_2bit_prepack
# Mode: Eager
# Name: qembeddingbag_2bit_prepack_num_embeddings80_embedding_dim128
# Input: num_embeddings: 80, embedding_dim: 128
Forward Execution Time (us) : 167.282

# Benchmarking PyTorch: qembeddingbag_2bit_prepack
# Mode: Eager
# Name: qembeddingbag_2bit_prepack_num_embeddings80_embedding_dim256
# Input: num_embeddings: 80, embedding_dim: 256
Forward Execution Time (us) : 398.901

# Benchmarking PyTorch: qembeddingbag_2bit_prepack
# Mode: Eager
# Name: qembeddingbag_2bit_prepack_num_embeddings80_embedding_dim512
# Input: num_embeddings: 80, embedding_dim: 512
Forward Execution Time (us) : 785.254

# Benchmarking PyTorch: qembeddingbag_byte_unpack
# Mode: Eager
# Name: qembeddingbag_byte_unpack_num_embeddings80_embedding_dim128
# Input: num_embeddings: 80, embedding_dim: 128
Forward Execution Time (us) : 122.653

# Benchmarking PyTorch: qembeddingbag_byte_unpack
# Mode: Eager
# Name: qembeddingbag_byte_unpack_num_embeddings80_embedding_dim256
# Input: num_embeddings: 80, embedding_dim: 256
Forward Execution Time (us) : 230.617

# Benchmarking PyTorch: qembeddingbag_byte_unpack
# Mode: Eager
# Name: qembeddingbag_byte_unpack_num_embeddings80_embedding_dim512
# Input: num_embeddings: 80, embedding_dim: 512
Forward Execution Time (us) : 408.807

# Benchmarking PyTorch: qembeddingbag_4bit_unpack
# Mode: Eager
# Name: qembeddingbag_4bit_unpack_num_embeddings80_embedding_dim128
# Input: num_embeddings: 80, embedding_dim: 128
Forward Execution Time (us) : 176.087

# Benchmarking PyTorch: qembeddingbag_4bit_unpack
# Mode: Eager
# Name: qembeddingbag_4bit_unpack_num_embeddings80_embedding_dim256
# Input: num_embeddings: 80, embedding_dim: 256
Forward Execution Time (us) : 337.514

# Benchmarking PyTorch: qembeddingbag_4bit_unpack
# Mode: Eager
# Name: qembeddingbag_4bit_unpack_num_embeddings80_embedding_dim512
# Input: num_embeddings: 80, embedding_dim: 512
Forward Execution Time (us) : 659.716

# Benchmarking PyTorch: qembeddingbag_2bit_unpack
# Mode: Eager
# Name: qembeddingbag_2bit_unpack_num_embeddings80_embedding_dim128
# Input: num_embeddings: 80, embedding_dim: 128
Forward Execution Time (us) : 342.529

# Benchmarking PyTorch: qembeddingbag_2bit_unpack
# Mode: Eager
# Name: qembeddingbag_2bit_unpack_num_embeddings80_embedding_dim256
# Input: num_embeddings: 80, embedding_dim: 256
Forward Execution Time (us) : 665.197

# Benchmarking PyTorch: qembeddingbag_2bit_unpack
# Mode: Eager
# Name: qembeddingbag_2bit_unpack_num_embeddings80_embedding_dim512
# Input: num_embeddings: 80, embedding_dim: 512
Forward Execution Time (us) : 1307.923
```

Performance After:
```
# ----------------------------------------
# PyTorch/Caffe2 Operator Micro-benchmarks
# ----------------------------------------
# Tag : short

# Benchmarking PyTorch: qembeddingbag_byte_prepack
# Mode: Eager
# Name: qembeddingbag_byte_prepack_num_embeddings80_embedding_dim128
# Input: num_embeddings: 80, embedding_dim: 128
Forward Execution Time (us) : 10.782

# Benchmarking PyTorch: qembeddingbag_byte_prepack
# Mode: Eager
# Name: qembeddingbag_byte_prepack_num_embeddings80_embedding_dim256
# Input: num_embeddings: 80, embedding_dim: 256
Forward Execution Time (us) : 17.443

# Benchmarking PyTorch: qembeddingbag_byte_prepack
# Mode: Eager
# Name: qembeddingbag_byte_prepack_num_embeddings80_embedding_dim512
# Input: num_embeddings: 80, embedding_dim: 512
Forward Execution Time (us) : 25.898

# Benchmarking PyTorch: qembeddingbag_4bit_prepack
# Mode: Eager
# Name: qembeddingbag_4bit_prepack_num_embeddings80_embedding_dim128
# Input: num_embeddings: 80, embedding_dim: 128
Forward Execution Time (us) : 13.903

# Benchmarking PyTorch: qembeddingbag_4bit_prepack
# Mode: Eager
# Name: qembeddingbag_4bit_prepack_num_embeddings80_embedding_dim256
# Input: num_embeddings: 80, embedding_dim: 256
Forward Execution Time (us) : 18.575

# Benchmarking PyTorch: qembeddingbag_4bit_prepack
# Mode: Eager
# Name: qembeddingbag_4bit_prepack_num_embeddings80_embedding_dim512
# Input: num_embeddings: 80, embedding_dim: 512
Forward Execution Time (us) : 30.650

# Benchmarking PyTorch: qembeddingbag_2bit_prepack
# Mode: Eager
# Name: qembeddingbag_2bit_prepack_num_embeddings80_embedding_dim128
# Input: num_embeddings: 80, embedding_dim: 128
Forward Execution Time (us) : 14.158

# Benchmarking PyTorch: qembeddingbag_2bit_prepack
# Mode: Eager
# Name: qembeddingbag_2bit_prepack_num_embeddings80_embedding_dim256
# Input: num_embeddings: 80, embedding_dim: 256
Forward Execution Time (us) : 19.818

# Benchmarking PyTorch: qembeddingbag_2bit_prepack
# Mode: Eager
# Name: qembeddingbag_2bit_prepack_num_embeddings80_embedding_dim512
# Input: num_embeddings: 80, embedding_dim: 512
Forward Execution Time (us) : 30.852

# Benchmarking PyTorch: qembeddingbag_byte_unpack
# Mode: Eager
# Name: qembeddingbag_byte_unpack_num_embeddings80_embedding_dim128
# Input: num_embeddings: 80, embedding_dim: 128
Forward Execution Time (us) : 47.596

# Benchmarking PyTorch: qembeddingbag_byte_unpack
# Mode: Eager
# Name: qembeddingbag_byte_unpack_num_embeddings80_embedding_dim256
# Input: num_embeddings: 80, embedding_dim: 256
Forward Execution Time (us) : 91.025

# Benchmarking PyTorch: qembeddingbag_byte_unpack
# Mode: Eager
# Name: qembeddingbag_byte_unpack_num_embeddings80_embedding_dim512
# Input: num_embeddings: 80, embedding_dim: 512
Forward Execution Time (us) : 131.425

# Benchmarking PyTorch: qembeddingbag_4bit_unpack
# Mode: Eager
# Name: qembeddingbag_4bit_unpack_num_embeddings80_embedding_dim128
# Input: num_embeddings: 80, embedding_dim: 128
Forward Execution Time (us) : 12.637

# Benchmarking PyTorch: qembeddingbag_4bit_unpack
# Mode: Eager
# Name: qembeddingbag_4bit_unpack_num_embeddings80_embedding_dim256
# Input: num_embeddings: 80, embedding_dim: 256
Forward Execution Time (us) : 20.856

# Benchmarking PyTorch: qembeddingbag_4bit_unpack
# Mode: Eager
# Name: qembeddingbag_4bit_unpack_num_embeddings80_embedding_dim512
# Input: num_embeddings: 80, embedding_dim: 512
Forward Execution Time (us) : 33.944

# Benchmarking PyTorch: qembeddingbag_2bit_unpack
# Mode: Eager
# Name: qembeddingbag_2bit_unpack_num_embeddings80_embedding_dim128
# Input: num_embeddings: 80, embedding_dim: 128
Forward Execution Time (us) : 21.181

# Benchmarking PyTorch: qembeddingbag_2bit_unpack
# Mode: Eager
# Name: qembeddingbag_2bit_unpack_num_embeddings80_embedding_dim256
# Input: num_embeddings: 80, embedding_dim: 256
Forward Execution Time (us) : 34.213

# Benchmarking PyTorch: qembeddingbag_2bit_unpack
# Mode: Eager
# Name: qembeddingbag_2bit_unpack_num_embeddings80_embedding_dim512
# Input: num_embeddings: 80, embedding_dim: 512
Forward Execution Time (us) : 59.622
```
ghstack-source-id: 112812505

Differential Revision: [D23675777](https://our.internmc.facebook.com/intern/diff/D23675777/)
fbgemm functions are vectorized and faster

```
Finished test run: https://our.intern.facebook.com/intern/testinfra/testrun/6473924484856786
Summary (total time 15.08s):
  PASS: 7
  FAIL: 0
  SKIP: 0
  FATAL: 0
  TIMEOUT: 0
  OMIT: 0
```

Performance Before:
```
# ----------------------------------------
# PyTorch/Caffe2 Operator Micro-benchmarks
# ----------------------------------------
# Tag : short

# Benchmarking PyTorch: qembeddingbag_byte_prepack
# Mode: Eager
# Name: qembeddingbag_byte_prepack_num_embeddings80_embedding_dim128
# Input: num_embeddings: 80, embedding_dim: 128
Forward Execution Time (us) : 68.727

# Benchmarking PyTorch: qembeddingbag_byte_prepack
# Mode: Eager
# Name: qembeddingbag_byte_prepack_num_embeddings80_embedding_dim256
# Input: num_embeddings: 80, embedding_dim: 256
Forward Execution Time (us) : 131.500

# Benchmarking PyTorch: qembeddingbag_byte_prepack
# Mode: Eager
# Name: qembeddingbag_byte_prepack_num_embeddings80_embedding_dim512
# Input: num_embeddings: 80, embedding_dim: 512
Forward Execution Time (us) : 248.190

# Benchmarking PyTorch: qembeddingbag_4bit_prepack
# Mode: Eager
# Name: qembeddingbag_4bit_prepack_num_embeddings80_embedding_dim128
# Input: num_embeddings: 80, embedding_dim: 128
Forward Execution Time (us) : 172.742

# Benchmarking PyTorch: qembeddingbag_4bit_prepack
# Mode: Eager
# Name: qembeddingbag_4bit_prepack_num_embeddings80_embedding_dim256
# Input: num_embeddings: 80, embedding_dim: 256
Forward Execution Time (us) : 333.008

# Benchmarking PyTorch: qembeddingbag_4bit_prepack
# Mode: Eager
# Name: qembeddingbag_4bit_prepack_num_embeddings80_embedding_dim512
# Input: num_embeddings: 80, embedding_dim: 512
Forward Execution Time (us) : 652.423

# Benchmarking PyTorch: qembeddingbag_2bit_prepack
# Mode: Eager
# Name: qembeddingbag_2bit_prepack_num_embeddings80_embedding_dim128
# Input: num_embeddings: 80, embedding_dim: 128
Forward Execution Time (us) : 167.282

# Benchmarking PyTorch: qembeddingbag_2bit_prepack
# Mode: Eager
# Name: qembeddingbag_2bit_prepack_num_embeddings80_embedding_dim256
# Input: num_embeddings: 80, embedding_dim: 256
Forward Execution Time (us) : 398.901

# Benchmarking PyTorch: qembeddingbag_2bit_prepack
# Mode: Eager
# Name: qembeddingbag_2bit_prepack_num_embeddings80_embedding_dim512
# Input: num_embeddings: 80, embedding_dim: 512
Forward Execution Time (us) : 785.254

# Benchmarking PyTorch: qembeddingbag_byte_unpack
# Mode: Eager
# Name: qembeddingbag_byte_unpack_num_embeddings80_embedding_dim128
# Input: num_embeddings: 80, embedding_dim: 128
Forward Execution Time (us) : 122.653

# Benchmarking PyTorch: qembeddingbag_byte_unpack
# Mode: Eager
# Name: qembeddingbag_byte_unpack_num_embeddings80_embedding_dim256
# Input: num_embeddings: 80, embedding_dim: 256
Forward Execution Time (us) : 230.617

# Benchmarking PyTorch: qembeddingbag_byte_unpack
# Mode: Eager
# Name: qembeddingbag_byte_unpack_num_embeddings80_embedding_dim512
# Input: num_embeddings: 80, embedding_dim: 512
Forward Execution Time (us) : 408.807

# Benchmarking PyTorch: qembeddingbag_4bit_unpack
# Mode: Eager
# Name: qembeddingbag_4bit_unpack_num_embeddings80_embedding_dim128
# Input: num_embeddings: 80, embedding_dim: 128
Forward Execution Time (us) : 176.087

# Benchmarking PyTorch: qembeddingbag_4bit_unpack
# Mode: Eager
# Name: qembeddingbag_4bit_unpack_num_embeddings80_embedding_dim256
# Input: num_embeddings: 80, embedding_dim: 256
Forward Execution Time (us) : 337.514

# Benchmarking PyTorch: qembeddingbag_4bit_unpack
# Mode: Eager
# Name: qembeddingbag_4bit_unpack_num_embeddings80_embedding_dim512
# Input: num_embeddings: 80, embedding_dim: 512
Forward Execution Time (us) : 659.716

# Benchmarking PyTorch: qembeddingbag_2bit_unpack
# Mode: Eager
# Name: qembeddingbag_2bit_unpack_num_embeddings80_embedding_dim128
# Input: num_embeddings: 80, embedding_dim: 128
Forward Execution Time (us) : 342.529

# Benchmarking PyTorch: qembeddingbag_2bit_unpack
# Mode: Eager
# Name: qembeddingbag_2bit_unpack_num_embeddings80_embedding_dim256
# Input: num_embeddings: 80, embedding_dim: 256
Forward Execution Time (us) : 665.197

# Benchmarking PyTorch: qembeddingbag_2bit_unpack
# Mode: Eager
# Name: qembeddingbag_2bit_unpack_num_embeddings80_embedding_dim512
# Input: num_embeddings: 80, embedding_dim: 512
Forward Execution Time (us) : 1307.923
```

Performance After:
```
# ----------------------------------------
# PyTorch/Caffe2 Operator Micro-benchmarks
# ----------------------------------------
# Tag : short

# Benchmarking PyTorch: qembeddingbag_byte_prepack
# Mode: Eager
# Name: qembeddingbag_byte_prepack_num_embeddings80_embedding_dim128
# Input: num_embeddings: 80, embedding_dim: 128
Forward Execution Time (us) : 10.782

# Benchmarking PyTorch: qembeddingbag_byte_prepack
# Mode: Eager
# Name: qembeddingbag_byte_prepack_num_embeddings80_embedding_dim256
# Input: num_embeddings: 80, embedding_dim: 256
Forward Execution Time (us) : 17.443

# Benchmarking PyTorch: qembeddingbag_byte_prepack
# Mode: Eager
# Name: qembeddingbag_byte_prepack_num_embeddings80_embedding_dim512
# Input: num_embeddings: 80, embedding_dim: 512
Forward Execution Time (us) : 25.898

# Benchmarking PyTorch: qembeddingbag_4bit_prepack
# Mode: Eager
# Name: qembeddingbag_4bit_prepack_num_embeddings80_embedding_dim128
# Input: num_embeddings: 80, embedding_dim: 128
Forward Execution Time (us) : 13.903

# Benchmarking PyTorch: qembeddingbag_4bit_prepack
# Mode: Eager
# Name: qembeddingbag_4bit_prepack_num_embeddings80_embedding_dim256
# Input: num_embeddings: 80, embedding_dim: 256
Forward Execution Time (us) : 18.575

# Benchmarking PyTorch: qembeddingbag_4bit_prepack
# Mode: Eager
# Name: qembeddingbag_4bit_prepack_num_embeddings80_embedding_dim512
# Input: num_embeddings: 80, embedding_dim: 512
Forward Execution Time (us) : 30.650

# Benchmarking PyTorch: qembeddingbag_2bit_prepack
# Mode: Eager
# Name: qembeddingbag_2bit_prepack_num_embeddings80_embedding_dim128
# Input: num_embeddings: 80, embedding_dim: 128
Forward Execution Time (us) : 14.158

# Benchmarking PyTorch: qembeddingbag_2bit_prepack
# Mode: Eager
# Name: qembeddingbag_2bit_prepack_num_embeddings80_embedding_dim256
# Input: num_embeddings: 80, embedding_dim: 256
Forward Execution Time (us) : 19.818

# Benchmarking PyTorch: qembeddingbag_2bit_prepack
# Mode: Eager
# Name: qembeddingbag_2bit_prepack_num_embeddings80_embedding_dim512
# Input: num_embeddings: 80, embedding_dim: 512
Forward Execution Time (us) : 30.852

# Benchmarking PyTorch: qembeddingbag_byte_unpack
# Mode: Eager
# Name: qembeddingbag_byte_unpack_num_embeddings80_embedding_dim128
# Input: num_embeddings: 80, embedding_dim: 128
Forward Execution Time (us) : 47.596

# Benchmarking PyTorch: qembeddingbag_byte_unpack
# Mode: Eager
# Name: qembeddingbag_byte_unpack_num_embeddings80_embedding_dim256
# Input: num_embeddings: 80, embedding_dim: 256
Forward Execution Time (us) : 91.025

# Benchmarking PyTorch: qembeddingbag_byte_unpack
# Mode: Eager
# Name: qembeddingbag_byte_unpack_num_embeddings80_embedding_dim512
# Input: num_embeddings: 80, embedding_dim: 512
Forward Execution Time (us) : 131.425

# Benchmarking PyTorch: qembeddingbag_4bit_unpack
# Mode: Eager
# Name: qembeddingbag_4bit_unpack_num_embeddings80_embedding_dim128
# Input: num_embeddings: 80, embedding_dim: 128
Forward Execution Time (us) : 12.637

# Benchmarking PyTorch: qembeddingbag_4bit_unpack
# Mode: Eager
# Name: qembeddingbag_4bit_unpack_num_embeddings80_embedding_dim256
# Input: num_embeddings: 80, embedding_dim: 256
Forward Execution Time (us) : 20.856

# Benchmarking PyTorch: qembeddingbag_4bit_unpack
# Mode: Eager
# Name: qembeddingbag_4bit_unpack_num_embeddings80_embedding_dim512
# Input: num_embeddings: 80, embedding_dim: 512
Forward Execution Time (us) : 33.944

# Benchmarking PyTorch: qembeddingbag_2bit_unpack
# Mode: Eager
# Name: qembeddingbag_2bit_unpack_num_embeddings80_embedding_dim128
# Input: num_embeddings: 80, embedding_dim: 128
Forward Execution Time (us) : 21.181

# Benchmarking PyTorch: qembeddingbag_2bit_unpack
# Mode: Eager
# Name: qembeddingbag_2bit_unpack_num_embeddings80_embedding_dim256
# Input: num_embeddings: 80, embedding_dim: 256
Forward Execution Time (us) : 34.213

# Benchmarking PyTorch: qembeddingbag_2bit_unpack
# Mode: Eager
# Name: qembeddingbag_2bit_unpack_num_embeddings80_embedding_dim512
# Input: num_embeddings: 80, embedding_dim: 512
Forward Execution Time (us) : 59.622
```

Differential Revision: [D23675777](https://our.internmc.facebook.com/intern/diff/D23675777/)

[ghstack-poisoned]
fbgemm functions are vectorized and faster

```
Finished test run: https://our.intern.facebook.com/intern/testinfra/testrun/6473924484856786
Summary (total time 15.08s):
  PASS: 7
  FAIL: 0
  SKIP: 0
  FATAL: 0
  TIMEOUT: 0
  OMIT: 0
```

Performance Before:
```
# ----------------------------------------
# PyTorch/Caffe2 Operator Micro-benchmarks
# ----------------------------------------
# Tag : short

# Benchmarking PyTorch: qembeddingbag_byte_prepack
# Mode: Eager
# Name: qembeddingbag_byte_prepack_num_embeddings80_embedding_dim128
# Input: num_embeddings: 80, embedding_dim: 128
Forward Execution Time (us) : 68.727

# Benchmarking PyTorch: qembeddingbag_byte_prepack
# Mode: Eager
# Name: qembeddingbag_byte_prepack_num_embeddings80_embedding_dim256
# Input: num_embeddings: 80, embedding_dim: 256
Forward Execution Time (us) : 131.500

# Benchmarking PyTorch: qembeddingbag_byte_prepack
# Mode: Eager
# Name: qembeddingbag_byte_prepack_num_embeddings80_embedding_dim512
# Input: num_embeddings: 80, embedding_dim: 512
Forward Execution Time (us) : 248.190

# Benchmarking PyTorch: qembeddingbag_4bit_prepack
# Mode: Eager
# Name: qembeddingbag_4bit_prepack_num_embeddings80_embedding_dim128
# Input: num_embeddings: 80, embedding_dim: 128
Forward Execution Time (us) : 172.742

# Benchmarking PyTorch: qembeddingbag_4bit_prepack
# Mode: Eager
# Name: qembeddingbag_4bit_prepack_num_embeddings80_embedding_dim256
# Input: num_embeddings: 80, embedding_dim: 256
Forward Execution Time (us) : 333.008

# Benchmarking PyTorch: qembeddingbag_4bit_prepack
# Mode: Eager
# Name: qembeddingbag_4bit_prepack_num_embeddings80_embedding_dim512
# Input: num_embeddings: 80, embedding_dim: 512
Forward Execution Time (us) : 652.423

# Benchmarking PyTorch: qembeddingbag_2bit_prepack
# Mode: Eager
# Name: qembeddingbag_2bit_prepack_num_embeddings80_embedding_dim128
# Input: num_embeddings: 80, embedding_dim: 128
Forward Execution Time (us) : 167.282

# Benchmarking PyTorch: qembeddingbag_2bit_prepack
# Mode: Eager
# Name: qembeddingbag_2bit_prepack_num_embeddings80_embedding_dim256
# Input: num_embeddings: 80, embedding_dim: 256
Forward Execution Time (us) : 398.901

# Benchmarking PyTorch: qembeddingbag_2bit_prepack
# Mode: Eager
# Name: qembeddingbag_2bit_prepack_num_embeddings80_embedding_dim512
# Input: num_embeddings: 80, embedding_dim: 512
Forward Execution Time (us) : 785.254

# Benchmarking PyTorch: qembeddingbag_byte_unpack
# Mode: Eager
# Name: qembeddingbag_byte_unpack_num_embeddings80_embedding_dim128
# Input: num_embeddings: 80, embedding_dim: 128
Forward Execution Time (us) : 122.653

# Benchmarking PyTorch: qembeddingbag_byte_unpack
# Mode: Eager
# Name: qembeddingbag_byte_unpack_num_embeddings80_embedding_dim256
# Input: num_embeddings: 80, embedding_dim: 256
Forward Execution Time (us) : 230.617

# Benchmarking PyTorch: qembeddingbag_byte_unpack
# Mode: Eager
# Name: qembeddingbag_byte_unpack_num_embeddings80_embedding_dim512
# Input: num_embeddings: 80, embedding_dim: 512
Forward Execution Time (us) : 408.807

# Benchmarking PyTorch: qembeddingbag_4bit_unpack
# Mode: Eager
# Name: qembeddingbag_4bit_unpack_num_embeddings80_embedding_dim128
# Input: num_embeddings: 80, embedding_dim: 128
Forward Execution Time (us) : 176.087

# Benchmarking PyTorch: qembeddingbag_4bit_unpack
# Mode: Eager
# Name: qembeddingbag_4bit_unpack_num_embeddings80_embedding_dim256
# Input: num_embeddings: 80, embedding_dim: 256
Forward Execution Time (us) : 337.514

# Benchmarking PyTorch: qembeddingbag_4bit_unpack
# Mode: Eager
# Name: qembeddingbag_4bit_unpack_num_embeddings80_embedding_dim512
# Input: num_embeddings: 80, embedding_dim: 512
Forward Execution Time (us) : 659.716

# Benchmarking PyTorch: qembeddingbag_2bit_unpack
# Mode: Eager
# Name: qembeddingbag_2bit_unpack_num_embeddings80_embedding_dim128
# Input: num_embeddings: 80, embedding_dim: 128
Forward Execution Time (us) : 342.529

# Benchmarking PyTorch: qembeddingbag_2bit_unpack
# Mode: Eager
# Name: qembeddingbag_2bit_unpack_num_embeddings80_embedding_dim256
# Input: num_embeddings: 80, embedding_dim: 256
Forward Execution Time (us) : 665.197

# Benchmarking PyTorch: qembeddingbag_2bit_unpack
# Mode: Eager
# Name: qembeddingbag_2bit_unpack_num_embeddings80_embedding_dim512
# Input: num_embeddings: 80, embedding_dim: 512
Forward Execution Time (us) : 1307.923
```

Performance After:
```
# ----------------------------------------
# PyTorch/Caffe2 Operator Micro-benchmarks
# ----------------------------------------
# Tag : short

# Benchmarking PyTorch: qembeddingbag_byte_prepack
# Mode: Eager
# Name: qembeddingbag_byte_prepack_num_embeddings80_embedding_dim128
# Input: num_embeddings: 80, embedding_dim: 128
Forward Execution Time (us) : 10.782

# Benchmarking PyTorch: qembeddingbag_byte_prepack
# Mode: Eager
# Name: qembeddingbag_byte_prepack_num_embeddings80_embedding_dim256
# Input: num_embeddings: 80, embedding_dim: 256
Forward Execution Time (us) : 17.443

# Benchmarking PyTorch: qembeddingbag_byte_prepack
# Mode: Eager
# Name: qembeddingbag_byte_prepack_num_embeddings80_embedding_dim512
# Input: num_embeddings: 80, embedding_dim: 512
Forward Execution Time (us) : 25.898

# Benchmarking PyTorch: qembeddingbag_4bit_prepack
# Mode: Eager
# Name: qembeddingbag_4bit_prepack_num_embeddings80_embedding_dim128
# Input: num_embeddings: 80, embedding_dim: 128
Forward Execution Time (us) : 13.903

# Benchmarking PyTorch: qembeddingbag_4bit_prepack
# Mode: Eager
# Name: qembeddingbag_4bit_prepack_num_embeddings80_embedding_dim256
# Input: num_embeddings: 80, embedding_dim: 256
Forward Execution Time (us) : 18.575

# Benchmarking PyTorch: qembeddingbag_4bit_prepack
# Mode: Eager
# Name: qembeddingbag_4bit_prepack_num_embeddings80_embedding_dim512
# Input: num_embeddings: 80, embedding_dim: 512
Forward Execution Time (us) : 30.650

# Benchmarking PyTorch: qembeddingbag_2bit_prepack
# Mode: Eager
# Name: qembeddingbag_2bit_prepack_num_embeddings80_embedding_dim128
# Input: num_embeddings: 80, embedding_dim: 128
Forward Execution Time (us) : 14.158

# Benchmarking PyTorch: qembeddingbag_2bit_prepack
# Mode: Eager
# Name: qembeddingbag_2bit_prepack_num_embeddings80_embedding_dim256
# Input: num_embeddings: 80, embedding_dim: 256
Forward Execution Time (us) : 19.818

# Benchmarking PyTorch: qembeddingbag_2bit_prepack
# Mode: Eager
# Name: qembeddingbag_2bit_prepack_num_embeddings80_embedding_dim512
# Input: num_embeddings: 80, embedding_dim: 512
Forward Execution Time (us) : 30.852

# Benchmarking PyTorch: qembeddingbag_byte_unpack
# Mode: Eager
# Name: qembeddingbag_byte_unpack_num_embeddings80_embedding_dim128
# Input: num_embeddings: 80, embedding_dim: 128
Forward Execution Time (us) : 47.596

# Benchmarking PyTorch: qembeddingbag_byte_unpack
# Mode: Eager
# Name: qembeddingbag_byte_unpack_num_embeddings80_embedding_dim256
# Input: num_embeddings: 80, embedding_dim: 256
Forward Execution Time (us) : 91.025

# Benchmarking PyTorch: qembeddingbag_byte_unpack
# Mode: Eager
# Name: qembeddingbag_byte_unpack_num_embeddings80_embedding_dim512
# Input: num_embeddings: 80, embedding_dim: 512
Forward Execution Time (us) : 131.425

# Benchmarking PyTorch: qembeddingbag_4bit_unpack
# Mode: Eager
# Name: qembeddingbag_4bit_unpack_num_embeddings80_embedding_dim128
# Input: num_embeddings: 80, embedding_dim: 128
Forward Execution Time (us) : 12.637

# Benchmarking PyTorch: qembeddingbag_4bit_unpack
# Mode: Eager
# Name: qembeddingbag_4bit_unpack_num_embeddings80_embedding_dim256
# Input: num_embeddings: 80, embedding_dim: 256
Forward Execution Time (us) : 20.856

# Benchmarking PyTorch: qembeddingbag_4bit_unpack
# Mode: Eager
# Name: qembeddingbag_4bit_unpack_num_embeddings80_embedding_dim512
# Input: num_embeddings: 80, embedding_dim: 512
Forward Execution Time (us) : 33.944

# Benchmarking PyTorch: qembeddingbag_2bit_unpack
# Mode: Eager
# Name: qembeddingbag_2bit_unpack_num_embeddings80_embedding_dim128
# Input: num_embeddings: 80, embedding_dim: 128
Forward Execution Time (us) : 21.181

# Benchmarking PyTorch: qembeddingbag_2bit_unpack
# Mode: Eager
# Name: qembeddingbag_2bit_unpack_num_embeddings80_embedding_dim256
# Input: num_embeddings: 80, embedding_dim: 256
Forward Execution Time (us) : 34.213

# Benchmarking PyTorch: qembeddingbag_2bit_unpack
# Mode: Eager
# Name: qembeddingbag_2bit_unpack_num_embeddings80_embedding_dim512
# Input: num_embeddings: 80, embedding_dim: 512
Forward Execution Time (us) : 59.622
```

Differential Revision: [D23675777](https://our.internmc.facebook.com/intern/diff/D23675777/)

[ghstack-poisoned]
dskhudia added a commit that referenced this pull request Sep 24, 2020
Pull Request resolved: #44845


fbgemm functions are vectorized and faster

```
Finished test run: https://our.intern.facebook.com/intern/testinfra/testrun/6473924484856786
Summary (total time 15.08s):
  PASS: 7
  FAIL: 0
  SKIP: 0
  FATAL: 0
  TIMEOUT: 0
  OMIT: 0
```

Performance Before:
```
# ----------------------------------------
# PyTorch/Caffe2 Operator Micro-benchmarks
# ----------------------------------------
# Tag : short

# Benchmarking PyTorch: qembeddingbag_byte_prepack
# Mode: Eager
# Name: qembeddingbag_byte_prepack_num_embeddings80_embedding_dim128
# Input: num_embeddings: 80, embedding_dim: 128
Forward Execution Time (us) : 68.727

# Benchmarking PyTorch: qembeddingbag_byte_prepack
# Mode: Eager
# Name: qembeddingbag_byte_prepack_num_embeddings80_embedding_dim256
# Input: num_embeddings: 80, embedding_dim: 256
Forward Execution Time (us) : 131.500

# Benchmarking PyTorch: qembeddingbag_byte_prepack
# Mode: Eager
# Name: qembeddingbag_byte_prepack_num_embeddings80_embedding_dim512
# Input: num_embeddings: 80, embedding_dim: 512
Forward Execution Time (us) : 248.190

# Benchmarking PyTorch: qembeddingbag_4bit_prepack
# Mode: Eager
# Name: qembeddingbag_4bit_prepack_num_embeddings80_embedding_dim128
# Input: num_embeddings: 80, embedding_dim: 128
Forward Execution Time (us) : 172.742

# Benchmarking PyTorch: qembeddingbag_4bit_prepack
# Mode: Eager
# Name: qembeddingbag_4bit_prepack_num_embeddings80_embedding_dim256
# Input: num_embeddings: 80, embedding_dim: 256
Forward Execution Time (us) : 333.008

# Benchmarking PyTorch: qembeddingbag_4bit_prepack
# Mode: Eager
# Name: qembeddingbag_4bit_prepack_num_embeddings80_embedding_dim512
# Input: num_embeddings: 80, embedding_dim: 512
Forward Execution Time (us) : 652.423

# Benchmarking PyTorch: qembeddingbag_2bit_prepack
# Mode: Eager
# Name: qembeddingbag_2bit_prepack_num_embeddings80_embedding_dim128
# Input: num_embeddings: 80, embedding_dim: 128
Forward Execution Time (us) : 167.282

# Benchmarking PyTorch: qembeddingbag_2bit_prepack
# Mode: Eager
# Name: qembeddingbag_2bit_prepack_num_embeddings80_embedding_dim256
# Input: num_embeddings: 80, embedding_dim: 256
Forward Execution Time (us) : 398.901

# Benchmarking PyTorch: qembeddingbag_2bit_prepack
# Mode: Eager
# Name: qembeddingbag_2bit_prepack_num_embeddings80_embedding_dim512
# Input: num_embeddings: 80, embedding_dim: 512
Forward Execution Time (us) : 785.254

# Benchmarking PyTorch: qembeddingbag_byte_unpack
# Mode: Eager
# Name: qembeddingbag_byte_unpack_num_embeddings80_embedding_dim128
# Input: num_embeddings: 80, embedding_dim: 128
Forward Execution Time (us) : 122.653

# Benchmarking PyTorch: qembeddingbag_byte_unpack
# Mode: Eager
# Name: qembeddingbag_byte_unpack_num_embeddings80_embedding_dim256
# Input: num_embeddings: 80, embedding_dim: 256
Forward Execution Time (us) : 230.617

# Benchmarking PyTorch: qembeddingbag_byte_unpack
# Mode: Eager
# Name: qembeddingbag_byte_unpack_num_embeddings80_embedding_dim512
# Input: num_embeddings: 80, embedding_dim: 512
Forward Execution Time (us) : 408.807

# Benchmarking PyTorch: qembeddingbag_4bit_unpack
# Mode: Eager
# Name: qembeddingbag_4bit_unpack_num_embeddings80_embedding_dim128
# Input: num_embeddings: 80, embedding_dim: 128
Forward Execution Time (us) : 176.087

# Benchmarking PyTorch: qembeddingbag_4bit_unpack
# Mode: Eager
# Name: qembeddingbag_4bit_unpack_num_embeddings80_embedding_dim256
# Input: num_embeddings: 80, embedding_dim: 256
Forward Execution Time (us) : 337.514

# Benchmarking PyTorch: qembeddingbag_4bit_unpack
# Mode: Eager
# Name: qembeddingbag_4bit_unpack_num_embeddings80_embedding_dim512
# Input: num_embeddings: 80, embedding_dim: 512
Forward Execution Time (us) : 659.716

# Benchmarking PyTorch: qembeddingbag_2bit_unpack
# Mode: Eager
# Name: qembeddingbag_2bit_unpack_num_embeddings80_embedding_dim128
# Input: num_embeddings: 80, embedding_dim: 128
Forward Execution Time (us) : 342.529

# Benchmarking PyTorch: qembeddingbag_2bit_unpack
# Mode: Eager
# Name: qembeddingbag_2bit_unpack_num_embeddings80_embedding_dim256
# Input: num_embeddings: 80, embedding_dim: 256
Forward Execution Time (us) : 665.197

# Benchmarking PyTorch: qembeddingbag_2bit_unpack
# Mode: Eager
# Name: qembeddingbag_2bit_unpack_num_embeddings80_embedding_dim512
# Input: num_embeddings: 80, embedding_dim: 512
Forward Execution Time (us) : 1307.923
```

Performance After:
```
# ----------------------------------------
# PyTorch/Caffe2 Operator Micro-benchmarks
# ----------------------------------------
# Tag : short

# Benchmarking PyTorch: qembeddingbag_byte_prepack
# Mode: Eager
# Name: qembeddingbag_byte_prepack_num_embeddings80_embedding_dim128
# Input: num_embeddings: 80, embedding_dim: 128
Forward Execution Time (us) : 10.782

# Benchmarking PyTorch: qembeddingbag_byte_prepack
# Mode: Eager
# Name: qembeddingbag_byte_prepack_num_embeddings80_embedding_dim256
# Input: num_embeddings: 80, embedding_dim: 256
Forward Execution Time (us) : 17.443

# Benchmarking PyTorch: qembeddingbag_byte_prepack
# Mode: Eager
# Name: qembeddingbag_byte_prepack_num_embeddings80_embedding_dim512
# Input: num_embeddings: 80, embedding_dim: 512
Forward Execution Time (us) : 25.898

# Benchmarking PyTorch: qembeddingbag_4bit_prepack
# Mode: Eager
# Name: qembeddingbag_4bit_prepack_num_embeddings80_embedding_dim128
# Input: num_embeddings: 80, embedding_dim: 128
Forward Execution Time (us) : 13.903

# Benchmarking PyTorch: qembeddingbag_4bit_prepack
# Mode: Eager
# Name: qembeddingbag_4bit_prepack_num_embeddings80_embedding_dim256
# Input: num_embeddings: 80, embedding_dim: 256
Forward Execution Time (us) : 18.575

# Benchmarking PyTorch: qembeddingbag_4bit_prepack
# Mode: Eager
# Name: qembeddingbag_4bit_prepack_num_embeddings80_embedding_dim512
# Input: num_embeddings: 80, embedding_dim: 512
Forward Execution Time (us) : 30.650

# Benchmarking PyTorch: qembeddingbag_2bit_prepack
# Mode: Eager
# Name: qembeddingbag_2bit_prepack_num_embeddings80_embedding_dim128
# Input: num_embeddings: 80, embedding_dim: 128
Forward Execution Time (us) : 14.158

# Benchmarking PyTorch: qembeddingbag_2bit_prepack
# Mode: Eager
# Name: qembeddingbag_2bit_prepack_num_embeddings80_embedding_dim256
# Input: num_embeddings: 80, embedding_dim: 256
Forward Execution Time (us) : 19.818

# Benchmarking PyTorch: qembeddingbag_2bit_prepack
# Mode: Eager
# Name: qembeddingbag_2bit_prepack_num_embeddings80_embedding_dim512
# Input: num_embeddings: 80, embedding_dim: 512
Forward Execution Time (us) : 30.852

# Benchmarking PyTorch: qembeddingbag_byte_unpack
# Mode: Eager
# Name: qembeddingbag_byte_unpack_num_embeddings80_embedding_dim128
# Input: num_embeddings: 80, embedding_dim: 128
Forward Execution Time (us) : 47.596

# Benchmarking PyTorch: qembeddingbag_byte_unpack
# Mode: Eager
# Name: qembeddingbag_byte_unpack_num_embeddings80_embedding_dim256
# Input: num_embeddings: 80, embedding_dim: 256
Forward Execution Time (us) : 91.025

# Benchmarking PyTorch: qembeddingbag_byte_unpack
# Mode: Eager
# Name: qembeddingbag_byte_unpack_num_embeddings80_embedding_dim512
# Input: num_embeddings: 80, embedding_dim: 512
Forward Execution Time (us) : 131.425

# Benchmarking PyTorch: qembeddingbag_4bit_unpack
# Mode: Eager
# Name: qembeddingbag_4bit_unpack_num_embeddings80_embedding_dim128
# Input: num_embeddings: 80, embedding_dim: 128
Forward Execution Time (us) : 12.637

# Benchmarking PyTorch: qembeddingbag_4bit_unpack
# Mode: Eager
# Name: qembeddingbag_4bit_unpack_num_embeddings80_embedding_dim256
# Input: num_embeddings: 80, embedding_dim: 256
Forward Execution Time (us) : 20.856

# Benchmarking PyTorch: qembeddingbag_4bit_unpack
# Mode: Eager
# Name: qembeddingbag_4bit_unpack_num_embeddings80_embedding_dim512
# Input: num_embeddings: 80, embedding_dim: 512
Forward Execution Time (us) : 33.944

# Benchmarking PyTorch: qembeddingbag_2bit_unpack
# Mode: Eager
# Name: qembeddingbag_2bit_unpack_num_embeddings80_embedding_dim128
# Input: num_embeddings: 80, embedding_dim: 128
Forward Execution Time (us) : 21.181

# Benchmarking PyTorch: qembeddingbag_2bit_unpack
# Mode: Eager
# Name: qembeddingbag_2bit_unpack_num_embeddings80_embedding_dim256
# Input: num_embeddings: 80, embedding_dim: 256
Forward Execution Time (us) : 34.213

# Benchmarking PyTorch: qembeddingbag_2bit_unpack
# Mode: Eager
# Name: qembeddingbag_2bit_unpack_num_embeddings80_embedding_dim512
# Input: num_embeddings: 80, embedding_dim: 512
Forward Execution Time (us) : 59.622
```
ghstack-source-id: 112836216

Differential Revision: [D23675777](https://our.internmc.facebook.com/intern/diff/D23675777/)
@facebook-github-bot
Copy link
Contributor

This pull request has been merged in 677a59d.

@facebook-github-bot facebook-github-bot deleted the gh/dskhudia/26/head branch September 28, 2020 14:16
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment

Labels

Projects

None yet

Development

Successfully merging this pull request may close these issues.

5 participants