Skip to content
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions aten/src/ATen/native/cpu/BinaryOpsKernel.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -646,6 +646,7 @@ void fmod_scalar_kernel(TensorIterator& iter, Scalar divisor) {
if (isIntegralType(iter.dtype(), /*includeBool=*/ false)) {
AT_DISPATCH_INTEGRAL_TYPES(iter.dtype(), "fmod_scalar_cpu", [&]() {
const auto div = divisor.to<scalar_t>();
TORCH_CHECK(div != 0, "ZeroDivisionError");
cpu_kernel(iter, [=](scalar_t x) -> scalar_t {
return x % div;
});
Expand Down
21 changes: 12 additions & 9 deletions test/test_torch.py
Original file line number Diff line number Diff line change
Expand Up @@ -16919,17 +16919,27 @@ def test_rdiv(self, device, dtype):
self.assertEqual(y, z)

@onlyCPU
@dtypes(torch.float)
@dtypes(*torch.testing.get_all_dtypes(include_bfloat16=False, include_bool=False, include_complex=False))
def test_fmod(self, device, dtype):
m1 = torch.Tensor(10, 10).uniform_(-10., 10.).to(dtype=dtype, device=device)
res1 = m1.clone()
q = 2.1
q = 3
res1[:, 3].fmod_(q)
res2 = m1.clone()
for i in range(m1.size(1)):
res2[i, 3] = math.fmod(res2[i, 3], q)
self.assertEqual(res1, res2)

zero = torch.zeros_like(m1)
if dtype in torch.testing.get_all_int_dtypes():
with self.assertRaisesRegex(RuntimeError, "ZeroDivisionError"):
m1.fmod(0)
with self.assertRaisesRegex(RuntimeError, "ZeroDivisionError"):
m1.fmod(zero)
else:
self.assertTrue(torch.all(m1.fmod(0).isnan()))
self.assertTrue(torch.all(m1.fmod(zero).isnan()))

@onlyCPU
@dtypes(torch.float, torch.long)
def test_remainder(self, device, dtype):
Expand Down Expand Up @@ -17698,13 +17708,6 @@ def test_div_zero(self, device, dtype):
with self.assertRaisesRegex(RuntimeError, 'ZeroDivisionError'):
a // b

@onlyCPU
@dtypes(torch.uint8, torch.int8, torch.int16, torch.int32, torch.int64)
def test_fmod_zero(self, device, dtype):
a = torch.tensor([1, 0], dtype=dtype, device=device)
with self.assertRaisesRegex(RuntimeError, 'ZeroDivisionError'):
a.fmod(a)

@onlyCPU
def test_cat_bad_input_sizes(self, device):
x = torch.randn(2, 1, device=device)
Expand Down