[ATen] Switch order of blocked reduce for numerics#165178
Closed
PaulZhang12 wants to merge 10 commits intogh/PaulZhang12/36/basefrom
Closed
[ATen] Switch order of blocked reduce for numerics#165178PaulZhang12 wants to merge 10 commits intogh/PaulZhang12/36/basefrom
PaulZhang12 wants to merge 10 commits intogh/PaulZhang12/36/basefrom
Conversation
[ghstack-poisoned]
This was referenced Oct 10, 2025
🔗 Helpful Links🧪 See artifacts and rendered test results at hud.pytorch.org/pr/165178
Note: Links to docs will display an error until the docs builds have been completed. ❗ 1 Active SEVsThere are 1 currently active SEVs. If your PR is affected, please view them below: ✅ No FailuresAs of commit 95ff3c4 with merge base 90c0825 ( This comment was automatically generated by Dr. CI and updates every 15 minutes. |
[ghstack-poisoned]
[ghstack-poisoned]
[ghstack-poisoned]
[ghstack-poisoned]
[ghstack-poisoned]
[ghstack-poisoned]
[ghstack-poisoned]
[ghstack-poisoned]
[ghstack-poisoned]
ngimel
approved these changes
Oct 17, 2025
Contributor
Author
|
@pytorchbot merge |
Collaborator
Merge startedYour change will be merged once all checks pass (ETA 0-4 Hours). Learn more about merging in the wiki. Questions? Feedback? Please reach out to the PyTorch DevX Team |
Chao1Han
pushed a commit
to Chao1Han/pytorch
that referenced
this pull request
Oct 21, 2025
…65178) Performance benchmarking, perf neutral: ``` ================================================================================================================================================================================================================================================ Tensor Shape Operation Full reduce (ms) Non-Contig dim (ms) Contig dim (ms) Full reduce (ms) Non-Contig dim (ms) Contig dim (ms) Full diff % Non-Contig diff % Contig diff % ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ (256, 256) mean 0.015684 0.017056 0.008287 0.016015 0.016929 0.008170 -2.07% +0.75% +1.43% (256, 256) sum 0.015774 0.016638 0.007926 0.015811 0.016935 0.008330 -0.23% -1.75% -4.85% ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ (512, 512) mean 0.013385 0.025742 0.008629 0.013046 0.026005 0.008924 +2.60% -1.01% -3.31% (512, 512) sum 0.013390 0.026059 0.009116 0.013054 0.025696 0.008952 +2.57% +1.41% +1.83% ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ (1024, 1024) mean 0.014213 0.015467 0.010334 0.013862 0.015082 0.010318 +2.53% +2.55% +0.16% (1024, 1024) sum 0.014179 0.015446 0.010774 0.014132 0.015073 0.010350 +0.33% +2.47% +4.10% ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ (2048, 2048) mean 0.018234 0.019487 0.014812 0.018482 0.019397 0.014802 -1.34% +0.46% +0.07% (2048, 2048) sum 0.018202 0.019529 0.015195 0.018122 0.019485 0.015129 +0.44% +0.23% +0.44% ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ (4096, 4096) mean 0.033582 0.039378 0.030751 0.033810 0.039673 0.031019 -0.67% -0.74% -0.86% (4096, 4096) sum 0.033604 0.039777 0.030809 0.033530 0.039386 0.031113 +0.22% +0.99% -0.98% ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ (8192, 8192) mean 0.085824 0.091133 0.084200 0.085431 0.091364 0.084303 +0.46% -0.25% -0.12% (8192, 8192) sum 0.085763 0.091442 0.084180 0.085508 0.091419 0.084595 +0.30% +0.03% -0.49% ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ (8192, 16384) mean 0.146480 0.147666 0.138807 0.146515 0.147987 0.138930 -0.02% -0.22% -0.09% (8192, 16384) sum 0.146446 0.147593 0.138559 0.146151 0.147982 0.139120 +0.20% -0.26% -0.40% ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ (8192, 32768) mean 0.266047 0.265386 0.253837 0.265648 0.265885 0.253652 +0.15% -0.19% +0.07% (8192, 32768) sum 0.266093 0.265421 0.253890 0.265458 0.265591 0.253567 +0.24% -0.06% +0.13% ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ (8192, 65536) mean 0.498632 0.508976 0.481865 0.498237 0.508777 0.481476 +0.08% +0.04% +0.08% (8192, 65536) sum 0.498917 0.508202 0.481883 0.498104 0.508016 0.481972 +0.16% +0.04% -0.02% ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ (8192, 131072) mean 0.957633 0.968519 0.938172 0.956766 0.968267 0.938196 +0.09% +0.03% -0.00% (8192, 131072) sum 0.956972 0.968140 0.937741 0.957365 0.968404 0.938056 -0.04% -0.03% -0.03% ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ (8192, 262144) mean 1.906661 1.928377 1.861846 1.907327 1.928811 1.862083 -0.03% -0.02% -0.01% (8192, 262144) sum 1.905976 1.928362 1.862399 1.907098 1.928844 1.861782 -0.06% -0.02% +0.03% ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ (4096, 262144) mean 0.956852 0.970101 0.936524 0.957263 0.969809 0.936965 -0.04% +0.03% -0.05% (4096, 262144) sum 0.957117 0.969933 0.936247 0.956675 0.969451 0.936395 +0.05% +0.05% -0.02% ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ (2048, 262144) mean 0.498813 0.511299 0.483415 0.498567 0.511482 0.483376 +0.05% -0.04% +0.01% (2048, 262144) sum 0.498813 0.510834 0.483641 0.498875 0.511036 0.483338 -0.01% -0.04% +0.06% ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ (1024, 262144) mean 0.266157 0.276751 0.255192 0.265966 0.276808 0.255544 +0.07% -0.02% -0.14% (1024, 262144) sum 0.266133 0.276709 0.255528 0.265658 0.276685 0.255287 +0.18% +0.01% +0.09% ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ (512, 131072) mean 0.085941 0.081184 0.087931 0.085591 0.080832 0.088008 +0.41% +0.44% -0.09% (512, 131072) sum 0.085962 0.081107 0.088045 0.085882 0.081160 0.088024 +0.09% -0.07% +0.02% ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ (1000, 1000) mean 0.014203 0.045859 0.010310 0.013885 0.046132 0.010621 +2.29% -0.59% -2.93% (1000, 1000) sum 0.014180 0.046165 0.010756 0.013893 0.046109 0.010338 +2.07% +0.12% +4.04% ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ (1024, 129) mean 0.012953 0.016751 0.008536 0.012977 0.016714 0.008916 -0.18% +0.22% -4.26% (1024, 129) sum 0.013356 0.016806 0.008722 0.013003 0.017071 0.008611 +2.71% -1.55% +1.29% ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ (1024, 257) mean 0.013075 0.016787 0.009102 0.013116 0.016769 0.008679 -0.31% +0.11% +4.87% (1024, 257) sum 0.013092 0.016842 0.008786 0.013126 0.017128 0.008771 -0.26% -1.67% +0.17% ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ (1024, 587) mean 0.013662 0.017412 0.010055 0.013659 0.017019 0.010033 +0.02% +2.31% +0.22% (1024, 587) sum 0.013636 0.017473 0.010163 0.013642 0.017363 0.010101 -0.04% +0.63% +0.61% ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ (2048, 977) mean 0.015276 0.027873 0.012531 0.015241 0.027783 0.012467 +0.23% +0.32% +0.51% (2048, 977) sum 0.015345 0.027949 0.012192 0.015255 0.027839 0.012485 +0.59% +0.40% -2.35% ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ (1024, 128) mean 0.012806 0.014020 0.008291 0.013137 0.014309 0.007908 -2.52% -2.02% +4.84% (1024, 128) sum 0.012769 0.014308 0.007924 0.012788 0.014236 0.008038 -0.15% +0.51% -1.42% ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ (8192, 128) mean 0.014145 0.023049 0.009143 0.014104 0.023298 0.009501 +0.29% -1.07% -3.77% (8192, 128) sum 0.014132 0.023082 0.009638 0.014107 0.023331 0.009244 +0.18% -1.07% +4.26% ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ (1024, 130) mean 0.013420 0.025834 0.008949 0.013368 0.025724 0.008918 +0.39% +0.43% +0.35% (1024, 130) sum 0.013300 0.025940 0.009113 0.013266 0.025419 0.008922 +0.26% +2.05% +2.14% ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ (8192, 130) mean 0.013993 0.017883 0.009661 0.014275 0.018220 0.009596 -1.98% -1.85% +0.68% (8192, 130) sum 0.014026 0.018297 0.010066 0.014326 0.018257 0.009659 -2.09% +0.22% +4.21% ================================================================================================================================================================================================================================================ ``` Pull Request resolved: pytorch#165178 Approved by: https://github.com/ngimel ghstack dependencies: pytorch#165494, pytorch#164790, pytorch#165055
zhudada0120
pushed a commit
to zhudada0120/pytorch
that referenced
this pull request
Oct 22, 2025
…65178) Performance benchmarking, perf neutral: ``` ================================================================================================================================================================================================================================================ Tensor Shape Operation Full reduce (ms) Non-Contig dim (ms) Contig dim (ms) Full reduce (ms) Non-Contig dim (ms) Contig dim (ms) Full diff % Non-Contig diff % Contig diff % ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ (256, 256) mean 0.015684 0.017056 0.008287 0.016015 0.016929 0.008170 -2.07% +0.75% +1.43% (256, 256) sum 0.015774 0.016638 0.007926 0.015811 0.016935 0.008330 -0.23% -1.75% -4.85% ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ (512, 512) mean 0.013385 0.025742 0.008629 0.013046 0.026005 0.008924 +2.60% -1.01% -3.31% (512, 512) sum 0.013390 0.026059 0.009116 0.013054 0.025696 0.008952 +2.57% +1.41% +1.83% ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ (1024, 1024) mean 0.014213 0.015467 0.010334 0.013862 0.015082 0.010318 +2.53% +2.55% +0.16% (1024, 1024) sum 0.014179 0.015446 0.010774 0.014132 0.015073 0.010350 +0.33% +2.47% +4.10% ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ (2048, 2048) mean 0.018234 0.019487 0.014812 0.018482 0.019397 0.014802 -1.34% +0.46% +0.07% (2048, 2048) sum 0.018202 0.019529 0.015195 0.018122 0.019485 0.015129 +0.44% +0.23% +0.44% ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ (4096, 4096) mean 0.033582 0.039378 0.030751 0.033810 0.039673 0.031019 -0.67% -0.74% -0.86% (4096, 4096) sum 0.033604 0.039777 0.030809 0.033530 0.039386 0.031113 +0.22% +0.99% -0.98% ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ (8192, 8192) mean 0.085824 0.091133 0.084200 0.085431 0.091364 0.084303 +0.46% -0.25% -0.12% (8192, 8192) sum 0.085763 0.091442 0.084180 0.085508 0.091419 0.084595 +0.30% +0.03% -0.49% ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ (8192, 16384) mean 0.146480 0.147666 0.138807 0.146515 0.147987 0.138930 -0.02% -0.22% -0.09% (8192, 16384) sum 0.146446 0.147593 0.138559 0.146151 0.147982 0.139120 +0.20% -0.26% -0.40% ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ (8192, 32768) mean 0.266047 0.265386 0.253837 0.265648 0.265885 0.253652 +0.15% -0.19% +0.07% (8192, 32768) sum 0.266093 0.265421 0.253890 0.265458 0.265591 0.253567 +0.24% -0.06% +0.13% ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ (8192, 65536) mean 0.498632 0.508976 0.481865 0.498237 0.508777 0.481476 +0.08% +0.04% +0.08% (8192, 65536) sum 0.498917 0.508202 0.481883 0.498104 0.508016 0.481972 +0.16% +0.04% -0.02% ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ (8192, 131072) mean 0.957633 0.968519 0.938172 0.956766 0.968267 0.938196 +0.09% +0.03% -0.00% (8192, 131072) sum 0.956972 0.968140 0.937741 0.957365 0.968404 0.938056 -0.04% -0.03% -0.03% ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ (8192, 262144) mean 1.906661 1.928377 1.861846 1.907327 1.928811 1.862083 -0.03% -0.02% -0.01% (8192, 262144) sum 1.905976 1.928362 1.862399 1.907098 1.928844 1.861782 -0.06% -0.02% +0.03% ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ (4096, 262144) mean 0.956852 0.970101 0.936524 0.957263 0.969809 0.936965 -0.04% +0.03% -0.05% (4096, 262144) sum 0.957117 0.969933 0.936247 0.956675 0.969451 0.936395 +0.05% +0.05% -0.02% ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ (2048, 262144) mean 0.498813 0.511299 0.483415 0.498567 0.511482 0.483376 +0.05% -0.04% +0.01% (2048, 262144) sum 0.498813 0.510834 0.483641 0.498875 0.511036 0.483338 -0.01% -0.04% +0.06% ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ (1024, 262144) mean 0.266157 0.276751 0.255192 0.265966 0.276808 0.255544 +0.07% -0.02% -0.14% (1024, 262144) sum 0.266133 0.276709 0.255528 0.265658 0.276685 0.255287 +0.18% +0.01% +0.09% ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ (512, 131072) mean 0.085941 0.081184 0.087931 0.085591 0.080832 0.088008 +0.41% +0.44% -0.09% (512, 131072) sum 0.085962 0.081107 0.088045 0.085882 0.081160 0.088024 +0.09% -0.07% +0.02% ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ (1000, 1000) mean 0.014203 0.045859 0.010310 0.013885 0.046132 0.010621 +2.29% -0.59% -2.93% (1000, 1000) sum 0.014180 0.046165 0.010756 0.013893 0.046109 0.010338 +2.07% +0.12% +4.04% ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ (1024, 129) mean 0.012953 0.016751 0.008536 0.012977 0.016714 0.008916 -0.18% +0.22% -4.26% (1024, 129) sum 0.013356 0.016806 0.008722 0.013003 0.017071 0.008611 +2.71% -1.55% +1.29% ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ (1024, 257) mean 0.013075 0.016787 0.009102 0.013116 0.016769 0.008679 -0.31% +0.11% +4.87% (1024, 257) sum 0.013092 0.016842 0.008786 0.013126 0.017128 0.008771 -0.26% -1.67% +0.17% ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ (1024, 587) mean 0.013662 0.017412 0.010055 0.013659 0.017019 0.010033 +0.02% +2.31% +0.22% (1024, 587) sum 0.013636 0.017473 0.010163 0.013642 0.017363 0.010101 -0.04% +0.63% +0.61% ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ (2048, 977) mean 0.015276 0.027873 0.012531 0.015241 0.027783 0.012467 +0.23% +0.32% +0.51% (2048, 977) sum 0.015345 0.027949 0.012192 0.015255 0.027839 0.012485 +0.59% +0.40% -2.35% ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ (1024, 128) mean 0.012806 0.014020 0.008291 0.013137 0.014309 0.007908 -2.52% -2.02% +4.84% (1024, 128) sum 0.012769 0.014308 0.007924 0.012788 0.014236 0.008038 -0.15% +0.51% -1.42% ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ (8192, 128) mean 0.014145 0.023049 0.009143 0.014104 0.023298 0.009501 +0.29% -1.07% -3.77% (8192, 128) sum 0.014132 0.023082 0.009638 0.014107 0.023331 0.009244 +0.18% -1.07% +4.26% ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ (1024, 130) mean 0.013420 0.025834 0.008949 0.013368 0.025724 0.008918 +0.39% +0.43% +0.35% (1024, 130) sum 0.013300 0.025940 0.009113 0.013266 0.025419 0.008922 +0.26% +2.05% +2.14% ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ (8192, 130) mean 0.013993 0.017883 0.009661 0.014275 0.018220 0.009596 -1.98% -1.85% +0.68% (8192, 130) sum 0.014026 0.018297 0.010066 0.014326 0.018257 0.009659 -2.09% +0.22% +4.21% ================================================================================================================================================================================================================================================ ``` Pull Request resolved: pytorch#165178 Approved by: https://github.com/ngimel ghstack dependencies: pytorch#165494, pytorch#164790, pytorch#165055
Khanaksahu
pushed a commit
to Khanaksahu/pytorch
that referenced
this pull request
Nov 17, 2025
ghstack-source-id: 757abd1 Pull Request resolved: pytorch/pytorch#165178
pytorchmergebot
pushed a commit
that referenced
this pull request
Jan 27, 2026
…cuh (#173425) This PR references #165178 (credits to @PaulZhang12 for the nice fix 👍 ) and aims to improve numerics in reduction_template.cuh as well. I've not tested it, but I'm pretty sure that this has a positive effect as this change was already confirmed in Reduce.cuh and reduction_template.cuh contains basically the same contents (if I'm not mistaken). Please review this exactly nevertheless as I am not quite sure, especially because Reduce.cuh originally contained "__syncthreads();" as well which was then removed via #165178, but which wasn't / isn't included in the template (while the other changes out of the PR weren't made to the template, so the template didn't contain "__syncthreads();" despite the PR, so maybe there is any mistake I make when looking at the code as it wasn't tested and it's just a code analysis). Please correct me if I'm mistaken anywhere, so please review, thanks! 👍 Pull Request resolved: #173425 Approved by: https://github.com/PaulZhang12
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Add this suggestion to a batch that can be applied as a single commit.This suggestion is invalid because no changes were made to the code.Suggestions cannot be applied while the pull request is closed.Suggestions cannot be applied while viewing a subset of changes.Only one suggestion per line can be applied in a batch.Add this suggestion to a batch that can be applied as a single commit.Applying suggestions on deleted lines is not supported.You must change the existing code in this line in order to create a valid suggestion.Outdated suggestions cannot be applied.This suggestion has been applied or marked resolved.Suggestions cannot be applied from pending reviews.Suggestions cannot be applied on multi-line comments.Suggestions cannot be applied while the pull request is queued to merge.Suggestion cannot be applied right now. Please check back later.
Stack from ghstack (oldest at bottom):
Performance benchmarking, perf neutral: