Skip to content

Can not restart the training to obtain the same results #5627

@jyzhang-bjtu

Description

@jyzhang-bjtu

PyTorch version : 0.3.0

I use adam or sgd with the default parameters to training my network. But I found some interesing results during the training restart. Loss function is torch.nn.mse.

Algorithm sgd :
First I training it with 110 batches, and save the model with torch.save(model.state_dict(), self.fn) at 100-th batch.

If I training continuously with all 110 batches, the loss I got will be the following :

2018-03-08 09:37:13 - root - INFO - SNR: 3dB Epoch[0].100 : loss 1.2919E-03, err_num=31756
2018-03-08 09:39:16 - root - INFO - SNR: 3dB Epoch[0].101 : loss 1.2755E-03, err_num=31606
2018-03-08 09:39:17 - root - INFO - SNR: 3dB Epoch[0].102 : loss 1.1193E-03, err_num=26931
2018-03-08 09:39:18 - root - INFO - SNR: 3dB Epoch[0].103 : loss 1.1842E-03, err_num=28907
2018-03-08 09:39:19 - root - INFO - SNR: 3dB Epoch[0].104 : loss 1.3281E-03, err_num=32834

If I restart the training and reload the model with model.load_state_dict( torch.load(self.fn) ) at 100-th batch, then the loss I got will be the following :

2018-03-08 09:40:51 - root - INFO - SNR: 3dB Epoch[0].100 : loss 1.2919E-03, err_num=31756
2018-03-08 09:41:03 - root - INFO - SNR: 3dB Epoch[0].101 : loss 1.2755E-03, err_num=31606
2018-03-08 09:41:04 - root - INFO - SNR: 3dB Epoch[0].102 : loss 1.1193E-03, err_num=26931
2018-03-08 09:41:06 - root - INFO - SNR: 3dB Epoch[0].103 : loss 1.1842E-03, err_num=28914
2018-03-08 09:41:07 - root - INFO - SNR: 3dB Epoch[0].104 : loss 1.3282E-03, err_num=32833

for adam
continuous training
2018-03-06 14:50:10 - root - INFO - Epoch[0].100 : loss 0.001053, err_num=26686.0
2018-03-06 14:50:11 - root - INFO - Epoch[0].101 : loss 0.001018, err_num=25701.0
2018-03-06 14:50:12 - root - INFO - Epoch[0].102 : loss 0.0008684, err_num=21734.0
2018-03-06 14:50:13 - root - INFO - Epoch[0].103 : loss 0.00094, err_num=23426.0
2018-03-06 14:50:14 - root - INFO - Epoch[0].104 : loss 0.001076, err_num=26678.0

restart training
2018-03-08 11:10:09 - root - INFO - Epoch[0].100 : loss 1.0526E-03, err_num=26686
2018-03-08 11:10:11 - root - INFO - Epoch[0].101 : loss 1.0135E-03, err_num=25711
2018-03-08 11:10:13 - root - INFO - Epoch[0].102 : loss 8.6998E-04, err_num=21581
2018-03-08 11:10:14 - root - INFO - Epoch[0].103 : loss 9.3137E-04, err_num=23466
2018-03-08 11:10:15 - root - INFO - Epoch[0].104 : loss 1.0608E-03, err_num=26306
2018-03-08 11:10:16 - root - INFO - Epoch[0].105 : loss 8.5917E-04, err_num=21298

It can be seen that loss of restart training is not same as the training with continuous training. I double check the dataset of these two case, which is all the same. Why? How did it happen?

If I use the adam alogorithm, loss and err_num will be differenet starting from Epoch[0].101.

Metadata

Metadata

Assignees

No one assigned

    Labels

    awaiting response (this tag is deprecated)This tag is deprecated while we figure out what to do with itneeds reproductionEnsure you have actionable steps to reproduce the issue. Someone else needs to confirm the repro.

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions