@@ -871,7 +871,9 @@ class AdaptiveMaxPool2d(Module):
871871
872872 Args:
873873 output_size: the target output size of the image of the form H x W.
874- Can be a tuple (H, W) or a single number H for a square image H x H
874+ Can be a tuple (H, W) or a single H for a square image H x H.
875+ H and W can be either a ``int``, or ``None`` which means the size will
876+ be the same as that of the input.
875877 return_indices: if ``True``, will return the indices along with the outputs.
876878 Useful to pass to nn.MaxUnpool2d. Default: ``False``
877879
@@ -884,6 +886,10 @@ class AdaptiveMaxPool2d(Module):
884886 >>> m = nn.AdaptiveMaxPool2d(7)
885887 >>> input = autograd.Variable(torch.randn(1, 64, 10, 9))
886888 >>> output = m(input)
889+ >>> # target output size of 10x7
890+ >>> m = nn.AdaptiveMaxPool2d((None, 7))
891+ >>> input = autograd.Variable(torch.randn(1, 64, 10, 9))
892+ >>> output = m(input)
887893
888894 """
889895
@@ -908,7 +914,10 @@ class AdaptiveMaxPool3d(Module):
908914
909915 Args:
910916 output_size: the target output size of the image of the form D x H x W.
911- Can be a tuple (D, H, W) or a single number D for a cube D x D x D
917+ Can be a tuple (D, H, W) or a single D for a cube D x D x D.
918+ D, H and W can be either a ``int``, or ``None`` which means the size will
919+ be the same as that of the input.
920+
912921 return_indices: if ``True``, will return the indices along with the outputs.
913922 Useful to pass to nn.MaxUnpool3d. Default: ``False``
914923
@@ -921,6 +930,10 @@ class AdaptiveMaxPool3d(Module):
921930 >>> m = nn.AdaptiveMaxPool3d(7)
922931 >>> input = autograd.Variable(torch.randn(1, 64, 10, 9, 8))
923932 >>> output = m(input)
933+ >>> # target output size of 7x9x8
934+ >>> m = nn.AdaptiveMaxPool3d((7, None, None))
935+ >>> input = autograd.Variable(torch.randn(1, 64, 10, 9, 8))
936+ >>> output = m(input)
924937
925938 """
926939
@@ -974,7 +987,9 @@ class AdaptiveAvgPool2d(Module):
974987
975988 Args:
976989 output_size: the target output size of the image of the form H x W.
977- Can be a tuple (H, W) or a single number H for a square image H x H
990+ Can be a tuple (H, W) or a single H for a square image H x H
991+ H and W can be either a ``int``, or ``None`` which means the size will
992+ be the same as that of the input.
978993
979994 Examples:
980995 >>> # target output size of 5x7
@@ -985,6 +1000,10 @@ class AdaptiveAvgPool2d(Module):
9851000 >>> m = nn.AdaptiveAvgPool2d(7)
9861001 >>> input = autograd.Variable(torch.randn(1, 64, 10, 9))
9871002 >>> output = m(input)
1003+ >>> # target output size of 10x7
1004+ >>> m = nn.AdaptiveMaxPool2d((None, 7))
1005+ >>> input = autograd.Variable(torch.randn(1, 64, 10, 9))
1006+ >>> output = m(input)
9881007
9891008 """
9901009
@@ -1009,6 +1028,8 @@ class AdaptiveAvgPool3d(Module):
10091028 Args:
10101029 output_size: the target output size of the form D x H x W.
10111030 Can be a tuple (D, H, W) or a single number D for a cube D x D x D
1031+ D, H and W can be either a ``int``, or ``None`` which means the size will
1032+ be the same as that of the input.
10121033
10131034 Examples:
10141035 >>> # target output size of 5x7x9
@@ -1019,6 +1040,10 @@ class AdaptiveAvgPool3d(Module):
10191040 >>> m = nn.AdaptiveAvgPool3d(7)
10201041 >>> input = autograd.Variable(torch.randn(1, 64, 10, 9, 8))
10211042 >>> output = m(input)
1043+ >>> # target output size of 7x9x8
1044+ >>> m = nn.AdaptiveMaxPool3d((7, None, None))
1045+ >>> input = autograd.Variable(torch.randn(1, 64, 10, 9, 8))
1046+ >>> output = m(input)
10221047
10231048 """
10241049
0 commit comments