@@ -89,8 +89,8 @@ def _window_function_checks(function_name: str, M: int, dtype: torch.dtype, layo
8989 tensor([0.0067, 0.0183, 0.0498, 0.1353, 0.3679, 1.0000, 0.3679, 0.1353, 0.0498,
9090 0.0183])
9191
92- >>> # Generate a symmetric exponential window and decay factor equal to .5
93- >>> torch.signal.windows.exponential(10,periodic =False,tau=.5)
92+ >>> # Generate a periodic exponential window and decay factor equal to .5
93+ >>> torch.signal.windows.exponential(10,sym =False,tau=.5)
9494 tensor([1.2341e-04, 9.1188e-04, 6.7379e-03, 4.9787e-02, 3.6788e-01, 3.6788e-01,
9595 4.9787e-02, 6.7379e-03, 9.1188e-04, 1.2341e-04])
9696 """ .format (
@@ -182,7 +182,7 @@ def exponential(
182182 0.4154])
183183
184184 >>> # Generate a symmetric cosine window.
185- >>> torch.signal.windows.cosine(10,periodic =False)
185+ >>> torch.signal.windows.cosine(10,sym =False)
186186 tensor([0.1564, 0.4540, 0.7071, 0.8910, 0.9877, 0.9877, 0.8910, 0.7071, 0.4540,
187187 0.1564])
188188""" .format (
@@ -260,8 +260,8 @@ def cosine(M: int,
260260 tensor([1.9287e-22, 1.2664e-14, 1.5230e-08, 3.3546e-04, 1.3534e-01, 1.0000e+00,
261261 1.3534e-01, 3.3546e-04, 1.5230e-08, 1.2664e-14])
262262
263- >>> # Generate a symmetric gaussian window and standard deviation equal to 0.9.
264- >>> torch.signal.windows.gaussian(10,periodic =False,std=0.9)
263+ >>> # Generate a periodic gaussian window and standard deviation equal to 0.9.
264+ >>> torch.signal.windows.gaussian(10,sym =False,std=0.9)
265265 tensor([3.7267e-06, 5.1998e-04, 2.1110e-02, 2.4935e-01, 8.5700e-01, 8.5700e-01,
266266 2.4935e-01, 2.1110e-02, 5.1998e-04, 3.7267e-06])
267267""" .format (
0 commit comments