@@ -345,11 +345,11 @@ def block_diag_workaround(*arrs):
345345
346346 if device != 'cpu' :
347347 with self .assertRaisesRegex (
348- RuntimeError ,
349- (
350- "torch.block_diag: input tensors must all be on the same device."
351- " Input 0 is on device cpu and input 1 is on device "
352- )
348+ RuntimeError ,
349+ (
350+ "torch.block_diag: input tensors must all be on the same device."
351+ " Input 0 is on device cpu and input 1 is on device "
352+ )
353353 ):
354354 torch .block_diag (torch .ones (2 , 2 ).cpu (), torch .ones (2 , 2 , device = device ))
355355
@@ -474,8 +474,7 @@ def complex_dtype_name(dtype):
474474 out = torch .zeros (2 , device = device , dtype = dtype )
475475 expected_dtype = torch .complex64 if dtype == torch .float32 else torch .complex128
476476 error = "Expected object of scalar type {} but got scalar type " \
477- "{} for argument 'out'" .format (
478- complex_dtype_name (expected_dtype ), dtype_name (dtype ))
477+ "{} for argument 'out'" .format (complex_dtype_name (expected_dtype ), dtype_name (dtype ))
479478 with self .assertRaisesRegex (RuntimeError , error ):
480479 op (a , b , out = out )
481480
@@ -2995,8 +2994,10 @@ def test_logspace_special_steps(self, device, dtype):
29952994 self ._test_logspace_base2 (device , dtype , steps = steps )
29962995
29972996 @dtypes (* all_types_and (torch .bfloat16 ))
2998- @dtypesIfCUDA (* integral_types_and (torch .half , torch .bfloat16 , torch .float32 , torch .float64 ) if TEST_WITH_ROCM else
2999- all_types_and (torch .half , torch .bfloat16 ))
2997+ @dtypesIfCUDA (
2998+ * integral_types_and (torch .half , torch .bfloat16 , torch .float32 , torch .float64 ) if TEST_WITH_ROCM else
2999+ all_types_and (torch .half , torch .bfloat16 )
3000+ )
30003001 def test_logspace (self , device , dtype ):
30013002 _from = random .random ()
30023003 to = _from + random .random ()
0 commit comments