|
70 | 70 | variants: method |
71 | 71 | supports_named_tensor: True |
72 | 72 |
|
73 | | -- func: align_to(Tensor(a) self, Dimname[] order, int ellipsis_idx) -> Tensor(a) |
| 73 | +- func: align_to.ellipsis_idx(Tensor(a) self, Dimname[] order, int ellipsis_idx) -> Tensor(a) |
74 | 74 | variants: method |
75 | 75 | supports_named_tensor: True |
76 | 76 |
|
|
87 | 87 | variants: method |
88 | 88 | supports_named_tensor: True |
89 | 89 |
|
90 | | -- func: unflatten(Tensor self, Dimname dim, int[] sizes, Dimname[] names) -> Tensor |
| 90 | +- func: unflatten.Dimname(Tensor self, Dimname dim, int[] sizes, Dimname[] names) -> Tensor |
91 | 91 | variants: method |
92 | 92 | supports_named_tensor: True |
93 | 93 |
|
94 | | -- func: unflatten(Tensor self, int dim, int[] sizes, Dimname[] names) -> Tensor |
| 94 | +- func: unflatten.int(Tensor self, int dim, int[] sizes, Dimname[] names) -> Tensor |
95 | 95 | variants: method |
96 | 96 | supports_named_tensor: True |
97 | 97 |
|
|
1659 | 1659 | CUDA: logspace_cuda_out |
1660 | 1660 |
|
1661 | 1661 | # log_softmax allows positional dtype, unlike most operators, because kwonly is BC-breaking when loading jit models. |
1662 | | -- func: log_softmax(Tensor self, int dim, ScalarType? dtype=None) -> Tensor |
| 1662 | +- func: log_softmax.int(Tensor self, int dim, ScalarType? dtype=None) -> Tensor |
1663 | 1663 | variants: function, method |
1664 | 1664 | supports_named_tensor: True |
1665 | 1665 |
|
1666 | | -- func: log_softmax(Tensor self, Dimname dim, *, ScalarType? dtype=None) -> Tensor |
| 1666 | +- func: log_softmax.Dimname(Tensor self, Dimname dim, *, ScalarType? dtype=None) -> Tensor |
1667 | 1667 | variants: function, method |
1668 | 1668 | supports_named_tensor: True |
1669 | 1669 |
|
|
2554 | 2554 | variants: function, method |
2555 | 2555 |
|
2556 | 2556 | # softmax allows positional dtype, unlike most operators, because kwonly is BC-breaking when loading jit models. |
2557 | | -- func: softmax(Tensor self, int dim, ScalarType? dtype=None) -> Tensor |
| 2557 | +- func: softmax.int(Tensor self, int dim, ScalarType? dtype=None) -> Tensor |
2558 | 2558 | variants: function, method |
2559 | 2559 | supports_named_tensor: True |
2560 | 2560 |
|
2561 | | -- func: softmax(Tensor self, Dimname dim, *, ScalarType? dtype=None) -> Tensor |
| 2561 | +- func: softmax.Dimname(Tensor self, Dimname dim, *, ScalarType? dtype=None) -> Tensor |
2562 | 2562 | variants: function, method |
2563 | 2563 | supports_named_tensor: True |
2564 | 2564 |
|
|
4006 | 4006 | - func: index_add.dimname(Tensor self, Dimname dim, Tensor index, Tensor source) -> Tensor |
4007 | 4007 | variants: function, method |
4008 | 4008 |
|
4009 | | -- func: index_fill_.Scalar(Tensor(a!) self, int dim, Tensor index, Scalar value) -> Tensor(a!) |
| 4009 | +- func: index_fill_.int_Scalar(Tensor(a!) self, int dim, Tensor index, Scalar value) -> Tensor(a!) |
4010 | 4010 | use_c10_dispatcher: unboxed_only |
4011 | 4011 | variants: method |
4012 | 4012 | supports_named_tensor: True |
4013 | 4013 | dispatch: |
4014 | 4014 | CPU: legacy::cpu::_th_index_fill_ |
4015 | 4015 | CUDA: legacy::cuda::_th_index_fill_ |
4016 | 4016 |
|
4017 | | -- func: index_fill.Scalar(Tensor self, int dim, Tensor index, Scalar value) -> Tensor |
| 4017 | +- func: index_fill.int_Scalar(Tensor self, int dim, Tensor index, Scalar value) -> Tensor |
4018 | 4018 | use_c10_dispatcher: full |
4019 | 4019 | supports_named_tensor: True |
4020 | 4020 | variants: function, method |
4021 | 4021 |
|
4022 | | -- func: index_fill_.Tensor(Tensor(a!) self, int dim, Tensor index, Tensor value) -> Tensor(a!) |
| 4022 | +- func: index_fill_.int_Tensor(Tensor(a!) self, int dim, Tensor index, Tensor value) -> Tensor(a!) |
4023 | 4023 | use_c10_dispatcher: unboxed_only |
4024 | 4024 | variants: method |
4025 | 4025 | dispatch: |
4026 | 4026 | CPU: legacy::cpu::_th_index_fill_ |
4027 | 4027 | CUDA: legacy::cuda::_th_index_fill_ |
4028 | 4028 | supports_named_tensor: True |
4029 | 4029 |
|
4030 | | -- func: index_fill.Tensor(Tensor self, int dim, Tensor index, Tensor value) -> Tensor |
| 4030 | +- func: index_fill.int_Tensor(Tensor self, int dim, Tensor index, Tensor value) -> Tensor |
4031 | 4031 | use_c10_dispatcher: full |
4032 | 4032 | variants: function, method |
4033 | 4033 | supports_named_tensor: True |
4034 | 4034 |
|
4035 | | -- func: index_fill_.dimname_Scalar(Tensor(a!) self, Dimname dim, Tensor index, Scalar value) -> Tensor(a!) |
| 4035 | +- func: index_fill_.Dimname_Scalar(Tensor(a!) self, Dimname dim, Tensor index, Scalar value) -> Tensor(a!) |
4036 | 4036 | variants: method |
4037 | 4037 | supports_named_tensor: True |
4038 | 4038 |
|
4039 | | -- func: index_fill_.dimname_Scalar(Tensor(a!) self, Dimname dim, Tensor index, Tensor value) -> Tensor(a!) |
| 4039 | +- func: index_fill_.Dimname_Tensor(Tensor(a!) self, Dimname dim, Tensor index, Tensor value) -> Tensor(a!) |
4040 | 4040 | variants: method |
4041 | 4041 | supports_named_tensor: True |
4042 | 4042 |
|
4043 | | -- func: index_fill.dimname_Scalar(Tensor self, Dimname dim, Tensor index, Scalar value) -> Tensor |
| 4043 | +- func: index_fill.Dimname_Scalar(Tensor self, Dimname dim, Tensor index, Scalar value) -> Tensor |
4044 | 4044 | variants: function, method |
4045 | 4045 | supports_named_tensor: True |
4046 | 4046 |
|
4047 | | -- func: index_fill.dimname_Tensor(Tensor self, Dimname dim, Tensor index, Tensor value) -> Tensor |
| 4047 | +- func: index_fill.Dimname_Tensor(Tensor self, Dimname dim, Tensor index, Tensor value) -> Tensor |
4048 | 4048 | variants: function, method |
4049 | 4049 | supports_named_tensor: True |
4050 | 4050 |
|
|
6681 | 6681 | CPU: slow_conv_transpose2d_cpu |
6682 | 6682 | CUDA: slow_conv_transpose2d_cuda |
6683 | 6683 |
|
6684 | | -- func: slow_conv_transpose2d_backward.grad_output(Tensor grad_output, Tensor self, Tensor weight, int[2] kernel_size, int[2] stride, int[2] padding, int[2] output_padding, int[2] dilation, Tensor columns, Tensor ones, *, Tensor?(a!) grad_input, Tensor?(b!) grad_weight, Tensor?(c!) grad_bias) -> (Tensor(a!), Tensor(b!), Tensor(c!)) |
| 6684 | +- func: slow_conv_transpose2d_backward.grad_output(Tensor grad_output, Tensor self, Tensor weight, int[2] kernel_size, int[2] stride, int[2] padding, int[2] output_padding, int[2] dilation, Tensor columns, Tensor ones, *, Tensor(a!)? grad_input, Tensor(b!)? grad_weight, Tensor(c!)? grad_bias) -> (Tensor(a!), Tensor(b!), Tensor(c!)) |
6685 | 6685 | python_module: nn |
6686 | 6686 | dispatch: |
6687 | 6687 | CPU: slow_conv_transpose2d_backward_out_cpu |
|
6706 | 6706 | CPU: slow_conv_transpose3d_cpu |
6707 | 6707 | CUDA: slow_conv_transpose3d_cuda |
6708 | 6708 |
|
6709 | | -- func: slow_conv_transpose3d_backward.grad_output(Tensor grad_output, Tensor self, Tensor weight, int[3] kernel_size, int[3] stride, int[3] padding, int[3] output_padding, int[3] dilation, Tensor finput, Tensor fgrad_input, *, Tensor?(a!) grad_input, Tensor?(b!) grad_weight, Tensor?(c!) grad_bias) -> (Tensor(a!), Tensor(b!), Tensor(c!)) |
| 6709 | +- func: slow_conv_transpose3d_backward.grad_output(Tensor grad_output, Tensor self, Tensor weight, int[3] kernel_size, int[3] stride, int[3] padding, int[3] output_padding, int[3] dilation, Tensor finput, Tensor fgrad_input, *, Tensor(a!)? grad_input, Tensor(b!)? grad_weight, Tensor(c!)? grad_bias) -> (Tensor(a!), Tensor(b!), Tensor(c!)) |
6710 | 6710 | python_module: nn |
6711 | 6711 | dispatch: |
6712 | 6712 | CPU: slow_conv_transpose3d_backward_out_cpu |
|
6737 | 6737 | CPU: legacy::cpu::_thnn_conv2d_forward |
6738 | 6738 | CUDA: legacy::cuda::_thnn_conv2d_forward |
6739 | 6739 |
|
6740 | | -- func: thnn_conv2d_backward.grad_input(Tensor grad_output, Tensor self, Tensor weight, int[2] kernel_size, int[2] stride, int[2] padding, Tensor finput, Tensor fgrad_input, *, Tensor?(a!) grad_input, Tensor?(b!) grad_weight, Tensor?(c!) grad_bias) -> (Tensor(a!), Tensor(b!), Tensor(c!)) |
| 6740 | +- func: thnn_conv2d_backward.grad_input(Tensor grad_output, Tensor self, Tensor weight, int[2] kernel_size, int[2] stride, int[2] padding, Tensor finput, Tensor fgrad_input, *, Tensor(a!)? grad_input, Tensor(b!)? grad_weight, Tensor(c!)? grad_bias) -> (Tensor(a!), Tensor(b!), Tensor(c!)) |
6741 | 6741 | python_module: nn |
6742 | 6742 | dispatch: |
6743 | 6743 | CPU: legacy::cpu::_thnn_conv2d_backward_out |
|
6766 | 6766 | dispatch: |
6767 | 6767 | CUDA: legacy::cuda::_thnn_conv_depthwise2d_forward |
6768 | 6768 |
|
6769 | | -- func: thnn_conv_depthwise2d_backward.grad_input(Tensor grad_output, Tensor self, Tensor weight, int[2] kernel_size, int[2] stride, int[2] padding, int[2] dilation, *, Tensor?(a!) grad_input, Tensor?(b!) grad_weight) -> (Tensor(a!), Tensor(b!)) |
| 6769 | +- func: thnn_conv_depthwise2d_backward.grad_input(Tensor grad_output, Tensor self, Tensor weight, int[2] kernel_size, int[2] stride, int[2] padding, int[2] dilation, *, Tensor(a!)? grad_input, Tensor(b!)? grad_weight) -> (Tensor(a!), Tensor(b!)) |
6770 | 6770 | python_module: nn |
6771 | 6771 | dispatch: |
6772 | 6772 | CUDA: legacy::cuda::_thnn_conv_depthwise2d_backward_out |
|
6793 | 6793 | dispatch: |
6794 | 6794 | CPU: legacy::cpu::_thnn_conv3d_forward |
6795 | 6795 |
|
6796 | | -- func: thnn_conv3d_backward.grad_input(Tensor grad_output, Tensor self, Tensor weight, int[3] kernel_size, int[3] stride, int[3] padding, Tensor finput, Tensor fgrad_input, *, Tensor?(a!) grad_input, Tensor?(b!) grad_weight, Tensor?(c!) grad_bias) -> (Tensor(a!), Tensor(b!), Tensor(c!)) |
| 6796 | +- func: thnn_conv3d_backward.grad_input(Tensor grad_output, Tensor self, Tensor weight, int[3] kernel_size, int[3] stride, int[3] padding, Tensor finput, Tensor fgrad_input, *, Tensor(a!)? grad_input, Tensor(b!)? grad_weight, Tensor(c!)? grad_bias) -> (Tensor(a!), Tensor(b!), Tensor(c!)) |
6797 | 6797 | python_module: nn |
6798 | 6798 | dispatch: |
6799 | 6799 | CPU: legacy::cpu::_thnn_conv3d_backward_out |
|
0 commit comments