@@ -940,7 +940,7 @@ def __init__(
940940
941941# Compute the input for a nonlinear, (constrained) optimal control problem
942942def solve_ocp (
943- sys , horizon , X0 , cost , trajectory_constraints = None , terminal_cost = None ,
943+ sys , timepts , X0 , cost , trajectory_constraints = None , terminal_cost = None ,
944944 terminal_constraints = [], initial_guess = None , basis = None , squeeze = None ,
945945 transpose = None , return_states = True , print_summary = True , log = False ,
946946 ** kwargs ):
@@ -952,7 +952,7 @@ def solve_ocp(
952952 sys : InputOutputSystem
953953 I/O system for which the optimal input will be computed.
954954
955- horizon : 1D array_like
955+ timepts : 1D array_like
956956 List of times at which the optimal input should be computed.
957957
958958 X0: array-like or number, optional
@@ -990,9 +990,9 @@ def solve_ocp(
990990
991991 initial_guess : 1D or 2D array_like
992992 Initial inputs to use as a guess for the optimal input. The inputs
993- should either be a 2D vector of shape (ninputs, horizon) or a 1D
994- input of shape (ninputs,) that will be broadcast by extension of the
995- time axis.
993+ should either be a 2D vector of shape (ninputs, len(timepts)) or a
994+ 1D input of shape (ninputs,) that will be broadcast by extension of
995+ the time axis.
996996
997997 log : bool, optional
998998 If `True`, turn on logging messages (using Python logging module).
@@ -1069,7 +1069,7 @@ def solve_ocp(
10691069
10701070 # Set up the optimal control problem
10711071 ocp = OptimalControlProblem (
1072- sys , horizon , cost , trajectory_constraints = trajectory_constraints ,
1072+ sys , timepts , cost , trajectory_constraints = trajectory_constraints ,
10731073 terminal_cost = terminal_cost , terminal_constraints = terminal_constraints ,
10741074 initial_guess = initial_guess , basis = basis , log = log , ** kwargs )
10751075
@@ -1081,12 +1081,12 @@ def solve_ocp(
10811081
10821082# Create a model predictive controller for an optimal control problem
10831083def create_mpc_iosystem (
1084- sys , horizon , cost , constraints = [], terminal_cost = None ,
1084+ sys , timepts , cost , constraints = [], terminal_cost = None ,
10851085 terminal_constraints = [], log = False , ** kwargs ):
10861086 """Create a model predictive I/O control system
10871087
10881088 This function creates an input/output system that implements a model
1089- predictive control for a system given the time horizon , cost function and
1089+ predictive control for a system given the time points , cost function and
10901090 constraints that define the finite-horizon optimization that should be
10911091 carried out at each state.
10921092
@@ -1095,7 +1095,7 @@ def create_mpc_iosystem(
10951095 sys : InputOutputSystem
10961096 I/O system for which the optimal input will be computed.
10971097
1098- horizon : 1D array_like
1098+ timepts : 1D array_like
10991099 List of times at which the optimal input should be computed.
11001100
11011101 cost : callable
@@ -1133,7 +1133,7 @@ def create_mpc_iosystem(
11331133 """
11341134 # Set up the optimal control problem
11351135 ocp = OptimalControlProblem (
1136- sys , horizon , cost , trajectory_constraints = constraints ,
1136+ sys , timepts , cost , trajectory_constraints = constraints ,
11371137 terminal_cost = terminal_cost , terminal_constraints = terminal_constraints ,
11381138 log = log , kwargs_check = False , ** kwargs )
11391139
0 commit comments