Skip to content

Commit acdbf71

Browse files
committed
prepare for v0.0.9
1 parent 59ddccb commit acdbf71

File tree

4 files changed

+16
-8
lines changed

4 files changed

+16
-8
lines changed

NEWS.md

Lines changed: 8 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -1,5 +1,13 @@
11
# News for Mocha Development
22

3+
## v0.0.9 2015.07.20
4+
5+
* Infrastructure
6+
* Add JLD.jl in REQUIREMENT as it becomes an independent package
7+
* Fix a Julia v0.4-dev compatability
8+
* Interface
9+
* GraphViz visualization for network architecture
10+
311
## v0.0.8 2015.05.27
412

513
* Interface

REQUIRE

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1,4 +1,4 @@
1-
julia 0.3 0.4-
1+
julia 0.3
22
HDF5 0.4.7
33
JLD
44
Logging

docs/conf.py

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -56,9 +56,9 @@
5656
# built documents.
5757
#
5858
# The short X.Y version.
59-
version = '0.0.8'
59+
version = '0.0.9'
6060
# The full version, including alpha/beta/rc tags.
61-
release = '0.0.8'
61+
release = '0.0.9'
6262

6363
# The language for content autogenerated by Sphinx. Refer to documentation
6464
# for a list of supported languages.

src/layers/pooling/channel-pooling.jl

Lines changed: 5 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -42,9 +42,9 @@ function mean_channel_pooling_forward{T}(input::Array{T,3}, output::Array{T,3},
4242
output_fea_dim = spatial_dim * pooled_chann
4343

4444
for n = 1:num
45-
input_ptr = convert(Ptr{T}, input) + fea_dim*(n-1)
46-
output_ptr = convert(Ptr{T}, output) + output_fea_dim*(n-1)
47-
integral_ptr = convert(Ptr{T}, integral)
45+
input_ptr = pointer(input) + fea_dim*(n-1)
46+
output_ptr = pointer(output) + output_fea_dim*(n-1)
47+
integral_ptr = pointer(integral)
4848

4949
# compute integral image
5050
BLAS.blascopy!(spatial_dim_T, input_ptr, 1, integral_ptr, 1)
@@ -103,8 +103,8 @@ function mean_channel_pooling_backward{T}(input::Array{T,3}, output::Array{T,3},
103103
output_fea_dim = spatial_dim * pooled_chann
104104

105105
for n = 1:num
106-
input_ptr = convert(Ptr{T}, input) + fea_dim*(n-1)
107-
output_ptr = convert(Ptr{T}, output) + output_fea_dim*(n-1)
106+
input_ptr = pointer(input) + fea_dim*(n-1)
107+
output_ptr = pointer(output) + output_fea_dim*(n-1)
108108

109109
for pc = 1:pooled_chann
110110
cstart = (pc-1)*layer.stride - layer.pad[1] + 1

0 commit comments

Comments
 (0)