Skip to content
Permalink

Comparing changes

Choose two branches to see what’s changed or to start a new pull request. If you need to, you can also or learn more about diff comparisons.

Open a pull request

Create a new pull request by comparing changes across two branches. If you need to, you can also . Learn more about diff comparisons here.
base repository: official-stockfish/Stockfish
Failed to load repositories. Confirm that selected base ref is valid, then try again.
Loading
base: e6e324eb28
Choose a base ref
...
head repository: official-stockfish/Stockfish
Failed to load repositories. Confirm that selected head ref is valid, then try again.
Loading
compare: 5372f81cc8
Choose a head ref
  • 9 commits
  • 9 files changed
  • 7 contributors

Commits on Apr 18, 2022

  1. Restore development version

    No functional change.
    vondele committed Apr 18, 2022
    Configuration menu
    Copy the full SHA
    c4db7fd View commit details
    Browse the repository at this point in the history

Commits on Apr 19, 2022

  1. Update default net to nn-d0b74ce1e5eb.nnue

    train a net using training data with a
    heavier weight on positions having 16 pieces on the board. More specifically,
    with a relative weight of `i * (32-i)/(16 * 16)+1` (where i is the number of pieces on the board).
    
    This is done with the trainer branch official-stockfish/nnue-pytorch#173
    
    The command used is:
    ```
    python train.py $datafile $datafile $restarttype $restartfile --gpus 1 --threads 4 --num-workers 12 --random-fen-skipping=3 --batch-size 16384 --progress_bar_refresh_rate 300 --smart-fen-skipping --features=HalfKAv2_hm^   --lambda=1.00  --max_epochs=$epochs --seed $RANDOM --default_root_dir exp/run_$i
    ```
    The datafile is T60T70wIsRightFarseerT60T74T75T76.binpack, the restart is from the master net.
    
    passed STC:
    LLR: 2.94 (-2.94,2.94) <0.00,2.50>
    Total: 22728 W: 6197 L: 5945 D: 10586
    Ptnml(0-2): 105, 2453, 6001, 2695, 110
    https://tests.stockfishchess.org/tests/view/625cf944ff677a888877cd90
    
    passed LTC:
    LLR: 2.94 (-2.94,2.94) <0.50,3.00>
    Total: 35664 W: 9535 L: 9264 D: 16865
    Ptnml(0-2): 30, 3524, 10455, 3791, 32
    https://tests.stockfishchess.org/tests/view/625d3c32ff677a888877d7ca
    
    closes #3989
    
    Bench: 7269563
    vondele committed Apr 19, 2022
    Configuration menu
    Copy the full SHA
    6e0680e View commit details
    Browse the repository at this point in the history

Commits on Apr 22, 2022

  1. Simplify away best move count logic

    the only place where it was used it was true with >99% probability so it seemed to not be doing much any more.
    
    Passed STC:
    https://tests.stockfishchess.org/tests/view/625f4778d00da81c22dd4c93
    LLR: 2.95 (-2.94,2.94) <-2.25,0.25>
    Total: 85152 W: 22487 L: 22406 D: 40259
    Ptnml(0-2): 313, 9035, 23818, 9078, 332
    
    Passed LTC:
    https://tests.stockfishchess.org/tests/view/625ff1f1b03f22647441a215
    LLR: 2.94 (-2.94,2.94) <-2.25,0.25>
    Total: 66776 W: 17768 L: 17673 D: 31335
    Ptnml(0-2): 46, 6200, 20792, 6313, 37
    
    close #3993
    
    bench 7280798
    Vizvezdenec authored and vondele committed Apr 22, 2022
    Configuration menu
    Copy the full SHA
    e41f727 View commit details
    Browse the repository at this point in the history
  2. Negative extension for ttMove that is less than alpha and value

    in the context of singular extensions
    
    Passed STC:
    https://tests.stockfishchess.org/tests/view/626047e8b03f22647441ade0
    LLR: 2.97 (-2.94,2.94) <0.00,2.50>
    Total: 50296 W: 13410 L: 13108 D: 23778
    Ptnml(0-2): 196, 5548, 13370, 5826, 208
    
    Passed LTC:
    https://tests.stockfishchess.org/tests/view/6260a513b03f22647441b970
    LLR: 2.96 (-2.94,2.94) <0.50,3.00>
    Total: 83896 W: 22433 L: 22054 D: 39409
    Ptnml(0-2): 49, 8273, 24938, 8626, 62
    
    closes #3995
    
    bench: 7729968
    candirufish authored and vondele committed Apr 22, 2022
    Configuration menu
    Copy the full SHA
    e1f12aa View commit details
    Browse the repository at this point in the history

Commits on May 3, 2022

  1. Simplify time management.

    Replace the best move instability adjustment factor by a simpler version which doesn't have a dependency on the iteration depth.
    
    STC:
    LLR: 2.94 (-2.94,2.94) <-2.25,0.25>
    Total: 30800 W: 8232 L: 8073 D: 14495
    Ptnml(0-2): 101, 3309, 8444, 3422, 124
    https://tests.stockfishchess.org/tests/view/6266c77bc5b924ba22908d30
    
    LTC:
    LLR: 2.95 (-2.94,2.94) <-2.25,0.25>
    Total: 61664 W: 16375 L: 16272 D: 29017
    Ptnml(0-2): 40, 5869, 18897, 6000, 26
    https://tests.stockfishchess.org/tests/view/6266fc39b3d1812808915f23
    
    closes #3999
    
    Bench: 7729968
    locutus2 authored and vondele committed May 3, 2022
    Configuration menu
    Copy the full SHA
    285a79e View commit details
    Browse the repository at this point in the history
  2. Use fail high count for LMR

    Increase reduction if next ply has a lot of fail high else reset count to 0
    
    Passed STC:
    https://tests.stockfishchess.org/tests/view/626ea8299116b52aa83b71f6
    LLR: 2.94 (-2.94,2.94) <0.00,2.50>
    Total: 144288 W: 38377 L: 37902 D: 68009
    Ptnml(0-2): 565, 16298, 38054, 16551, 676
    
    Passed LTC:
    https://tests.stockfishchess.org/tests/view/626fa0fb79f761bab2e382f0
    LLR: 2.98 (-2.94,2.94) <0.50,3.00>
    Total: 74872 W: 20050 L: 19686 D: 35136
    Ptnml(0-2): 51, 7541, 21893, 7895, 56
    
    closes #4006
    
    bench: 7084802
    candirufish authored and vondele committed May 3, 2022
    Configuration menu
    Copy the full SHA
    a32d208 View commit details
    Browse the repository at this point in the history

Commits on May 4, 2022

  1. Reduce depth after score improvement at PV nodes

    STC:
    LLR: 2.95 (-2.94,2.94) <0.00,2.50>
    Total: 73760 W: 19590 L: 19244 D: 34926
    Ptnml(0-2): 285, 8352, 19292, 8634, 317
    https://tests.stockfishchess.org/tests/view/626eb2dc9116b52aa83b73da
    
    LTC:
    LLR: 2.93 (-2.94,2.94) <0.50,3.00>
    Total: 114400 W: 30561 L: 30111 D: 53728
    Ptnml(0-2): 68, 11432, 33785, 11812, 103
    https://tests.stockfishchess.org/tests/view/626f730859e9c431e0b10b21
    
    closes #4008
    
    bench: 6174823
    snicolet committed May 4, 2022
    4 Configuration menu
    Copy the full SHA
    9eb7b60 View commit details
    Browse the repository at this point in the history

Commits on May 14, 2022

  1. Update NNUE architecture to SFNNv5. Update network to nn-3c0aa92af1da…

    ….nnue.
    
    Architecture changes:
    
        Duplicated activation after the 1024->15 layer with squared crelu (so 15->15*2). As proposed by vondele.
    
    Trainer changes:
    
        Added bias to L1 factorization, which was previously missing (no measurable improvement but at least neutral in principle)
        For retraining linearly reduce lambda parameter from 1.0 at epoch 0 to 0.75 at epoch 800.
        reduce max_skipping_rate from 15 to 10 (compared to vondele's outstanding PR)
    
    Note: This network was trained with a ~0.8% error in quantization regarding the newly added activation function.
          This will be fixed in the released trainer version. Expect a trainer PR tomorrow.
    
    Note: The inference implementation cuts a corner to merge results from two activation functions.
           This could possibly be resolved nicer in the future. AVX2 implementation likely not necessary, but NEON is missing.
    
    First training session invocation:
    
    python3 train.py \
        ../nnue-pytorch-training/data/nodes5000pv2_UHO.binpack \
        ../nnue-pytorch-training/data/nodes5000pv2_UHO.binpack \
        --gpus "$3," \
        --threads 4 \
        --num-workers 8 \
        --batch-size 16384 \
        --progress_bar_refresh_rate 20 \
        --random-fen-skipping 3 \
        --features=HalfKAv2_hm^ \
        --lambda=1.0 \
        --max_epochs=400 \
        --default_root_dir ../nnue-pytorch-training/experiment_$1/run_$2
    
    Second training session invocation:
    
    python3 train.py \
        ../nnue-pytorch-training/data/T60T70wIsRightFarseerT60T74T75T76.binpack \
        ../nnue-pytorch-training/data/T60T70wIsRightFarseerT60T74T75T76.binpack \
        --gpus "$3," \
        --threads 4 \
        --num-workers 8 \
        --batch-size 16384 \
        --progress_bar_refresh_rate 20 \
        --random-fen-skipping 3 \
        --features=HalfKAv2_hm^ \
        --start-lambda=1.0 \
        --end-lambda=0.75 \
        --gamma=0.995 \
        --lr=4.375e-4 \
        --max_epochs=800 \
        --resume-from-model /data/sopel/nnue/nnue-pytorch-training/data/exp367/nn-exp367-run3-epoch399.pt \
        --default_root_dir ../nnue-pytorch-training/experiment_$1/run_$2
    
    Passed STC:
    LLR: 2.95 (-2.94,2.94) <0.00,2.50>
    Total: 27288 W: 7445 L: 7178 D: 12665
    Ptnml(0-2): 159, 3002, 7054, 3271, 158
    https://tests.stockfishchess.org/tests/view/627e8c001919125939623644
    
    Passed LTC:
    LLR: 2.95 (-2.94,2.94) <0.50,3.00>
    Total: 21792 W: 5969 L: 5727 D: 10096
    Ptnml(0-2): 25, 2152, 6294, 2406, 19
    https://tests.stockfishchess.org/tests/view/627f2a855734b18b2e2ece47
    
    closes #4020
    
    Bench: 6481017
    Sopel97 authored and vondele committed May 14, 2022
    Configuration menu
    Copy the full SHA
    c079acc View commit details
    Browse the repository at this point in the history
  2. SE depth scaling using the previous depth

    This patch makes the SE depth condition more robust and allows it to scale with completed depth
    from a previous search.
    
    At long TC this patch is almost equivalent to #4016 which had
    
    VLTC:
    https://tests.stockfishchess.org/tests/view/626abd7e8707aa698c0093a8
    Elo: 2.35 +-1.5 (95%) LOS: 99.9%
    Total: 40000 W: 10991 L: 10720 D: 18289
    Ptnml(0-2): 8, 3534, 12648, 3799, 11
    nElo: 5.47 +-3.4 (95%) PairsRatio: 1.08
    
    VLTC multicore:
    https://tests.stockfishchess.org/tests/view/6272a6afc8f14123163c1997
    LLR: 2.94 (-2.94,2.94) <0.50,3.00>
    Total: 86808 W: 24165 L: 23814 D: 38829
    Ptnml(0-2): 11, 7253, 28524, 7606, 10
    
    however, it is now also gaining at LTC:
    
    LTC:
    https://tests.stockfishchess.org/tests/view/627e7cb523c0c72a05b651a9
    LLR: 2.94 (-2.94,2.94) <0.50,3.00>
    Total: 27064 W: 7285 L: 7046 D: 12733
    Ptnml(0-2): 8, 2446, 8390, 2675, 13
    
    and should have nearly no influence at STC as depth 27 is rarely reached.
    It was noticed that initializing the threshold with MAX_PLY, had an adverse effect,
    possibly because the first move is sensitive to this.
    
    closes #4021
    closes #4016
    
    Bench: 6481017
    Disservin authored and vondele committed May 14, 2022
    Configuration menu
    Copy the full SHA
    5372f81 View commit details
    Browse the repository at this point in the history
Loading