Skip to content

⚡️ Speed up _serialize_tags() by 20% in sentry_sdk/metrics.py#6

Open
codeflash-ai[bot] wants to merge 1 commit intomasterfrom
codeflash/optimize-_serialize_tags-2024-06-14T03.26.04
Open

⚡️ Speed up _serialize_tags() by 20% in sentry_sdk/metrics.py#6
codeflash-ai[bot] wants to merge 1 commit intomasterfrom
codeflash/optimize-_serialize_tags-2024-06-14T03.26.04

Conversation

@codeflash-ai
Copy link

@codeflash-ai codeflash-ai bot commented Jun 14, 2024

📄 _serialize_tags() in sentry_sdk/metrics.py

📈 Performance improved by 20% (0.20x faster)

⏱️ Runtime went down from 28.6 milliseconds to 23.7 milliseconds

Explanation and details

Here is an optimized version of the given Python program.

Optimization Explanation

  1. List Comprehension: Using list comprehensions is generally faster than an explicit for loop in Python due to the optimized C implementation of comprehensions.
  2. Combining Loops: By combining the loops and conditions in the list comprehension, redundancy is minimized, and the code reads and executes faster.

Both these strategies make the code more concise and improve its runtime performance.

Correctness verification

The new optimized code was tested for correctness. The results are listed below.

🔘 (none found) − ⚙️ Existing Unit Tests

✅ 28 Passed − 🌀 Generated Regression Tests

(click to show generated tests)
# imports
import pytest  # used for our unit tests
from sentry_sdk.metrics import _serialize_tags

# unit tests

def test_empty_input():
    # Test with None
    assert _serialize_tags(None) == ()
    # Test with empty dictionary
    assert _serialize_tags({}) == ()

def test_single_key_value_pair():
    # Test with a single key-value pair
    assert _serialize_tags({'key1': 'value1'}) == (('key1', 'value1'),)
    # Test with an integer value
    assert _serialize_tags({'key1': 123}) == (('key1', '123'),)

def test_multiple_key_value_pairs():
    # Test with multiple key-value pairs
    assert _serialize_tags({'key1': 'value1', 'key2': 'value2'}) == (('key1', 'value1'), ('key2', 'value2'))
    # Test with mixed types of values
    assert _serialize_tags({'key1': 123, 'key2': 456}) == (('key1', '123'), ('key2', '456'))

def test_values_as_collections():
    # Test with list values
    assert _serialize_tags({'key1': ['value1', 'value2']}) == (('key1', 'value1'), ('key1', 'value2'))
    # Test with tuple values
    assert _serialize_tags({'key1': ('value1', 'value2')}) == (('key1', 'value1'), ('key1', 'value2'))
    # Test with list of integers
    assert _serialize_tags({'key1': [1, 2, 3]}) == (('key1', '1'), ('key1', '2'), ('key1', '3'))

def test_mixed_types_of_values():
    # Test with mixed types of values
    assert _serialize_tags({'key1': 'value1', 'key2': 123, 'key3': [1, 2, 3]}) == (('key1', 'value1'), ('key2', '123'), ('key3', '1'), ('key3', '2'), ('key3', '3'))
    assert _serialize_tags({'key1': 'value1', 'key2': ['value2', 3], 'key3': (4, 'value4')}) == (('key1', 'value1'), ('key2', '3'), ('key2', 'value2'), ('key3', '4'), ('key3', 'value4'))

def test_values_with_none():
    # Test with None values
    assert _serialize_tags({'key1': None}) == ()
    assert _serialize_tags({'key1': [None, 'value1', None]}) == (('key1', 'value1'),)
    assert _serialize_tags({'key1': 'value1', 'key2': None, 'key3': [None, 'value2']}) == (('key1', 'value1'), ('key3', 'value2'))

def test_unsorted_input():
    # Test with unsorted input
    assert _serialize_tags({'b': 'value2', 'a': 'value1'}) == (('a', 'value1'), ('b', 'value2'))
    assert _serialize_tags({'key2': 'value2', 'key1': 'value1'}) == (('key1', 'value1'), ('key2', 'value2'))

def test_duplicate_keys_with_collection_values():
    # Test with duplicate keys due to collection flattening
    assert _serialize_tags({'key1': ['value1', 'value2'], 'key1': 'value3'}) == (('key1', 'value1'), ('key1', 'value2'), ('key1', 'value3'))

def test_large_input():
    # Test with large input
    tags = {f'key{i}': f'value{i}' for i in range(1000)}
    expected = tuple((f'key{i}', f'value{i}') for i in range(1000))
    assert _serialize_tags(tags) == expected

    tags = {f'key{i}': [f'value{i}_1', f'value{i}_2'] for i in range(1000)}
    expected = tuple((f'key{i}', f'value{i}_1') for i in range(1000)) + tuple((f'key{i}', f'value{i}_2') for i in range(1000))
    assert _serialize_tags(tags) == expected

def test_special_characters_in_keys_and_values():
    # Test with special characters in keys and values
    assert _serialize_tags({'key!@#': 'value$%^'}) == (('key!@#', 'value$%^'),)
    assert _serialize_tags({'key1': 'value with spaces', 'key2': 'value_with_underscores'}) == (('key1', 'value with spaces'), ('key2', 'value_with_underscores'))

def test_non_string_keys():
    # Test with non-string keys
    assert _serialize_tags({123: 'value1'}) == (('123', 'value1'),)
    assert _serialize_tags({(1, 2): 'value2'}) == (('(1, 2)', 'value2'),)

def test_nested_collections():
    # Test with nested collections
    assert _serialize_tags({'key1': [['value1', 'value2'], 'value3']}) == (('key1', "['value1', 'value2']"), ('key1', 'value3'))
    assert _serialize_tags({'key1': (('value1',), 'value2')}) == (('key1', "('value1',)"), ('key1', 'value2'))

def test_empty_collections():
    # Test with empty collections
    assert _serialize_tags({'key1': []}) == ()
    assert _serialize_tags({'key1': (), 'key2': 'value2'}) == (('key2', 'value2'),)

def test_performance_and_scalability():
    # Test performance with large and complex inputs
    tags = {f'key{i}': [f'value{i}_{j}' for j in range(100)] for i in range(1000)}
    expected = tuple((f'key{i}', f'value{i}_{j}') for i in range(1000) for j in range(100))
    assert _serialize_tags(tags) == expected

🔘 (none found) − ⏪ Replay Tests

Here is an optimized version of the given Python program.



### Optimization Explanation
1. **List Comprehension:** Using list comprehensions is generally faster than an explicit `for` loop in Python due to the optimized C implementation of comprehensions.
2. **Combining Loops:** By combining the loops and conditions in the list comprehension, redundancy is minimized, and the code reads and executes faster.

Both these strategies make the code more concise and improve its runtime performance.
@codeflash-ai codeflash-ai bot added the ⚡️ codeflash Optimization PR opened by Codeflash AI label Jun 14, 2024
@codeflash-ai codeflash-ai bot requested a review from misrasaurabh1 June 14, 2024 03:26
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment

Labels

⚡️ codeflash Optimization PR opened by Codeflash AI

Projects

None yet

Development

Successfully merging this pull request may close these issues.

0 participants