Skip to content
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
22 changes: 13 additions & 9 deletions lib/matplotlib/tests/test_ticker.py
Original file line number Diff line number Diff line change
Expand Up @@ -15,11 +15,13 @@

class TestMaxNLocator:
basic_data = [
(20, 100, np.array([20., 40., 60., 80., 100.])),
(0.001, 0.0001, np.array([0., 0.0002, 0.0004, 0.0006, 0.0008, 0.001])),
(-1e15, 1e15, np.array([-1.0e+15, -5.0e+14, 0e+00, 5e+14, 1.0e+15])),
(0, 0.85e-50, np.arange(6) * 2e-51),
(-0.85e-50, 0, np.arange(-5, 1) * 2e-51),
# vmin, vmax, expected
(20, 100, np.array([0, 20., 40., 60., 80., 100., 120])),
(0.001, 0.0001, np.array([0., 0.0002, 0.0004, 0.0006, 0.0008, 0.001, 0.0012])),
(-1e15, 1e15,
np.array([-1.5e15, -1.0e+15, -5.0e+14, 0e+00, 5e+14, 1.0e+15, 1.5e15])),
(0, 0.85e-50, np.arange(-1, 6) * 2e-51),
(-0.85e-50, 0, np.arange(-5, 2) * 2e-51),
]

integer_data = [
Expand All @@ -42,7 +44,7 @@ def test_integer(self, vmin, vmax, steps, expected):
class TestLinearLocator:
def test_basic(self):
loc = mticker.LinearLocator(numticks=3)
test_value = np.array([-0.8, -0.3, 0.2])
test_value = np.array([-1.3, -0.8, -0.3, 0.2, 0.7])
assert_almost_equal(loc.tick_values(-0.8, 0.2), test_value)

def test_set_params(self):
Expand Down Expand Up @@ -161,15 +163,15 @@ def test_number_of_minor_ticks(
9.50e-21, 1.05e-20, 1.10e-20],
[5.00e-15, 1.00e-14, 1.50e-14, 2.50e-14, 3.00e-14, 3.50e-14, 4.50e-14,
5.00e-14, 5.50e-14, 6.50e-14, 7.00e-14, 7.50e-14, 8.50e-14, 9.00e-14,
9.50e-14, 1.05e-13, 1.10e-13],
9.50e-14, 1.05e-13, 1.10e-13, 1.15e-13],
[-1.95e-07, -1.90e-07, -1.85e-07, -1.75e-07, -1.70e-07, -1.65e-07,
-1.55e-07, -1.50e-07, -1.45e-07, -1.35e-07, -1.30e-07, -1.25e-07,
-1.15e-07, -1.10e-07, -1.05e-07, -9.50e-08, -9.00e-08, -8.50e-08,
-7.50e-08, -7.00e-08, -6.50e-08, -5.50e-08, -5.00e-08, -4.50e-08,
-3.50e-08],
[1.21e-06, 1.22e-06, 1.23e-06, 1.24e-06, 1.26e-06, 1.27e-06, 1.28e-06,
1.29e-06, 1.31e-06, 1.32e-06, 1.33e-06, 1.34e-06, 1.36e-06, 1.37e-06,
1.38e-06, 1.39e-06, 1.41e-06, 1.42e-06],
1.38e-06, 1.39e-06, 1.41e-06, 1.42e-06, 1.43e-06],
[-1.435e-06, -1.430e-06, -1.425e-06, -1.415e-06, -1.410e-06,
-1.405e-06, -1.395e-06, -1.390e-06, -1.385e-06, -1.375e-06,
-1.370e-06, -1.365e-06, -1.355e-06, -1.350e-06, -1.345e-06],
Expand Down Expand Up @@ -336,7 +338,9 @@ def test_nbins_major(self, lims):
loc = mticker.LogitLocator(nbins=100)
for nbins in range(basic_needed, 2, -1):
loc.set_params(nbins=nbins)
assert len(loc.tick_values(*lims)) <= nbins + 2
ticks = loc.tick_values(*lims)
ticks_in_bounds = ticks[(ticks < lims[0]) & (ticks > lims[1])]
assert len(ticks_in_bounds) <= nbins + 1

@pytest.mark.parametrize(
"lims, expected_low_ticks",
Expand Down
25 changes: 22 additions & 3 deletions lib/matplotlib/ticker.py
Original file line number Diff line number Diff line change
Expand Up @@ -1827,7 +1827,12 @@ def tick_values(self, vmin, vmax):

if self.numticks == 0:
return []
ticklocs = np.linspace(vmin, vmax, self.numticks)
ticklocs, step = np.linspace(vmin, vmax, self.numticks, retstep=True)

# Extend so there is a single tick out of bounds
ticklocs = np.concatenate(
([ticklocs[0] - step], ticklocs, [ticklocs[-1] + step])
)

return self.raise_if_exceeds(ticklocs)

Expand Down Expand Up @@ -1948,13 +1953,27 @@ def le(self, x):
return d + 1
return d

def lt(self, x):
"""Return the largest integer n: n*step < x."""
d, m = divmod(x, self.step)
if self.closeto(m / self.step, 0):
return d - 1
return d

def ge(self, x):
"""Return the smallest n: n*step >= x."""
d, m = divmod(x, self.step)
if self.closeto(m / self.step, 0):
return d
return d + 1

def gt(self, x):
"""Return the smallest integer n: n*step > x."""
d, m = divmod(x, self.step)
if self.closeto(m / self.step, 1):
return d + 2
return d + 1


class MaxNLocator(Locator):
"""
Expand Down Expand Up @@ -2125,8 +2144,8 @@ def _raw_ticks(self, vmin, vmax):
# The edge ticks beyond vmin and/or vmax are needed for the
# "round_numbers" autolimit mode.
edge = _Edge_integer(step, offset)
low = edge.le(_vmin - best_vmin)
high = edge.ge(_vmax - best_vmin)
low = edge.lt(_vmin - best_vmin)
high = edge.gt(_vmax - best_vmin)
ticks = np.arange(low, high + 1) * step + best_vmin
# Count only the ticks that will be displayed.
nticks = ((ticks <= _vmax) & (ticks >= _vmin)).sum()
Expand Down