Skip to content
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
84 changes: 37 additions & 47 deletions examples/text_labels_and_annotations/usetex_demo.py
Original file line number Diff line number Diff line change
Expand Up @@ -3,77 +3,67 @@
Usetex Demo
===========

Shows how to use latex in a plot.

Also refer to the :doc:`/tutorials/text/usetex` guide.
"""
import matplotlib
matplotlib.rc('text', usetex=True)
import matplotlib.pyplot as plt

import numpy as np
import matplotlib.pyplot as plt
plt.rc('text', usetex=True)

# interface tracking profiles
N = 500
delta = 0.6
X = np.linspace(-1, 1, N)
plt.plot(X, (1 - np.tanh(4 * X / delta)) / 2, # phase field tanh profiles
X, (X + 1) / 2, # level set distance function
X, (1.4 + np.tanh(4 * X / delta)) / 4, # composition profile
X, (1.4 + np.tanh(4 * X / delta)) / 4, "C2", # composition profile
X, X < 0, 'k--') # sharp interface

# legend
plt.legend(('phase field', 'level set', 'composition', 'sharp interface'),
shadow=True, loc=(0.01, 0.55))

ltext = plt.gca().get_legend().get_texts()
plt.setp(ltext[0], fontsize=20)
plt.setp(ltext[1], fontsize=20)
plt.setp(ltext[2], fontsize=20)
plt.setp(ltext[3], fontsize=20)
plt.legend(('phase field', 'level set', 'sharp interface'),
shadow=True, loc=(0.01, 0.48), handlelength=1.5, fontsize=16)

# the arrow
height = 0.1
offset = 0.02
plt.plot((-delta / 2., delta / 2), (height, height), 'k', linewidth=2)
plt.plot((-delta / 2, -delta / 2 + offset * 2), (height, height - offset),
'k', linewidth=2)
plt.plot((-delta / 2, -delta / 2 + offset * 2), (height, height + offset),
'k', linewidth=2)
plt.plot((delta / 2, delta / 2 - offset * 2), (height, height - offset),
'k', linewidth=2)
plt.plot((delta / 2, delta / 2 - offset * 2), (height, height + offset),
'k', linewidth=2)
plt.text(-0.06, height - 0.06, r'$\delta$', {'color': 'k', 'fontsize': 24})
plt.annotate("", xy=(-delta / 2., 0.1), xycoords='data',
xytext=(delta / 2., 0.1), textcoords='data',
arrowprops=dict(arrowstyle="<->", connectionstyle="arc3"))
plt.text(0, 0.1, r'$\delta$',
{'color': 'k', 'fontsize': 24, 'ha' : 'center', 'va' : 'center',
'bbox' : dict(boxstyle="round", fc="w", ec="k", pad=0.2)})

# X-axis label
plt.xticks((-1, 0, 1), ('-1', '0', '1'), color='k', size=20)
# Use tex in labels
plt.xticks((-1, 0, 1), ('$-1$', r'$\pm 0$', '$+1$'), color='k', size=20)

# Left Y-axis labels
plt.ylabel(r'\bf{phase field} $\phi$', {'color': 'b', 'fontsize': 20})
plt.yticks((0, 0.5, 1), ('0', '.5', '1'), color='k', size=20)
# Left Y-axis labels, combine math mode and text mode
plt.ylabel(r'\bf{phase field} $\phi$', {'color': 'C0', 'fontsize': 20})
plt.yticks((0, 0.5, 1), (r'\bf{0}', r'\bf{.5}', r'\bf{1}'), color='k', size=20)

# Right Y-axis labels
plt.text(1.05, 0.5, r"\bf{level set} $\phi$", {'color': 'g', 'fontsize': 20},
plt.text(1.02, 0.5, r"\bf{level set} $\phi$", {'color': 'C2', 'fontsize': 20},
horizontalalignment='left',
verticalalignment='center',
rotation=90,
clip_on=False)
plt.text(1.01, -0.02, "-1", {'color': 'k', 'fontsize': 20})
plt.text(1.01, 0.98, "1", {'color': 'k', 'fontsize': 20})
plt.text(1.01, 0.48, "0", {'color': 'k', 'fontsize': 20})
clip_on=False,
transform=plt.gca().transAxes)

# Use multiline environment inside a `text`.
# level set equations
plt.text(0.1, 0.85,
r'$|\nabla\phi| = 1,$ \newline $ \frac{\partial \phi}{\partial t}'
r'+ U|\nabla \phi| = 0$',
{'color': 'g', 'fontsize': 20})
eq1 = r"\begin{eqnarray*}" + \
r"|\nabla\phi| &=& 1,\\" + \
r"\frac{\partial \phi}{\partial t} + U|\nabla \phi| &=& 0 " + \
r"\end{eqnarray*}"
plt.text(1, 0.9, eq1, {'color': 'C2', 'fontsize': 18}, va="top", ha="right")

# phase field equations
plt.text(0.2, 0.15,
r'$\mathcal{F} = \int f\left( \phi, c \right) dV,$ \newline '
r'$ \frac{ \partial \phi } { \partial t } = -M_{ \phi } '
r'\frac{ \delta \mathcal{F} } { \delta \phi }$',
{'color': 'b', 'fontsize': 20})
eq2 = r'\begin{eqnarray*}' + \
r'\mathcal{F} &=& \int f\left( \phi, c \right) dV, \\ ' + \
r'\frac{ \partial \phi } { \partial t } &=& -M_{ \phi } ' + \
r'\frac{ \delta \mathcal{F} } { \delta \phi }' + \
r'\end{eqnarray*}'
plt.text(0.18, 0.18, eq2, {'color': 'C0', 'fontsize': 16})

# these went wrong in pdf in a previous version
plt.text(-.9, .42, r'gamma: $\gamma$', {'color': 'r', 'fontsize': 20})
plt.text(-.9, .36, r'Omega: $\Omega$', {'color': 'b', 'fontsize': 20})
plt.text(-1, .30, r'gamma: $\gamma$', {'color': 'r', 'fontsize': 20})
plt.text(-1, .18, r'Omega: $\Omega$', {'color': 'b', 'fontsize': 20})

plt.show()