|
29 | 29 | dc = data.mean() |
30 | 30 | data -= dc |
31 | 31 |
|
32 | | -# without filter: 340 errors, 303bad/449good if DP |
| 32 | +# without filter: 340 errors, 303bad/449good if DP (324/473 if using leftover at write time) |
33 | 33 |
|
34 | 34 | # 91 errors |
35 | 35 | bandpass = sps.firwin(97, [.08/NYQUIST_MHZ, 1.20/NYQUIST_MHZ], pass_zero=False) |
|
41 | 41 | bandpass = sps.firwin(97, [.100/NYQUIST_MHZ, 1.50/NYQUIST_MHZ], pass_zero=False) |
42 | 42 | # 44 (double precision) |
43 | 43 | bandpass = sps.firwin(91, [.100/NYQUIST_MHZ, 1.50/NYQUIST_MHZ], pass_zero=False) |
44 | | -# 40 (double precision)/ 842 good |
| 44 | +# 40 (double precision)/ 842 good - 29/920 if using leftover |
45 | 45 | bandpass = sps.firwin(91, [.095/NYQUIST_MHZ, 1.72/NYQUIST_MHZ], pass_zero=False) |
| 46 | + |
| 47 | +# 30/957 with leftover |
| 48 | +bandpass = sps.firwin(65, [.150/NYQUIST_MHZ, 1.75/NYQUIST_MHZ], pass_zero=False) |
| 49 | + |
| 50 | +# 20/994 with leftover |
| 51 | +bandpass = sps.firwin(49, [.290/NYQUIST_MHZ, 1.80/NYQUIST_MHZ], pass_zero=False) |
| 52 | + |
| 53 | +# 17/999 with leftover |
| 54 | +bandpass = sps.firwin(49, [.290/NYQUIST_MHZ, 1.85/NYQUIST_MHZ], pass_zero=False) |
| 55 | + |
| 56 | +# 19/1007 with leftover |
| 57 | +bandpass = sps.firwin(45, [.360/NYQUIST_MHZ, 1.85/NYQUIST_MHZ], pass_zero=False) |
| 58 | + |
46 | 59 | data = sps.lfilter(bandpass, 1.0, data) |
47 | 60 |
|
48 | | -#bandpassb, bandpassa = sps.butter(4, [0.20/NYQUIST_MHZ, 1.7/NYQUIST_MHZ], btype='bandpass') |
| 61 | +#bandpassb, bandpassa = sps.butter(4, [0.10/NYQUIST_MHZ, 2.0/NYQUIST_MHZ], btype='bandpass') |
49 | 62 | #data = sps.lfilter(bandpassb, bandpassa, data) |
50 | 63 |
|
51 | 64 | # filter to binary signal |
|
0 commit comments