-
Notifications
You must be signed in to change notification settings - Fork 1.2k
Closed
Labels
kind/featureNew feature or requestNew feature or requestwontfixThis will not be worked onThis will not be worked on
Description
Is your feature request related to a problem? Please describe.
See this example: https://github.com/liamca/sqlite-hybrid-search/tree/main and the sqlite docs: https://www.sqlite.org/fts5.html
This should be complemented with the SQLite-vec implementation.
Describe the solution you'd like
document_embeddings = FeatureView(
name="embedded_documents",
entities=[item, author],
schema=[
Field(
name="vector",
dtype=Array(Float32),
# Look how easy it is to enable RAG!
vector_index=True,
vector_search_metric="COSINE",
),
Field(name="item_id", dtype=Int64),
Field(name="author_id", dtype=String),
Field(name="created_timestamp", dtype=UnixTimestamp),
Field(name="sentence_chunks", dtype=String),
Field(name="event_timestamp", dtype=UnixTimestamp),
],
source=rag_documents_source,
ttl=timedelta(hours=24),
)Somewhere in the FeatureView we should allow the search to be declared explicitly.
Also, need to drop the query_embedding as a required input in:
results = store.retrieve_online_documents_v2(
features=[
"document_embeddings:Embeddings",
"document_embeddings:content",
"document_embeddings:title",
],
query=query_embedding,
query_string="(content: 5) OR (title: 1) OR (title: 3)",
top_k=3,
).to_dict()
print(results)Describe alternatives you've considered
TBD
Additional context
Add any other context or screenshots about the feature request here.
Metadata
Metadata
Assignees
Labels
kind/featureNew feature or requestNew feature or requestwontfixThis will not be worked onThis will not be worked on