Skip to content

Commit e56e077

Browse files
committed
Ex1
1 parent 04cf04a commit e56e077

File tree

5 files changed

+32
-31
lines changed

5 files changed

+32
-31
lines changed

.gitignore

Lines changed: 1 addition & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1 @@
1+
./slides

index.adoc

Lines changed: 29 additions & 28 deletions
Original file line numberDiff line numberDiff line change
@@ -913,6 +913,35 @@ tail(cities, 2) # tail() the last 6, but can be changed
913913
914914
image::readr.png[height=750]
915915
916+
=== Exercise I
917+
918+
//. Pick a location (i.e. longitude and latitude), where you want to apply your analysis.
919+
920+
//. List all netCDF files (except files in `final task` folder) using `list.files.` Check the options `full.names` & `recursive`
921+
922+
. List all CSV files using `list.files.` Check the options `full.names` & `recursive`
923+
924+
. Loop over the listed files and read them as dataframes or time series
925+
926+
. Pick CSV files of your choice and:
927+
.. Plot different types of plots
928+
.. Run some statistical tests.
929+
.. Explore the climate conditions of your area
930+
931+
. You may do some aggregation, e.g., monthly, seasonally, and annually
932+
. You can perform trend analysis or any time series analysis you would like.
933+
934+
. You may convert the variables to common units such as Celsius or mm/day
935+
936+
[IMPORTANT]
937+
.Climate Variables:
938+
====
939+
940+
. sfcWind -> Surface wind [m/s]
941+
. pr -> Precipitation [kg m-2 s-1]
942+
. tas -> Surface temperature [k]
943+
====
944+
916945
== Factors
917946
918947
* _Factors_ categorize the data and store it as levels
@@ -3048,34 +3077,6 @@ be done with spatial data
30483077
** Voronoi polygons
30493078
** Extreme events distribution fit and analysis
30503079
3051-
== Exercise I
3052-
3053-
//. Pick a location (i.e. longitude and latitude), where you want to apply your analysis.
3054-
3055-
//. List all netCDF files (except files in `final task` folder) using `list.files.` Check the options `full.names` & `recursive`
3056-
3057-
. List all CSV files using `list.files.` Check the options `full.names` & `recursive`
3058-
3059-
. Loop over the listed files and read them as dataframes or time series
3060-
3061-
. Pick CSV files of your choice and:
3062-
.. Plot different types of plots
3063-
.. Run some statistical tests.
3064-
.. Explore the climate conditions of your area
3065-
3066-
. You may do some aggregation, e.g., monthly, seasonally, and annually
3067-
. You can perform trend analysis or any time series analysis you would like.
3068-
3069-
. You may convert the variables to common units such as Celsius or mm/day
3070-
3071-
[IMPORTANT]
3072-
.Climate Variables:
3073-
====
3074-
3075-
. sfcWind -> Surface wind [m/s]
3076-
. pr -> Precipitation [kg m-2 s-1]
3077-
. tas -> Surface temperature [k]
3078-
====
30793080
== Exercise II
30803081
30813082
//. Pick a location (i.e. longitude and latitude), where you want to apply your analysis.

index.html

Lines changed: 2 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -792,7 +792,8 @@
792792
id
793793
41000 1304206491
794794
41001 1643587468</code></pre></div></div></div></section><section id="_other_ways_of_importing"><h2>Other ways of importing</h2><div class="slide-content"><div class="ulist"><ul><li><p><em>File</em> &#8594; <em>Import dataset</em> &#8594; <em>From text</em></p><div class="ulist"><ul><li><p><em>(base)</em> &#8594; same as before but with visual help</p></li><li><p><em>(readr)</em> &#8594; using the <em>readr</em> library</p></li></ul></div></li></ul></div>
795-
<div class="imageblock"><img src="./images/readr.png" alt="readr" height="750"></div></div></section></section>
795+
<div class="imageblock"><img src="./images/readr.png" alt="readr" height="750"></div></div></section><section id="_exercise_i"><h2>Exercise I</h2><div class="slide-content"><div class="olist arabic"><ol class="arabic"><li><p>List all CSV files using <code>list.files.</code> Check the options <code>full.names</code> &amp; <code>recursive</code></p></li><li><p>Loop over the listed files and read them as dataframes or time series</p></li><li><p>Pick CSV files of your choice and:</p><div class="olist loweralpha"><ol class="loweralpha" type="a"><li><p>Plot different types of plots</p></li><li><p>Run some statistical tests.</p></li><li><p>Explore the climate conditions of your area</p></li></ol></div></li><li><p>You may do some aggregation, e.g., monthly, seasonally, and annually</p></li><li><p>You can perform trend analysis or any time series analysis you would like.</p></li><li><p>You may convert the variables to common units such as Celsius or mm/day</p></li></ol></div>
796+
<div class="admonitionblock important"><table><tr><td class="icon"><i class="fa fa-exclamation-circle" title="Important"></i></td><td class="content"><div class="title">Climate Variables:</div><div class="olist arabic"><ol class="arabic"><li><p>sfcWind &#8594; Surface wind [m/s]</p></li><li><p>pr &#8594; Precipitation [kg m-2 s-1]</p></li><li><p>tas &#8594; Surface temperature [k]</p></li></ol></div></td></tr></table></div></div></section></section>
796797
<section><section id="_factors"><h2>Factors</h2><div class="slide-content"><div class="ulist"><ul><li><p><em>Factors</em> categorize the data and store it as levels</p></li><li><p>Use strings and integers</p></li><li><p>Will prove very useful with <em>tidyverse</em> and plotting with <em>ggplot2</em></p></li></ul></div><div class="listingblock"><div class="content"><pre class="highlightjs highlight"><code class="language-R hljs" data-noescape="true" data-lang="R">data &lt;- c("East","West","East","North","North","East","West","West","West","East","North")
797798
print(data)
798799
[1] "East" "West" "East" "North" "North" "East" "West" "West" "West" "East" "North"
@@ -1926,8 +1927,6 @@
19261927
scale_fill_gradientn(colours = terrain.colors(7))</code></pre></div></div></div></section><section id="_fancy_plot"><h2>Fancy plot</h2><div class="slide-content"><div class="imageblock"><img src="./images/raster_gg_2.png" alt="raster gg 2" height="900"></div></div></section></section>
19271928
<section id="_last_remarks"><h2>Last remarks</h2><div class="slide-content"><div class="ulist"><ul><li><p>There usually is more than one way to achieve similar results</p></li><li><p>What was shown here was just a short overview of what can<br>
19281929
be done with spatial data</p><div class="ulist"><ul><li><p>Most of the functions in <em>QGIS</em> are available in R</p></li></ul></div></li><li><p>There are many more useful functions on <code>sf</code> to explore</p></li><li><p>There is much more to learn about <code>ggplot2</code> and <code>tidyverse</code></p></li><li><p>Hydrological analysis can be carried out with R</p><div class="ulist"><ul><li><p>Watershed delineation</p></li><li><p>Voronoi polygons</p></li><li><p>Extreme events distribution fit and analysis</p></li></ul></div></li></ul></div></div></section>
1929-
<section id="_exercise_i"><h2>Exercise I</h2><div class="slide-content"><div class="olist arabic"><ol class="arabic"><li><p>List all CSV files using <code>list.files.</code> Check the options <code>full.names</code> &amp; <code>recursive</code></p></li><li><p>Loop over the listed files and read them as dataframes or time series</p></li><li><p>Pick CSV files of your choice and:</p><div class="olist loweralpha"><ol class="loweralpha" type="a"><li><p>Plot different types of plots</p></li><li><p>Run some statistical tests.</p></li><li><p>Explore the climate conditions of your area</p></li></ol></div></li><li><p>You may do some aggregation, e.g., monthly, seasonally, and annually</p></li><li><p>You can perform trend analysis or any time series analysis you would like.</p></li><li><p>You may convert the variables to common units such as Celsius or mm/day</p></li></ol></div>
1930-
<div class="admonitionblock important"><table><tr><td class="icon"><i class="fa fa-exclamation-circle" title="Important"></i></td><td class="content"><div class="title">Climate Variables:</div><div class="olist arabic"><ol class="arabic"><li><p>sfcWind &#8594; Surface wind [m/s]</p></li><li><p>pr &#8594; Precipitation [kg m-2 s-1]</p></li><li><p>tas &#8594; Surface temperature [k]</p></li></ol></div></td></tr></table></div></div></section>
19311930
<section id="_exercise_ii"><h2>Exercise II</h2><div class="slide-content"><div class="olist arabic"><ol class="arabic"><li><p>List all CSV files using <code>list.files.</code> Check the options <code>full.names</code> &amp; <code>recursive</code></p></li><li><p>Loop over the listed files and read them as dataframes or time series</p></li><li><p>Pick CSV files of your choice and:</p><div class="olist loweralpha"><ol class="loweralpha" type="a"><li><p>Plot different types of plots</p></li><li><p>Run some statistical tests.</p></li><li><p>Explore the climate conditions of your area</p></li></ol></div></li><li><p>You may do some aggregation, e.g., monthly, seasonally, and annually</p></li><li><p>You can perform trend analysis or any time series analysis you would like.</p></li><li><p>You may convert the variables to common units such as Celsius or mm/day</p></li></ol></div>
19321931
<div class="admonitionblock important"><table><tr><td class="icon"><i class="fa fa-exclamation-circle" title="Important"></i></td><td class="content"><div class="title">Climate Variables:</div><div class="olist arabic"><ol class="arabic"><li><p>sfcWind &#8594; Surface wind [m/s]</p></li><li><p>pr &#8594; Precipitation [kg m-2 s-1]</p></li><li><p>tas &#8594; Surface temperature [k]</p></li></ol></div></td></tr></table></div></div></section>
19331932
<section id="_exercise_iii"><h2>Exercise III</h2><div class="slide-content"><div class="olist arabic"><ol class="arabic"><li><p>Pick a location (i.e. longitude and latitude), where you want to apply your analysis.</p></li><li><p>List all netCDF files in <code>final task</code> using <code>list.files.</code> Check the options <code>full.names</code> &amp; <code>recursive</code></p></li><li><p>Access the files using <code>terra</code> and obtain the vertical profiles for your location.</p></li><li><p>The netCDF files include variables such u and v wind components<br>

slides/slides_GW_1.pdf

669 KB
Binary file not shown.

slidest.pdf

-4.13 MB
Binary file not shown.

0 commit comments

Comments
 (0)