2222
2323parser .add_argument ('--gpu_id' , type = int , default = '0' , help = '' );
2424parser .add_argument ('--initial_model' , type = str , default = "data/syncnet.model" , help = '' );
25- parser .add_argument ('--batch_size' , type = int , default = '50 ' , help = '' );
25+ parser .add_argument ('--batch_size' , type = int , default = '20 ' , help = '' );
2626parser .add_argument ('--vshift' , type = int , default = '15' , help = '' );
2727parser .add_argument ('--video' , type = str , default = "" , help = '' );
2828
@@ -35,7 +35,7 @@ def calc_pdist(feat1, feat2, vshift=10):
3535
3636 win_size = vshift * 2 + 1
3737
38- feat2p = torch .nn .functional .pad (feat2 ,(0 ,0 ,vshift ,vshift ))
38+ feat2p = torch .nn .functional .pad (feat2 ,(0 ,0 ,vshift ,vshift )). data
3939
4040 dists = []
4141
@@ -104,7 +104,8 @@ def evaluate(self, videopath, batch_size=50, vshift=10):
104104 # ========== ==========
105105
106106 if float (len (audio ))/ float (len (images )) != 640 :
107- raw_input ("Mismatch between the number of audio and video frames. Press ENTER to continue." )
107+ print ("Mismatch between the number of audio and video frames. Type 'cont' to continue." )
108+ pdb .set_trace ()
108109
109110 # ========== ==========
110111 # Generate video and audio feats
@@ -118,14 +119,14 @@ def evaluate(self, videopath, batch_size=50, vshift=10):
118119 for i in range (0 ,lastframe ,batch_size ):
119120
120121 im_batch = [ imtv [:,:,vframe :vframe + 5 ,:,:] for vframe in range (i ,min (lastframe ,i + batch_size )) ]
121- im_in = torch .cat (im_batch ,0 ). cuda ( self . __GPU_ID__ )
122- im_out = self .__S__ .forward_lip (im_in );
123- im_feat .append (im_out .cpu ())
122+ im_in = torch .cat (im_batch ,0 )
123+ im_out = self .__S__ .forward_lip (im_in . cuda ( self . __GPU_ID__ ) );
124+ im_feat .append (im_out .data . cpu ())
124125
125126 cc_batch = [ cct [:,:,:,vframe * 4 :vframe * 4 + 20 ] for vframe in range (i ,min (lastframe ,i + batch_size )) ]
126- cc_in = torch .cat (cc_batch ,0 ). cuda ( self . __GPU_ID__ )
127- cc_out = self .__S__ .forward_aud (cc_in )
128- cc_feat .append (cc_out .cpu ())
127+ cc_in = torch .cat (cc_batch ,0 )
128+ cc_out = self .__S__ .forward_aud (cc_in . cuda ( self . __GPU_ID__ ) )
129+ cc_feat .append (cc_out .data . cpu ())
129130
130131 im_feat = torch .cat (im_feat ,0 )
131132 cc_feat = torch .cat (cc_feat ,0 )
0 commit comments