Skip to content

Commit 0650d55

Browse files
committed
DOC adding backlinks to docstrings
1 parent 05ad745 commit 0650d55

File tree

121 files changed

+818
-121
lines changed

Some content is hidden

Large Commits have some content hidden by default. Use the searchbox below for content that may be hidden.

121 files changed

+818
-121
lines changed

doc/modules/clustering.rst

Lines changed: 4 additions & 12 deletions
Original file line numberDiff line numberDiff line change
@@ -879,13 +879,11 @@ classes according to some similarity metric.
879879

880880
.. currentmodule:: sklearn.metrics
881881

882+
.. _adjusted_rand_score:
882883

883884
Adjusted Rand index
884885
-------------------
885886

886-
Presentation and usage
887-
~~~~~~~~~~~~~~~~~~~~~~
888-
889887
Given the knowledge of the ground truth class assignments ``labels_true``
890888
and our clustering algorithm assignments of the same samples
891889
``labels_pred``, the **adjusted Rand index** is a function that measures
@@ -1000,13 +998,11 @@ random labelings by defining the adjusted Rand index as follows:
1000998
* `Wikipedia entry for the adjusted Rand index
1001999
<http://en.wikipedia.org/wiki/Rand_index#Adjusted_Rand_index>`_
10021000

1001+
.. _mutual_info_score:
10031002

10041003
Mutual Information based scores
10051004
-------------------------------
10061005

1007-
Presentation and usage
1008-
~~~~~~~~~~~~~~~~~~~~~~
1009-
10101006
Given the knowledge of the ground truth class assignments ``labels_true`` and
10111007
our clustering algorithm assignments of the same samples ``labels_pred``, the
10121008
**Mutual Information** is a function that measures the **agreement** of the two
@@ -1168,12 +1164,11 @@ calculated using a similar form to that of the adjusted Rand index:
11681164
* `Wikipedia entry for the Adjusted Mutual Information
11691165
<http://en.wikipedia.org/wiki/Adjusted_Mutual_Information>`_
11701166

1167+
.. _homogeneity_completeness:
1168+
11711169
Homogeneity, completeness and V-measure
11721170
---------------------------------------
11731171

1174-
Presentation and usage
1175-
~~~~~~~~~~~~~~~~~~~~~~
1176-
11771172
Given the knowledge of the ground truth class assignments of the samples,
11781173
it is possible to define some intuitive metric using conditional entropy
11791174
analysis.
@@ -1329,9 +1324,6 @@ mean of homogeneity and completeness**:
13291324
Silhouette Coefficient
13301325
----------------------
13311326

1332-
Presentation and usage
1333-
~~~~~~~~~~~~~~~~~~~~~~
1334-
13351327
If the ground truth labels are not known, evaluation must be performed using
13361328
the model itself. The Silhouette Coefficient
13371329
(:func:`sklearn.metrics.silhouette_score`)

doc/modules/covariance.rst

Lines changed: 1 addition & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -248,6 +248,7 @@ paper. It is the same algorithm as in the R ``glasso`` package.
248248
graphical lasso" <http://biostatistics.oxfordjournals.org/content/9/3/432.short>`_,
249249
Biostatistics 9, pp 432, 2008
250250

251+
.. _robust_covariance:
251252

252253
Robust Covariance Estimation
253254
============================

doc/modules/decomposition.rst

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -554,9 +554,9 @@ structure of the error covariance :math:`\Psi`:
554554
* :math:`\Psi = \sigma^2 \mathbf{I}`: This assumption leads to
555555
the probabilistic model of :class:`PCA`.
556556

557-
* :math:`\Psi = diag(\psi_1, \psi_2, \dots, \psi_n)`: This model is called Factor
558-
Analysis, a classical statistical model. The matrix W is sometimes called
559-
the "factor loading matrix".
557+
* :math:`\Psi = diag(\psi_1, \psi_2, \dots, \psi_n)`: This model is called
558+
:class:`FactorAnalysis`, a classical statistical model. The matrix W is
559+
sometimes called the "factor loading matrix".
560560

561561
Both model essentially estimate a Gaussian with a low-rank covariance matrix.
562562
Because both models are probabilistic they can be integrated in more complex

doc/modules/ensemble.rst

Lines changed: 6 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -780,6 +780,8 @@ accessed via the ``feature_importances_`` property::
780780

781781
.. currentmodule:: sklearn.ensemble.partial_dependence
782782

783+
.. _partial_dependence:
784+
783785
Partial dependence
784786
..................
785787

@@ -989,10 +991,10 @@ calculated as follows:
989991
================ ========== ========== ==========
990992
classifier class 1 class 2 class 3
991993
================ ========== ========== ==========
992-
classifier 1 w1 * 0.2 w1 * 0.5 w1 * 0.3
993-
classifier 2 w2 * 0.6 w2 * 0.3 w2 * 0.1
994+
classifier 1 w1 * 0.2 w1 * 0.5 w1 * 0.3
995+
classifier 2 w2 * 0.6 w2 * 0.3 w2 * 0.1
994996
classifier 3 w3 * 0.3 w3 * 0.4 w3 * 0.3
995-
weighted average 0.37 0.4 0.3
997+
weighted average 0.37 0.4 0.3
996998
================ ========== ========== ==========
997999

9981000
Here, the predicted class label is 2, since it has the
@@ -1031,7 +1033,7 @@ Vector Machine, a Decision Tree, and a K-nearest neighbor classifier::
10311033
:scale: 75%
10321034

10331035
Using the `VotingClassifier` with `GridSearch`
1034-
---------------------------------------------
1036+
----------------------------------------------
10351037

10361038
The `VotingClassifier` can also be used together with `GridSearch` in order
10371039
to tune the hyperparameters of the individual estimators::

doc/modules/feature_extraction.rst

Lines changed: 1 addition & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -826,6 +826,7 @@ Some tips and tricks:
826826
Customizing the vectorizer can also be useful when handling Asian languages
827827
that do not use an explicit word separator such as whitespace.
828828

829+
.. _image_feature_extraction:
829830

830831
Image feature extraction
831832
========================

doc/modules/feature_selection.rst

Lines changed: 5 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -13,6 +13,8 @@ improve estimators' accuracy scores or to boost their performance on very
1313
high-dimensional datasets.
1414

1515

16+
.. _variance_threshold:
17+
1618
Removing features with low variance
1719
===================================
1820

@@ -45,6 +47,8 @@ so we can select using the threshold ``.8 * (1 - .8)``::
4547
As expected, ``VarianceThreshold`` has removed the first column,
4648
which has a probability :math:`p = 5/6 > .8` of containing a zero.
4749

50+
.. _univariate_feature_selection:
51+
4852
Univariate feature selection
4953
============================
5054

@@ -101,6 +105,7 @@ univariate p-values:
101105

102106
:ref:`example_feature_selection_plot_feature_selection.py`
103107

108+
.. _rfe:
104109

105110
Recursive feature elimination
106111
=============================

doc/modules/grid_search.rst

Lines changed: 2 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -72,6 +72,8 @@ evaluated and the best combination is retained.
7272
classifier (here a linear SVM trained with SGD with either elastic
7373
net or L2 penalty) using a :class:`pipeline.Pipeline` instance.
7474

75+
.. _randomized_parameter_search:
76+
7577
Randomized Parameter Optimization
7678
=================================
7779
While using a grid of parameter settings is currently the most widely used

doc/modules/kernel_approximation.rst

Lines changed: 3 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -43,6 +43,7 @@ kernel function or a precomputed kernel matrix.
4343
The number of samples used - which is also the dimensionality of the features computed -
4444
is given by the parameter ``n_components``.
4545

46+
.. _rbf_kernel_approx:
4647

4748
Radial Basis Function Kernel
4849
----------------------------
@@ -98,6 +99,7 @@ use of larger feature spaces more efficient.
9899

99100
* :ref:`example_plot_kernel_approximation.py`
100101

102+
.. _additive_chi_kernel_approx:
101103

102104
Additive Chi Squared Kernel
103105
---------------------------
@@ -130,6 +132,7 @@ with the approximate feature map provided by :class:`RBFSampler` to yield an app
130132
feature map for the exponentiated chi squared kernel.
131133
See the [VZ2010]_ for details and [VVZ2010]_ for combination with the :class:`RBFSampler`.
132134

135+
.. _skewed_chi_kernel_approx:
133136

134137
Skewed Chi Squared Kernel
135138
-------------------------

doc/modules/linear_model.rst

Lines changed: 6 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -266,6 +266,7 @@ They also tend to break when the problem is badly conditioned
266266

267267
* :ref:`example_linear_model_plot_lasso_model_selection.py`
268268

269+
.. _elastic_net:
269270

270271
Elastic Net
271272
===========
@@ -486,6 +487,9 @@ previously chosen dictionary elements.
486487
<http://blanche.polytechnique.fr/~mallat/papiers/MallatPursuit93.pdf>`_,
487488
S. G. Mallat, Z. Zhang,
488489

490+
491+
.. _bayesian_regression:
492+
489493
Bayesian Regression
490494
===================
491495

@@ -752,6 +756,8 @@ while with ``loss="hinge"`` it fits a linear support vector machine (SVM).
752756

753757
* :ref:`sgd`
754758

759+
.. _perceptron:
760+
755761
Perceptron
756762
==========
757763

doc/modules/manifold.rst

Lines changed: 1 addition & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -149,6 +149,7 @@ The overall complexity of Isomap is
149149
<http://www.sciencemag.org/content/290/5500/2319.full>`_
150150
Tenenbaum, J.B.; De Silva, V.; & Langford, J.C. Science 290 (5500)
151151

152+
.. _locally_linear_embedding:
152153

153154
Locally Linear Embedding
154155
========================

0 commit comments

Comments
 (0)