Skip to content

Commit 05ad745

Browse files
committed
STYLE cosmetic fixes in sklearn.mixture.gmm
1 parent 01aff46 commit 05ad745

File tree

1 file changed

+18
-18
lines changed

1 file changed

+18
-18
lines changed

sklearn/mixture/gmm.py

Lines changed: 18 additions & 18 deletions
Original file line numberDiff line numberDiff line change
@@ -33,16 +33,19 @@ def log_multivariate_normal_density(X, means, covars, covariance_type='diag'):
3333
X : array_like, shape (n_samples, n_features)
3434
List of n_features-dimensional data points. Each row corresponds to a
3535
single data point.
36+
3637
means : array_like, shape (n_components, n_features)
3738
List of n_features-dimensional mean vectors for n_components Gaussians.
3839
Each row corresponds to a single mean vector.
40+
3941
covars : array_like
4042
List of n_components covariance parameters for each Gaussian. The shape
4143
depends on `covariance_type`:
4244
(n_components, n_features) if 'spherical',
4345
(n_features, n_features) if 'tied',
4446
(n_components, n_features) if 'diag',
4547
(n_components, n_features, n_features) if 'full'
48+
4649
covariance_type : string
4750
Type of the covariance parameters. Must be one of
4851
'spherical', 'tied', 'diag', 'full'. Defaults to 'diag'.
@@ -119,7 +122,6 @@ class GMM(BaseEstimator):
119122
Initializes parameters such that every mixture component has zero
120123
mean and identity covariance.
121124
122-
123125
Parameters
124126
----------
125127
n_components : int, optional
@@ -182,8 +184,6 @@ class GMM(BaseEstimator):
182184
converged_ : bool
183185
True when convergence was reached in fit(), False otherwise.
184186
185-
186-
187187
See Also
188188
--------
189189
@@ -268,13 +268,15 @@ def __init__(self, n_components=1, covariance_type='diag',
268268

269269
def _get_covars(self):
270270
"""Covariance parameters for each mixture component.
271-
The shape depends on `cvtype`::
272271
273-
(`n_states`, 'n_features') if 'spherical',
274-
(`n_features`, `n_features`) if 'tied',
275-
(`n_states`, `n_features`) if 'diag',
276-
(`n_states`, `n_features`, `n_features`) if 'full'
277-
"""
272+
The shape depends on ``cvtype``::
273+
274+
(n_states, n_features) if 'spherical',
275+
(n_features, n_features) if 'tied',
276+
(n_states, n_features) if 'diag',
277+
(n_states, n_features, n_features) if 'full'
278+
279+
"""
278280
if self.covariance_type == 'full':
279281
return self.covars_
280282
elif self.covariance_type == 'diag':
@@ -323,8 +325,8 @@ def score_samples(self, X):
323325
raise ValueError('The shape of X is not compatible with self')
324326

325327
lpr = (log_multivariate_normal_density(X, self.means_, self.covars_,
326-
self.covariance_type)
327-
+ np.log(self.weights_))
328+
self.covariance_type) +
329+
np.log(self.weights_))
328330
logprob = logsumexp(lpr, axis=1)
329331
responsibilities = np.exp(lpr - logprob[:, np.newaxis])
330332
return logprob, responsibilities
@@ -420,8 +422,8 @@ def sample(self, n_samples=1, random_state=None):
420422
return X
421423

422424
def fit_predict(self, X, y=None):
423-
"""
424-
Fit and then predict labels for data.
425+
"""Fit and then predict labels for data.
426+
425427
Warning: due to the final maximization step in the EM algorithm,
426428
with low iterations the prediction may not be 100% accurate
427429
@@ -653,7 +655,7 @@ def aic(self, X):
653655

654656

655657
#########################################################################
656-
## some helper routines
658+
# some helper routines
657659
#########################################################################
658660

659661

@@ -684,8 +686,7 @@ def _log_multivariate_normal_density_tied(X, means, covars):
684686

685687

686688
def _log_multivariate_normal_density_full(X, means, covars, min_covar=1.e-7):
687-
"""Log probability for full covariance matrices.
688-
"""
689+
"""Log probability for full covariance matrices."""
689690
n_samples, n_dim = X.shape
690691
nmix = len(means)
691692
log_prob = np.empty((n_samples, nmix))
@@ -751,8 +752,7 @@ def _validate_covars(covars, covariance_type, n_components):
751752

752753
def distribute_covar_matrix_to_match_covariance_type(
753754
tied_cv, covariance_type, n_components):
754-
"""Create all the covariance matrices from a given template
755-
"""
755+
"""Create all the covariance matrices from a given template"""
756756
if covariance_type == 'spherical':
757757
cv = np.tile(tied_cv.mean() * np.ones(tied_cv.shape[1]),
758758
(n_components, 1))

0 commit comments

Comments
 (0)