Skip to content

PyTorch code for joint reconstruction of activity and attenuation using diffusion posterior sampling.

Notifications You must be signed in to change notification settings

clemphg/jraa-dps

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

7 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

JRAA-DPS: Joint Reconstruction of Activity and Attenuation using Diffusion Posterior Sampling

Illustration of the sampling scheme of JRAA-DPS

This repository contains PyTorch code for the preprint "Joint Reconstruction of Activity and Attenuation in PET by Diffusion Posterior Sampling in Wavelet Coefficient Space" (2025) [arXiv link]

If you use this code in your research, please consider citing:

@article{phung2025joint,
  title={Joint Reconstruction of Activity and Attenuation in PET by Diffusion Posterior Sampling in Wavelet Coefficient Space},
  author={Phung-Ngoc, Cl{\'e}mentine and Bousse, Alexandre and De Paepe, Antoine and Merlin, Thibaut and Laurent, Baptiste and Dang, Hong-Phuong and Saut, Olivier and Visvikis, Dimitris},
  journal={arXiv preprint arXiv:2505.18782},
  year={2025}
}

Installation

conda env create -f environment.yml
conda activate jraadpsenv

Data

Data is preprocessed from DICOM patient files into 128x256x256 volumes stored in .npy format for easy dataloading with ActivityAttenuationDataset.

Training

python train.py \
    --data configs/data.yml \
    --model configs/model.yml \
    --train configs/train.yml

Sampling

python reconstruct.py \
    --data configs/data.yml \
    --model configs/model.yml \
    --proj configs/projector.yml \
    --infer configs/inference.yml

Acknowledgments

Code is base on the following repositories:

About

PyTorch code for joint reconstruction of activity and attenuation using diffusion posterior sampling.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages