Skip to content

[BUG] Results for bagging different for opencl #3606

@willyborn

Description

@willyborn

The bagging example has an accuracy of 91.45% for CPU and CUDA. For OpenCL, the accuracy is only 27.06%

Description

The result should be independent from used platform (except rounding errors).

Reproducible Code and/or Steps

System Information

All run in Debug mode, explaining the long prediction times.

ArrayFire v3.9.0 (CPU, 64-bit Windows, build f4157374e)
[0] AMD: AMD A10-7870K Radeon R7, 12 Compute Cores 4C+8G
Accuracy on testing  data: 91.45
Prediction time: 1829.4632

D:\github\willyborn\arrayfire\build\examples\machine_learning\Debug\bagging_cpu.exe (process 13640) exited with code 0.
------------------
ArrayFire v3.9.0 (CUDA, 64-bit Windows, build f4157374e)
Platform: CUDA Runtime 11.8, Driver: 12060
[0] NVIDIA GeForce GTX 750 Ti, 2048 MB, CUDA Compute 5.0
Accuracy on testing  data: 91.45
Prediction time: 668.5332

D:\github\willyborn\arrayfire\build\examples\machine_learning\Debug\bagging_cuda.exe (process 11996) exited with code 0.
------------------
ArrayFire v3.9.0 (OpenCL, 64-bit Windows, build f4157374e)
[0] AMD: Spectre, 7211 MB -- OpenCL 2.0 AMD-APP (3224.5) -- Device driver 3224.5 -- FP64 Support: True
-1- NVIDIA: NVIDIA GeForce GTX 750 Ti, 2047 MB -- OpenCL 3.0 CUDA -- Device driver 560.81 -- FP64 Support: True
Accuracy on testing  data: 27.06
Prediction time: 15.0551

D:\github\willyborn\arrayfire\build\examples\machine_learning\Debug\bagging_opencl.exe (process 12884) exited with code 0.

Checklist

  • Using the latest available ArrayFire release
  • GPU drivers are up to date

Metadata

Metadata

Assignees

No one assigned

    Labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions