Skip to content

Commit 209599e

Browse files
authored
Add EXPECTIMINIMAX
1 parent 0c67b75 commit 209599e

File tree

1 file changed

+8
-1
lines changed

1 file changed

+8
-1
lines changed

md/Minimax-Decision.md

Lines changed: 8 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1,4 +1,4 @@
1-
# MINIMAX-DECISION
1+
# MINIMAX-DECISION and EXPECTIMINIMAX
22

33
## AIMA3e
44
__function__ MINIMAX-DECISION(_state_) __returns__ _an action_
@@ -22,3 +22,10 @@ __function__ MIN\-VALUE(_state_) __returns__ _a utility value_
2222

2323
---
2424
__Figure__ ?? An algorithm for calculating minimax decisions. It returns the action corresponding to the best possible move, that is, the move that leads to the outcome with the best utility, under the assumption that the opponent plays to minimize utility. The functions MAX\-VALUE and MIN\-VALUE go through the whole game tree, all the way to the leaves, to determine the backed\-up value of a state. The notation argmax <sub>_a_ &Element; _S_</sub> _f_(_a_) computes the element _a_ of set _S_ that has maximum value of _f_(_a_).
25+
26+
---
27+
__function__ EXPECTIMINIMAX(_s_) =
28+
&emsp;UTILITY(_s_) __if__ TERMINAL\-TEST(_s_)
29+
&emsp;max<sub>_a_</sub> EXPECTIMINIMAX(RESULT(_s, a_)) __if__ PLAYER(_s_)= MAX
30+
&emsp;min<sub>_a_</sub> EXPECTIMINIMAX(RESULT(_s, a_)) __if__ PLAYER(_s_)= MIN
31+
&emsp;∑<sub>_r_</sub> P(_r_) EXPECTIMINIMAX(RESULT(_s, r_)) __if__ PLAYER(_s_)= CHANCE

0 commit comments

Comments
 (0)