Skip to content

Commit db96465

Browse files
committed
issue
1 parent 8b03130 commit db96465

File tree

1 file changed

+46
-5
lines changed

1 file changed

+46
-5
lines changed

README.md

Lines changed: 46 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -33,19 +33,61 @@ g++ main.cpp -lm -Wall
3333
./a.out a.txt > a_out.txt
3434
```
3535

36-
or if one wants use all input files in the working directory use simply:
36+
or if one wants use all input files in the working directory use simply:
3737

3838
```
3939
make
40-
```
40+
```
4141

42-
# examples
43-
* see files in [txt directory](./txt):
42+
# examples
43+
* see files in [txt directory](./txt):
4444
* input files: *.txt
4545
* output files : *_out.txt
4646
* [cubic Julia set - location by Roger Lee Bagula](https://commons.wikimedia.org/wiki/File:Cubic_Julia_set_C_%3D-0.040000000000000036-0.78*I_with_internal_level_curves.png)
4747
* [Critical orbit f(z) = z*z+-0.749413589136570+0.015312826507689*i](https://commons.wikimedia.org/wiki/File:Critical_orbit_f(z)_%3D_z*z%2Bc_and_c%3D-0.749413589136570%2B0.015312826507689*i.png)
4848

49+
50+
## isues
51+
52+
In case of multiple roots the numerical algorithm can show 2 roots close to each other. See [output](./txt/cubic_p2_Bagula_out.txt) of the [cubic_p2_Bagula.txt](./txt/cubic_p2_Bagula.txt):
53+
54+
```txt
55+
coefficients read from input file cubic_p2_Bagula.txt
56+
degree 3 coefficient = ( +1.0000000000000000 +0.0000000000000000*i)
57+
degree 2 coefficient = ( +0.0000000000000000 +0.0000000000000000*i)
58+
degree 1 coefficient = ( +0.0000000000000000 +0.0000000000000000*i)
59+
degree 0 coefficient = ( -0.0400000000000000 -0.7800000000000000*i)
60+
61+
Input polynomial p(z)=(1+0i)*z^3+(-0.040000000000000035527-0.78000000000000002665i)
62+
63+
derivative dp/dz = (3+0i)*z^2
64+
65+
2 critical points found
66+
67+
cp#0: -2.2351741790771484375e-08,-2.2351741790771484375e-08 . It's critical orbit is bounded and enters cycle #0 length=2
68+
and it's stability = |multiplier|=0.95704 =attractive
69+
internal angle = 0.045777099465243623055
70+
cycle = { 0.12845610612214106161,-0.42699144182978676643 ; -0.108141353107358687,-0.7232875185669475071 ; }
71+
72+
cp#1: -2.2351741790771484375e-08,9.4296410679817199707e-09 . It's critical orbit is bounded and enters cycle #0
73+
```
74+
75+
one can check using Maxima CAS that there is only one critical point z=0
76+
```
77+
%i1) f:z^3+c;
78+
3
79+
(%o1) z + c
80+
(%i2) diff(f,z,1);
81+
2
82+
(%o2) 3 z
83+
(%i3) solve(3*z^2=0);
84+
(%o3) [z = 0]
85+
```
86+
87+
88+
89+
90+
4991
# see also:
5092
* [program describe ](https://en.wikibooks.org/wiki/Fractals/mandelbrot-numerics#m-describe) from mandelbrot-numerics library by Claude Heiland-Allen
5193
* [prm](https://github.com/raboehm/prm) - Find polynomial roots with multiplicities using mpmath by Bob Boehm
@@ -86,7 +128,6 @@ OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
86128

87129
# git
88130

89-
90131
```git
91132
git init
92133
git add README.md

0 commit comments

Comments
 (0)