Machine Learning + Flask Web App for predicting and optimizing wind turbine blade performance.
The full web application is deployed at:
👉 https://windturbinebladeoptimization.onrender.com
This project presents a complete machine-learning–driven pipeline for wind turbine blade structural behavior prediction and optimization.
It combines synthetic dataset generation, Random Forest regression modeling, interactive Flask-based prediction dashboard, and comprehensive visualization reports.
The goal is to help researchers, engineers, and digital twin developers simulate how turbine blade materials and geometry respond to load, pressure, vibration, and fatigue.
- Synthetic dataset generation
- Data preprocessing
- Model training and evaluation
- Model serialization using
joblib
- Interactive input form
- Real-time predictions for:
- Deformation
- Stress
- Strain
- Factor of safety
- Fatigue life
- Damage index
- Input distribution plots
- Correlation heatmaps
- Scatter relationships
- Model feature importance (Tree-based)
- Actual vs Predicted curves
- Residual analysis
- Engineering relationship plots
All charts saved under /reports/figures.
src/windturbine/data→ dataset generationsrc/windturbine/model→ ML model trainingsrc/windturbine/app→ web appsrc/windturbine/visualization→ plotting suitedocs/→ reports & documentationassets/→ screenshots, extracted images
| Layer | Technology |
|---|---|
| Backend | Python 3, Flask |
| Machine Learning | Scikit-Learn, NumPy, Pandas |
| Visualization | Matplotlib, Seaborn |
| Deployment | Render.com |
| Packaging | joblib, modular Python architecture |
| Version Control | Git + GitHub |
WindTurbineBladeOptimization/
│
├── assets/ # screenshots & extracted PPT images
├── docs/
│ └── TECHNICAL_REPORT.md # full engineering & ML report
│
├── reports/
│ └── figures/ # generated plots
│
├── src/
│ └── windturbine/
│ ├── data_generation.py
│ ├── train.py
│ ├── app.py
│ └── visualization.py
│
├── tests/ # full CI test suite
│
├── synthetic_data/ # generated datasets
├── models/ # saved ML models
├── README.md
└── LICENSE
Plots are auto-generated under /reports/figures.
Include:
python3 -m venv .venv
source .venv/bin/activatepip install -r requirements.txtpython -m src.windturbine.data_generation --n 5000 --seed 42python -m src.windturbine.trainpython -m src.windturbine.visualizationpython -m src.windturbine.apppytest -qDinesh Chandra — TheComputationalCore
- GitHub: https://github.com/TheComputationalCore
- YouTube: https://www.youtube.com/@TheComputationalCore
- Passion: AI × Simulation × Digital Twins × Computational Engineering
This project is open-source under the MIT License.
This work is inspired by real-world engineering analysis, structural mechanics - "Analysis of wind turbine blade using ansys software" - my project during graduation.
If you like this project, consider ⭐ starring the repo!








