Skip to content

[BUG Report + fix]: Saving after loading tf.keras model #1181

@GaijinOtohp

Description

@GaijinOtohp

Description

It seems that loading the model adds two KeyValuePair to Tensorflow.Train.AutoTrackable. Their keys are non_trainable_variables and layers. Their values are of type Tensorflow.Loader._UserObject.

So saving the model seems to get other KeyValuePair values from TrackableSavedModelSaver.trackable_children(cache) and concatenates them with the KeyValuePair values from Tensorflow.Train.AutoTrackable. This causes a conflict between two values with the same key names (non_trainable_variables and layers) and different values types (Tensorflow.Training.ListWrapper and Tensorflow.Loader._UserObject.)

Converting the concatenated KeyValuePair values to a dictionary will cause the error.

Reproduction Steps

            var layers = tf.keras.layers;

            Tensor input = tf.keras.Input((-1, 1), name: "input_place_holder");
            Tensor hiddenLayer1 = layers.Dense(7, activation: "linear").Apply(input);
            Tensor output = layers.Dense(2, activation: "linear").Apply(hiddenLayer1);
            var model = tf.keras.Model(input, output);

            Tensor results0 = model.predict(tf.constant(new float[,] { { -8 } }));

            model.save("./saved_model/");


            //___________________________________________________________________//
            //___________________________________________________________________//
            model = tf.keras.models.load_model("./saved_model/");

            Tensorflow.NumPy.NDArray inputs = new Tensorflow.NumPy.NDArray(new float[,] { { -5 }, { -4 }, { -3 }, { -2 }, { -1 }, { 0 }, { 1 }, { 2 }, { 3 }, { 4 }, { 5 } });
            Tensorflow.NumPy.NDArray outputs = new Tensorflow.NumPy.NDArray(new float[,] { { 0, 2 }, { 1, 4 }, { 2, 6 }, { 3, 8 }, { 4, 10 }, { 5, 12 }, { 6, 14 }, { 7, 16 }, { 8, 18 }, { 9, 20 }, { 10, 22 } });

            float learningRate = 0.01f;
            model.compile(optimizer: tf.keras.optimizers.SGD(learningRate), loss: tf.keras.losses.MeanSquaredError());

            model.fit(inputs, outputs, epochs: 1000);

            model.save("./saved_model/");

            Tensor results1 = model.predict(tf.constant(new float[,] { { -8 } }));

Known Workarounds

I have just removed the two KeyValuePair values of Tensorflow.Train.AutoTrackable before converting the concatenated KeyValuePair values to dictionary. And it seems to work just fine.

Fix:

In line 30 in the file Tensorflow.Keras/Engine/Layer.Serialize.cs:
return children.Concat(base._trackable_children(save_type, cache)).ToDictionary(x => x.Key, x => x.Value);
---> return children.Concat(base._trackable_children(save_type, cache)).GroupBy(x => x.Key).Select(g => g.First()).ToDictionary(x => x.Key, x => x.Value);

Configuration and Other Information

No response

Metadata

Metadata

Assignees

No one assigned

    Labels

    bugSomething isn't working

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions