-
-
Notifications
You must be signed in to change notification settings - Fork 2.9k
Open
Labels
bugSomething isn't workingSomething isn't working
Description
在提问之前...
- 我已经尝试了PDFMathTranslate-next,并在PDFMathTranslate-next提交了issue
- 我已经搜索了现有的 issues
- 我在提问题之前至少花费了 5 分钟来思考和准备
- 我已经认真且完整的阅读了 wiki
- 我已经认真检查了问题和网络环境无关(包括但不限于Google不可用,模型下载失败)
使用的环境
python 3.12
pdfzh 1.9.6请选择安装方式
pip
描述你的问题
翻译后出现乱码
如何复现
- 执行 '...'
- 选择 '....'
- 出现问题
预期行为
No response
相关 Logs
Abstract— We present three tailored algorithms for solving
large-scale mixed-integer linear fractional programming
(MILFP) problems. The first one combines Branch-and-Bound
method with Charnes-Cooper transformation. The other two
tailored MILFP solution methods are the parametric algorithm
and the reformulation-linearization algorithm. Extensive
computational studies are performed to demonstrate the
efficiency of these algorithms and to compare them with some
general-purpose mixed-integer nonlinear programming
methods. A performance profile is given based on the algorithm
performance analysis and benchmarking methods. The
applications of these algorithms are further illustrated through
an application on water supply chain optimization for shale gas
production. Computational results show that the parametric
algorithm and the reformulation-linearization algorithm ha
摘要 䢞我们提出了三种针对大规模混合整数线性分数规
划( 姞嗓壜勍峠)问题的定制算法獙第一个结合了分支定界方法
与查恩斯 㥷库珀变换獙另外两种定制的 姞嗓壜勍峠解决方案方法是
参数算法和重新制定 㥷线性化算法獙进行了广泛的计算研究,
以展示这些算法的有效性,并将其与一些通用的混合整数非线
性规划方法进行比较獙基于算法性能分析和基准测试方法给出
了性能概览獙通过一个关于页岩气生产供水链优化的应用进一
步说明了这些算法的应用獙计算结果表明,在所有测试的解决
方案方法中,参数算法和重新制定 㥷线性化算法具有最高的效
率獙
原始PDF文件
No response
还有别的吗?
No response
Reactions are currently unavailable
Metadata
Metadata
Assignees
Labels
bugSomething isn't workingSomething isn't working