-
Notifications
You must be signed in to change notification settings - Fork 2k
[#8733][feat] Add Llama4 MoE handling to AutoDeploy #9556
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
[#8733][feat] Add Llama4 MoE handling to AutoDeploy #9556
Conversation
Signed-off-by: Tal Cherckez <127761168+tcherckez-nvidia@users.noreply.github.com>
📝 WalkthroughWalkthroughThis PR introduces support for BMM-based Mixture of Experts (MoE) pattern matching and fusion with stacked TRT-LLM formatted weights. It adds conditional routing modes (input-side vs. output-side), new custom operators, pattern detection for Llama4-style MoE, and corresponding tensor parallelism sharding support. Changes
Sequence DiagramsequenceDiagram
participant Graph as Computation Graph
participant PatternMatcher as MatchBmmMoePattern
participant TransformLib as Transform Library
participant CustomOp as Custom Operators
participant Sharding as Sharding Engine
Graph->>PatternMatcher: Scan for BMM-based MoE pattern
PatternMatcher->>PatternMatcher: Locate gate+up BMM operations
PatternMatcher->>PatternMatcher: Extract input/routing and output/routing
PatternMatcher->>TransformLib: Normalize weights (Llama4 → TRT-LLM format)
TransformLib->>TransformLib: Transpose w3_w1_stacked and w2_stacked
TransformLib->>CustomOp: Insert torch_moe_bmm call with stacked weights
CustomOp->>CustomOp: Apply input-side routing (scale input by routing_weights)
CustomOp->>CustomOp: Invoke per-expert MLPs
CustomOp->>Graph: Return fused MoE output
Graph->>Sharding: Detect torch_moe_bmm for EP sharding
Sharding->>Sharding: Route to BmmEPShardingInfo
Sharding->>Sharding: Shard selected_experts and final_scales per rank
Sharding->>Sharding: Insert all-reduce after MoE node
Sharding->>Graph: Apply tensor-parallel sharding
Estimated code review effort🎯 4 (Complex) | ⏱️ ~60 minutes Areas requiring extra attention:
Pre-merge checks and finishing touches❌ Failed checks (1 warning, 1 inconclusive)
✅ Passed checks (1 passed)
✨ Finishing touches
🧪 Generate unit tests (beta)
Thanks for using CodeRabbit! It's free for OSS, and your support helps us grow. If you like it, consider giving us a shout-out. Comment |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Actionable comments posted: 0
Caution
Some comments are outside the diff and can’t be posted inline due to platform limitations.
⚠️ Outside diff range comments (3)
tensorrt_llm/_torch/auto_deploy/utils/sharding_utils.py (1)
1591-1599: Potential issue with transform list routing.The
_transform_list_dictmapping at line 1598 addsBmmEPShardingInfoafterEPShardingInfoat line 1596. SinceBmmEPShardingInfois a subclass ofEPShardingInfo, and theadd()method usesisinstance()to find the appropriate list,BmmEPShardingInfoinstances will matchEPShardingInfofirst and be routed toep_transformsinstead ofstacked_ep_transforms.Consider reordering so subclasses come before parent classes:
self._transform_list_dict = { WeightShardingInfo: self.weight_sharding_transforms, BMMShardingInfo: self.bmm_transforms, + BmmEPShardingInfo: self.stacked_ep_transforms, EPShardingInfo: self.ep_transforms, ParameterUpdateInfo: self.parameter_update_transforms, - BmmEPShardingInfo: self.stacked_ep_transforms, }tests/unittest/_torch/auto_deploy/unit/singlegpu/custom_ops/test_ad_moe_op.py (1)
1-10: Missing NVIDIA copyright header.As per coding guidelines, all TensorRT-LLM Open Source Software code files should contain an NVIDIA copyright header that includes the current year at the top.
tests/unittest/_torch/helpers.py (1)
1-3: Missing NVIDIA copyright header.As per coding guidelines, all TensorRT-LLM Open Source Software code files should contain an NVIDIA copyright header that includes the current year at the top.
🧹 Nitpick comments (3)
tests/unittest/_torch/auto_deploy/unit/singlegpu/custom_ops/test_ad_moe_op.py (1)
167-169: Clarify test setup: overridingselected_expertsdiscards actual routing.Line 169 replaces the actual topk routing decisions with all 1s, routing every token to expert 1. Combined with line 168 pre-scaling the input, this creates a specific but potentially confusing test scenario.
Consider adding a comment explaining why this setup is intentional, or use the actual routing from
setup_bmm_moe_testfor more realistic coverage.with torch.inference_mode(): + # Pre-scale input and force all tokens to expert 1 to test + # uniform routing scenario with BMM-based MoE x = final_scales * x selected_experts = torch.ones_like(selected_experts)tests/unittest/_torch/helpers.py (1)
131-139: Document theapply_routing_on_inputparameter.The docstring is missing documentation for the
apply_routing_on_inputparameter. This is important since it has a different default value (True) compared toreference_moe_torch(False)."""Reference for stacked MoE (torch_moe_bmm) in TRT-LLM format. Args: x: (seq_len, hidden_size) selected_experts: (seq_len, topk) final_scales: (seq_len, topk) w3_w1_stacked_weight: (num_experts, 2*intermediate_size, hidden_size) - TRT-LLM format w2_stacked_weight: (num_experts, hidden_size, intermediate_size) - TRT-LLM format + apply_routing_on_input: If True, apply routing to INPUT (default for Llama4 pattern). + If False, apply routing to OUTPUT (alternative pattern). + """tensorrt_llm/_torch/auto_deploy/transform/library/fused_moe.py (1)
164-190: Consider simplifying dtype handling and ones_node creation.Two observations:
Dtype condition (line 168): The condition
weight_dtype != torch.float32casts when weights are NOT float32. However, this doesn't check if the input already matches the weight dtype, potentially adding unnecessary cast operations.Ones node overhead (lines 186-190): Creating a tensor of ones to prevent the kernel from applying routing adds runtime overhead. Consider adding a kernel flag to skip routing multiplication instead.
- if weight_dtype is not None and weight_dtype != torch.float32: + # Cast to weight dtype only if input dtype differs + if weight_dtype is not None and hidden_states.meta.get('tensor_meta', {}).dtype != weight_dtype: input_to_scale = graph.call_function(For the ones_node, this could be a future optimization if profiling shows it's a bottleneck.
📜 Review details
Configuration used: Path: .coderabbit.yaml
Review profile: CHILL
Plan: Pro
📒 Files selected for processing (8)
tensorrt_llm/_torch/auto_deploy/config/default.yaml(1 hunks)tensorrt_llm/_torch/auto_deploy/custom_ops/fused_moe/torch_moe.py(6 hunks)tensorrt_llm/_torch/auto_deploy/transform/library/fused_moe.py(2 hunks)tensorrt_llm/_torch/auto_deploy/transform/library/sharding.py(3 hunks)tensorrt_llm/_torch/auto_deploy/utils/sharding_utils.py(6 hunks)tests/unittest/_torch/auto_deploy/unit/multigpu/transformations/library/test_ep_sharding.py(1 hunks)tests/unittest/_torch/auto_deploy/unit/singlegpu/custom_ops/test_ad_moe_op.py(3 hunks)tests/unittest/_torch/helpers.py(2 hunks)
🧰 Additional context used
📓 Path-based instructions (2)
**/*.py
📄 CodeRabbit inference engine (CODING_GUIDELINES.md)
**/*.py: The code developed for TensorRT-LLM should conform to Python 3.8+
Indent Python code with 4 spaces; do not use tabs
Always maintain the namespace when importing in Python, even if only one class or function from a module is used (e.g., usefrom package.subpackage import fooand thenfoo.SomeClass()instead offrom package.subpackage.foo import SomeClass)
Python filenames should use snake_case (e.g.,some_file.py)
Python class names should use PascalCase (e.g.,class SomeClass)
Python function and method names should use snake_case (e.g.,def my_awesome_function():)
Python local variable names should use snake_case, with prefixkfor variable names that start with a number (e.g.,k_99th_percentile = ...)
Python global variables should use upper snake_case with prefixG(e.g.,G_MY_GLOBAL = ...)
Python constants should use upper snake_case (e.g.,MY_CONSTANT = ...)
Avoid shadowing variables declared in an outer scope in Python
Initialize all externally visible members of a Python class in the constructor
For Python interfaces that may be used outside a file, prefer docstrings over comments
Python comments should be reserved for code within a function, or interfaces that are local to a file
Use Google style docstrings for Python classes and functions, which can be parsed by Sphinx
Python attributes and variables can be documented inline with type and description (e.g.,self.x = 5followed by"""<type>: Description of 'x'""")
Avoid using reflection in Python when functionality can be easily achieved without reflection
When using try-except blocks in Python, limit the except clause to the smallest set of specific errors possible instead of catching all exceptions
When using try-except blocks in Python to handle multiple possible variable types (duck-typing), keep the body of the try as small as possible and use the else block to implement the logic
Files:
tests/unittest/_torch/helpers.pytensorrt_llm/_torch/auto_deploy/transform/library/sharding.pytensorrt_llm/_torch/auto_deploy/custom_ops/fused_moe/torch_moe.pytests/unittest/_torch/auto_deploy/unit/singlegpu/custom_ops/test_ad_moe_op.pytests/unittest/_torch/auto_deploy/unit/multigpu/transformations/library/test_ep_sharding.pytensorrt_llm/_torch/auto_deploy/utils/sharding_utils.pytensorrt_llm/_torch/auto_deploy/transform/library/fused_moe.py
**/*.{cpp,h,cu,py}
📄 CodeRabbit inference engine (CODING_GUIDELINES.md)
All TensorRT-LLM Open Source Software code files should contain an NVIDIA copyright header that includes the current year at the top
Files:
tests/unittest/_torch/helpers.pytensorrt_llm/_torch/auto_deploy/transform/library/sharding.pytensorrt_llm/_torch/auto_deploy/custom_ops/fused_moe/torch_moe.pytests/unittest/_torch/auto_deploy/unit/singlegpu/custom_ops/test_ad_moe_op.pytests/unittest/_torch/auto_deploy/unit/multigpu/transformations/library/test_ep_sharding.pytensorrt_llm/_torch/auto_deploy/utils/sharding_utils.pytensorrt_llm/_torch/auto_deploy/transform/library/fused_moe.py
🧠 Learnings (8)
📓 Common learnings
Learnt from: djns99
Repo: NVIDIA/TensorRT-LLM PR: 6915
File: cpp/tensorrt_llm/kernels/cutlass_kernels/moe_gemm/moe_kernels.cu:4010-4012
Timestamp: 2025-08-14T23:23:27.449Z
Learning: For MOE (Mixture of Experts) code reviews in TensorRT-LLM, avoid repeatedly suggesting finalize fusion validation checks and safety assertions. The user djns99 has indicated these suggestions are repetitive and unwanted across multiple MOE-related changes.
Learnt from: jhaotingc
Repo: NVIDIA/TensorRT-LLM PR: 7856
File: cpp/tensorrt_llm/thop/fp8BlockScaleMoe.cpp:159-166
Timestamp: 2025-09-19T21:28:13.751Z
Learning: In TensorRT-LLM blockScaleMoe routing (cpp/tensorrt_llm/kernels/trtllmGenKernels/blockScaleMoe/runner.cu), the DeepSeek routing method performs reinterpret_cast<float*>(routingLogits) at line 89, which could cause issues if routing_logits are BF16. However, Qwen3-FP8 models use RenormalizeNaive routing method and are not affected by this dtype casting issue.
Learnt from: ChristinaZ
Repo: NVIDIA/TensorRT-LLM PR: 7068
File: cpp/tensorrt_llm/kernels/moeTopKFuncs.cuh:169-172
Timestamp: 2025-08-20T07:43:36.447Z
Learning: In TensorRT-LLM MOE kernels, when processing up to 128 experts across 32 threads, each thread handles at most 4 experts (N < 5 constraint), where N represents candidates per thread rather than total system capacity.
Learnt from: nv-lschneider
Repo: NVIDIA/TensorRT-LLM PR: 7910
File: cpp/tensorrt_llm/thop/allreduceOp.cpp:352-446
Timestamp: 2025-09-23T15:12:38.312Z
Learning: In TensorRT-LLM NCCL device allreduce implementation (cpp/tensorrt_llm/thop/allreduceOp.cpp), the goto pattern in runNCCLAllReduceDeviceFusion is intentionally used for future extensibility, allowing multiple switch cases to fallback to the default handler. While not aesthetically ideal, this pattern supports adding more fusion cases later that can reuse the same fallback logic.
📚 Learning: 2025-09-19T21:28:13.751Z
Learnt from: jhaotingc
Repo: NVIDIA/TensorRT-LLM PR: 7856
File: cpp/tensorrt_llm/thop/fp8BlockScaleMoe.cpp:159-166
Timestamp: 2025-09-19T21:28:13.751Z
Learning: In TensorRT-LLM blockScaleMoe routing (cpp/tensorrt_llm/kernels/trtllmGenKernels/blockScaleMoe/runner.cu), the DeepSeek routing method performs reinterpret_cast<float*>(routingLogits) at line 89, which could cause issues if routing_logits are BF16. However, Qwen3-FP8 models use RenormalizeNaive routing method and are not affected by this dtype casting issue.
Applied to files:
tests/unittest/_torch/helpers.pytensorrt_llm/_torch/auto_deploy/custom_ops/fused_moe/torch_moe.py
📚 Learning: 2025-08-08T22:03:40.707Z
Learnt from: sklevtsov-nvidia
Repo: NVIDIA/TensorRT-LLM PR: 3294
File: cpp/tensorrt_llm/kernels/cutlass_kernels/moe_gemm/moe_kernels.cu:1198-1209
Timestamp: 2025-08-08T22:03:40.707Z
Learning: In the CUTLASS MoE kernels (cpp/tensorrt_llm/cutlass_extensions), when `layout_info.fusion` is set to `TmaWarpSpecializedGroupedGemmInput::EpilogueFusion::FINALIZE`, the `router_scales` parameter must be non-null by design. The fused finalize kernel epilogue does not perform nullptr checks and requires valid router scales to function correctly. This is an implicit contract that callers must satisfy when enabling the FINALIZE fusion mode.
Applied to files:
tests/unittest/_torch/helpers.pytensorrt_llm/_torch/auto_deploy/custom_ops/fused_moe/torch_moe.py
📚 Learning: 2025-08-14T23:23:27.449Z
Learnt from: djns99
Repo: NVIDIA/TensorRT-LLM PR: 6915
File: cpp/tensorrt_llm/kernels/cutlass_kernels/moe_gemm/moe_kernels.cu:4010-4012
Timestamp: 2025-08-14T23:23:27.449Z
Learning: For MOE (Mixture of Experts) code reviews in TensorRT-LLM, avoid repeatedly suggesting finalize fusion validation checks and safety assertions. The user djns99 has indicated these suggestions are repetitive and unwanted across multiple MOE-related changes.
Applied to files:
tensorrt_llm/_torch/auto_deploy/custom_ops/fused_moe/torch_moe.pytensorrt_llm/_torch/auto_deploy/transform/library/fused_moe.py
📚 Learning: 2025-08-21T02:39:12.009Z
Learnt from: djns99
Repo: NVIDIA/TensorRT-LLM PR: 7104
File: cpp/tensorrt_llm/kernels/cutlass_kernels/moe_gemm/moe_kernels.cu:1475-1480
Timestamp: 2025-08-21T02:39:12.009Z
Learning: The min latency mode functionality in TensorRT-LLM MOE kernels (cpp/tensorrt_llm/kernels/cutlass_kernels/moe_gemm/moe_kernels.cu) is deprecated and no longer being maintained/updated, as confirmed by djns99. Bug reports and optimization suggestions for the computeStridesTmaWarpSpecializedLowLatencyKernel and related min latency code paths should be deprioritized.
Applied to files:
tensorrt_llm/_torch/auto_deploy/custom_ops/fused_moe/torch_moe.pytensorrt_llm/_torch/auto_deploy/transform/library/fused_moe.py
📚 Learning: 2025-07-28T17:06:08.621Z
Learnt from: moraxu
Repo: NVIDIA/TensorRT-LLM PR: 6303
File: tests/integration/test_lists/qa/examples_test_list.txt:494-494
Timestamp: 2025-07-28T17:06:08.621Z
Learning: In TensorRT-LLM testing, it's common to have both CLI flow tests (test_cli_flow.py) and PyTorch API tests (test_llm_api_pytorch.py) for the same model. These serve different purposes: CLI flow tests validate the traditional command-line workflow, while PyTorch API tests validate the newer LLM API backend. Both are legitimate and should coexist.
Applied to files:
tests/unittest/_torch/auto_deploy/unit/singlegpu/custom_ops/test_ad_moe_op.py
📚 Learning: 2025-08-29T14:07:45.863Z
Learnt from: EmmaQiaoCh
Repo: NVIDIA/TensorRT-LLM PR: 7370
File: tests/unittest/trt/model_api/test_model_quantization.py:24-27
Timestamp: 2025-08-29T14:07:45.863Z
Learning: In TensorRT-LLM's CI infrastructure, pytest skip markers (pytest.mark.skip) are properly honored even when test files have __main__ blocks that call test functions directly. The testing system correctly skips tests without requiring modifications to the __main__ block execution pattern.
Applied to files:
tests/unittest/_torch/auto_deploy/unit/singlegpu/custom_ops/test_ad_moe_op.py
📚 Learning: 2025-09-23T15:12:38.312Z
Learnt from: nv-lschneider
Repo: NVIDIA/TensorRT-LLM PR: 7910
File: cpp/tensorrt_llm/thop/allreduceOp.cpp:352-446
Timestamp: 2025-09-23T15:12:38.312Z
Learning: In TensorRT-LLM NCCL device allreduce implementation (cpp/tensorrt_llm/thop/allreduceOp.cpp), the goto pattern in runNCCLAllReduceDeviceFusion is intentionally used for future extensibility, allowing multiple switch cases to fallback to the default handler. While not aesthetically ideal, this pattern supports adding more fusion cases later that can reuse the same fallback logic.
Applied to files:
tensorrt_llm/_torch/auto_deploy/transform/library/fused_moe.py
🧬 Code graph analysis (3)
tensorrt_llm/_torch/auto_deploy/transform/library/sharding.py (2)
tensorrt_llm/_torch/auto_deploy/utils/sharding_utils.py (5)
BmmEPShardingInfo(1508-1518)add(1624-1654)from_node(660-665)from_node(1439-1444)EPShardingInfo(1429-1455)tensorrt_llm/_torch/auto_deploy/utils/node_utils.py (1)
is_op(198-221)
tests/unittest/_torch/auto_deploy/unit/singlegpu/custom_ops/test_ad_moe_op.py (3)
tests/unittest/_torch/helpers.py (2)
reference_bmm_moe_torch(124-170)reference_moe_torch(96-121)tensorrt_llm/_torch/auto_deploy/custom_ops/fused_moe/torch_moe.py (1)
torch_moe_bmm(175-227)tensorrt_llm/_torch/auto_deploy/custom_ops/fused_moe/trtllm_moe.py (1)
trtllm_moe_fused(7-54)
tensorrt_llm/_torch/auto_deploy/utils/sharding_utils.py (4)
tensorrt_llm/_torch/auto_deploy/transform/library/sharding.py (1)
ShardingTransformConfig(65-94)tensorrt_llm/functional.py (1)
AllReduceStrategy(3876-3885)tests/unittest/_torch/auto_deploy/unit/multigpu/custom_ops/test_mxfp4_moe_ep.py (1)
_split_range_last_remainder(14-19)tensorrt_llm/_torch/auto_deploy/utils/node_utils.py (1)
is_op(198-221)
🪛 Ruff (0.14.6)
tensorrt_llm/_torch/auto_deploy/custom_ops/fused_moe/torch_moe.py
233-233: Unused function argument: selected_experts
(ARG001)
234-234: Unused function argument: routing_weights
(ARG001)
235-235: Unused function argument: w3_w1_stacked
(ARG001)
236-236: Unused function argument: w2_stacked
(ARG001)
237-237: Unused function argument: act_fn
(ARG001)
238-238: Unused function argument: apply_routing_on_input
(ARG001)
tensorrt_llm/_torch/auto_deploy/utils/sharding_utils.py
1274-1274: Avoid specifying long messages outside the exception class
(TRY003)
1293-1293: Avoid specifying long messages outside the exception class
(TRY003)
1511-1511: Unused method argument: gm
(ARG002)
tensorrt_llm/_torch/auto_deploy/transform/library/fused_moe.py
54-54: zip() without an explicit strict= parameter
Add explicit value for parameter strict=
(B905)
64-64: Avoid specifying long messages outside the exception class
(TRY003)
1059-1059: Unused method argument: cm
(ARG002)
1060-1060: Unused method argument: factory
(ARG002)
1061-1061: Unused method argument: shared_config
(ARG002)
1070-1070: zip() without an explicit strict= parameter
Add explicit value for parameter strict=
(B905)
1070-1070: Prefer itertools.pairwise() over zip() when iterating over successive pairs
Replace zip() with itertools.pairwise()
(RUF007)
⏰ Context from checks skipped due to timeout of 90000ms. You can increase the timeout in your CodeRabbit configuration to a maximum of 15 minutes (900000ms). (1)
- GitHub Check: Pre-commit Check
🔇 Additional comments (28)
tensorrt_llm/_torch/auto_deploy/config/default.yaml (1)
31-32: LGTM!The new
match_bmm_moe_patterntransform entry is correctly placed in the pattern_matcher stage alongside the existing MoE pattern matchers. The ordering aftermatch_dense_moe_patternis appropriate.tensorrt_llm/_torch/auto_deploy/custom_ops/fused_moe/torch_moe.py (4)
29-84: LGTM!The
apply_routing_on_inputparameter is well-implemented with clear documentation. The conditional logic correctly handles both routing modes:
- INPUT-SIDE:
silu(input * routing_weight)- routing affects activation- OUTPUT-SIDE:
silu(input) * routing_weight- routing scales outputThe default value
Falsemaintains backward compatibility with existing callers.
174-227: LGTM!The new
torch_moe_bmmoperator correctly implements BMM-based MoE with stacked TRT-LLM format weights. The implementation:
- Properly extracts W3 (first half) and W1 (second half) from the fused gate_up tensor
- Handles dtype conversion for mixed-precision scenarios
- Delegates to
_template_moewith the configurable routing behaviorThe documentation clearly specifies the expected weight shapes and routing semantics.
230-240: LGTM!The fake implementation correctly returns
torch.empty_like(x)for shape inference during tracing. The static analysis warnings about unused arguments (ARG001) are expected for fake/stub implementations where the signature must match the real operator.
243-295: LGTM!The
torch_fused_moeimplementation correctly follows the SwiGLU computation pattern with TRT-LLM format weights. The docstring updates clearly document the expected weight shapes and format conversions.tensorrt_llm/_torch/auto_deploy/utils/sharding_utils.py (6)
1096-1153: LGTM!The
_slice_expert_dimfunction correctly handles bothNodeandTensorinputs with proper load hook registration for checkpoint compatibility. The edge case handling for empty module names at line 1127 is appropriate.
1156-1258: LGTM with observation.The
_slice_and_transpose_expert_dimfunction correctly handles the Llama4 to TRT-LLM format conversion with W1/W3 swapping and transpose operations.Minor observation: At lines 1204-1206, when
swap_gate_up=Truefor non-parameter nodes, the code logs a warning but continues without actually swapping. This is acceptable given the primary use case is parameter nodes, but worth noting for future maintainers.
1261-1274: LGTM!The
_get_dim0_from_arghelper correctly handles multiple input types (Tensor, get_attr Node, and meta val) with appropriate fallback logic.
1277-1357: LGTM!The
_insert_sharded_moe_bmmfunction correctly implements EP sharding for BMM-based MoE nodes with stacked weights. The implementation:
- Properly handles selected_experts and final_scales sharding
- Applies Llama4 to TRT-LLM format conversion during weight slicing
- Adds the required all_reduce for result aggregation
The pattern follows the existing
_insert_sharded_moeimplementation for consistency.
1508-1518: LGTM!The
BmmEPShardingInfoclass correctly extendsEPShardingInfowith appropriate validation and apply methods fortorch_moe_bmmnodes. The unusedgmargument invalidateis expected for interface consistency with the parent class.
1521-1527: LGTM!The EP sharding rules are correctly updated to include the mapping for
torch_moe_bmmtoBmmEPShardingInfo.tensorrt_llm/_torch/auto_deploy/transform/library/sharding.py (2)
141-143: LGTM!The executor loop for
stacked_ep_transformsfollows the established pattern for processing sharding transforms and correctly incrementsnum_matches.
1060-1090: LGTM!The
detect_ep_shardfunction correctly handles the newtorch_moe_bmmop by:
- Including it in the MoE op whitelist
- Routing it to
BmmEPShardingInfo.from_nodefor proper sharding info creationThe conditional logic cleanly separates BMM-based MoE from other variants while maintaining the existing pattern for other MoE operations.
tests/unittest/_torch/auto_deploy/unit/multigpu/transformations/library/test_ep_sharding.py (1)
162-201: Verify attribute names in SharedConfig class.The suggested fix changes
sharding_configtosharding_transform_containerbut the attribute naming betweenstacked_ep_transformsvsep_transformsneeds clarification by cross-referencing the SharedConfig definition and line 132 of the same test file.tests/unittest/_torch/auto_deploy/unit/singlegpu/custom_ops/test_ad_moe_op.py (2)
65-106: LGTM!The setup function correctly initializes test data for BMM-based MoE with topk=1 and TRT-LLM formatted stacked weights.
191-204: Verify routing weight application is not doubled.The input
xis pre-scaled byfinal_scalesat line 168, andreference_bmm_moe_torchis called withapply_routing_on_input=Truewhich scales again. Verify thattorch_moe_bmm,torch_moe_fused, andtrtllm_moe_fusedoperators all consistently apply or skip routing scaling internally; if they behave differently, the test tolerances and comparison assertions may mask operator divergence.tests/unittest/_torch/helpers.py (2)
96-121: LGTM!The
apply_routing_on_inputparameter addition correctly implements conditional routing—scaling inputs before MLP computation when True, or scaling outputs after when False.
140-170: LGTM!The implementation correctly handles TRT-LLM weight format with proper slicing and transposition, and the conditional routing logic mirrors
reference_moe_torch.tensorrt_llm/_torch/auto_deploy/transform/library/fused_moe.py (10)
21-92: LGTM!The function correctly stacks per-expert weights into fused tensors and registers them as parameters. The handling of both
gated_mlpandmlpstyles is appropriate.
204-257: LGTM!The unified handling of both standard MoE and Llama4 BMM MoE patterns is clean. The
fused_key_counterincrement placement after the if/else is correct.
740-760: LGTM!The config class and transform registration follow the established pattern. The docstring clearly states the topk=1 constraint.
762-827: LGTM!The
_find_gate_up_bmmstatic method correctly traces back through the BMM MoE pattern:final_bmm ← mul(up, silu(gate)) ← chunk ← first_bmm. The chunk validation (chunk.args[1] != 2) ensures we're matching the expected gate/up split.
829-891: LGTM!The
_find_input_and_routingmethod correctly validates the topk=1 constraint and traces back to find original input and routing information.
893-944: LGTM!The
_find_output_and_routing_flavormethod properly detects both INPUT-SIDE and OUTPUT-SIDE routing patterns by checking for multiplication after the sum operation.
1056-1061: Unused arguments are acceptable for interface compliance.The
cm,factory, andshared_configarguments are required by theBaseTransform._applyinterface. The static analysis warnings can be safely ignored.
1070-1076: Consideritertools.pairwise()for Python 3.10+.Static analysis suggests using
itertools.pairwise()for successive pairs. However, since the codebase targets Python 3.8+ per coding guidelines, the currentzip()approach is appropriate. Thestrict=parameter suggestion is also not critical here since both slices come from the same list.
1164-1192: LGTM!The fusion correctly creates the
torch_moe_bmmnode with extracted routing information and properly cleans up dead nodes after replacement.
1114-1157: Verify whether the 2-hop heuristic for scatter/sigmoid detection is sufficient for production patterns.The code allows up to 2 intermediate operations between scatter and sigmoid (specifically designed for
to.dtypeconversions), but whether this covers all real graph structures in MoE model tracing remains unverified. Review the actual patterns produced during model compilation and check if any exceed this limit.
|
/bot run |
|
PR_Github #26301 [ run ] triggered by Bot. Commit: |
|
PR_Github #26301 [ run ] completed with state |
|
/bot run |
|
PR_Github #26325 [ run ] triggered by Bot. Commit: |
|
PR_Github #26325 [ run ] completed with state |
…ring Signed-off-by: Tal Cherckez <127761168+tcherckez-nvidia@users.noreply.github.com>
|
/bot run |
|
PR_Github #26414 [ run ] triggered by Bot. Commit: |
tests/unittest/_torch/auto_deploy/unit/singlegpu/custom_ops/test_ad_moe_op.py
Outdated
Show resolved
Hide resolved
galagam
left a comment
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Looks good, added a minor comment.
…st_ad_moe_op.py Co-authored-by: Neta Zmora <nzmora@nvidia.com> Signed-off-by: tcherckez-nvidia <127761168+tcherckez-nvidia@users.noreply.github.com>
Signed-off-by: Tal Cherckez <127761168+tcherckez-nvidia@users.noreply.github.com>
|
PR_Github #26414 [ run ] completed with state |
tensorrt_llm/_torch/auto_deploy/custom_ops/fused_moe/torch_moe.py
Outdated
Show resolved
Hide resolved
Signed-off-by: Tal Cherckez <127761168+tcherckez-nvidia@users.noreply.github.com>
|
/bot run |
|
PR_Github #26602 [ run ] triggered by Bot. Commit: |
|
PR_Github #26602 [ run ] completed with state |
|
/bot run |
|
PR_Github #26746 [ run ] triggered by Bot. Commit: |
|
PR_Github #26746 [ run ] completed with state |
…VIDIA#8779) The performance results of some kernels could be easily affected by the warm/cold L2 cache status. To achieve more precise profiling results, the L2 cache is cleared for every execution by the circular buffer method for better benchmarking during autotuning. Signed-off-by: Yukun He <23156053+hyukn@users.noreply.github.com> [None][infra] Waive failed cases for main branch on 11/25 (NVIDIA#9429) Signed-off-by: qqiao <qqiao@nvidia.com> [NVIDIA#8391][chore] test_perf.py to lock clocks read from gpu_configs.yml instead of max freq (NVIDIA#9409) Signed-off-by: Eran Geva <19514940+MrGeva@users.noreply.github.com> [None][ci] Move more test stages to use OCI machines (NVIDIA#9395) Signed-off-by: Yanchao Lu <yanchaol@nvidia.com> Co-authored-by: Matt Lefebvre <matthewelefebvre@gmail.com> [None][feat] Improve TRTLLM MoE in small hidden size throughput cases (NVIDIA#9377) Signed-off-by: Anthony Chang <27950904+rosenrodt@users.noreply.github.com> [https://nvbugs/5537996][fix] Let KV cache manager block initialization be aware whether it is doing a dry run or not (NVIDIA#9093) Before this commit, the kv cache manager does the same regardless, which causes a mis-calculation in free memory available to allocate for the KV cache manager, hence causing a crash. This commit fixes this by letting KV cache manager initialization be aware whether it is doing the dry run or not. If it is a dry run, use the max_tokens setting that is already pre-calculated and filled into kv_cache_config.max_tokens. Signed-off-by: eopXD <yuehtingc@nvidia.com> [https://nvbugs/5667922][fix] Update long context evaluation config (NVIDIA#9426) Signed-off-by: mni <125171826+baize97@users.noreply.github.com> [None][fix] Mitigate test timeout issues (NVIDIA#9445) Signed-off-by: Shixiaowei02 <39303645+Shixiaowei02@users.noreply.github.com> [None][chore] Fix trtllm-eval for PyTorchLLM (NVIDIA#9427) Signed-off-by: Fanrong Li <23290157+lfr-0531@users.noreply.github.com> [None][feat] Add a parser to layer-wise benchmarks (NVIDIA#9440) Signed-off-by: Tailing Yuan <yuantailing@gmail.com> [None][feat] Support custom chat template for tool calling (NVIDIA#9297) Signed-off-by: Pengyun Lin <81065165+LinPoly@users.noreply.github.com> [TRTLLM-8160][feat] Add draft token tree runtime on CDL (NVIDIA#8586) Signed-off-by: Yue Weng <25103990+yweng0828@users.noreply.github.com> [None][ci] waive a test (NVIDIA#9458) Signed-off-by: Yan Chunwei <328693+Superjomn@users.noreply.github.com> [https://nvbugs/5680905][fix] Relax the MMLU accuracy requirement for DS-v3.2 (NVIDIA#9439) Signed-off-by: Fanrong Li <23290157+lfr-0531@users.noreply.github.com> [TRTLLM-8376][feat] top-p optimization (removes redundant softmax) (NVIDIA#9411) Signed-off-by: ixlmar <206748156+ixlmar@users.noreply.github.com> [TRTLLM-9490][feat] use FlashInfer's top_k_sampling_from_probs (NVIDIA#9457) Signed-off-by: ixlmar <206748156+ixlmar@users.noreply.github.com> [https://nvbugs/5647400] [fix] Enlarged the AllReduce workspace size to 64MB. Added AllReduce strategy to AD config. (NVIDIA#9145) Signed-off-by: Eran Geva <19514940+MrGeva@users.noreply.github.com> [TRTLLM-909][feat] Overlap context chunks in pipeline parallel mode (NVIDIA#9308) Signed-off-by: Robin Kobus <19427718+Funatiq@users.noreply.github.com> [None][chore] AutoDeploy add multi stream moe pass to default.yaml (NVIDIA#9430) Signed-off-by: Suyog Gupta <41447211+suyoggupta@users.noreply.github.com> [https://nvbugs/5685143][fix] avoid cudaFree overlap with cuda graph (NVIDIA#9438) Signed-off-by: Chuang Zhu <111838961+chuangz0@users.noreply.github.com> [None][chore] Bump version to 1.2.0rc5 (NVIDIA#9455) Signed-off-by: Yiqing Yan <yiqingy@nvidia.com> [TRTLLM-8936][test] Add disagg and wideep multi-node multi-gpu test cases (NVIDIA#9356) Signed-off-by: FredricZ-2007 <226039983+fredricz-20070104@users.noreply.github.com> [None][ci] move some slow test cases of DGX-B200 to post merge (NVIDIA#9467) Signed-off-by: junq <22017000+QiJune@users.noreply.github.com> [TRTLLM-9293][feat] Enable partial weight loading to support streaming update weights (NVIDIA#9224) Signed-off-by: shuyix <219646547+shuyixiong@users.noreply.github.com> [None][infra] Check in most recent lock file from nightly pipeline Signed-off-by: TensorRT LLM <90828364+tensorrt-cicd@users.noreply.github.com> [TRTLLM-9264][fix] Add accuracy/unit tests/doc for phi4mm (NVIDIA#9246) Signed-off-by: Wanli Jiang <35160485+Wanli-Jiang@users.noreply.github.com> [https://nvbugs/5580099][fix] Cherry pick IMA issue fix from release/1.1 (NVIDIA#9032) Signed-off-by: Junyi Xu <219237550+JunyiXu-nv@users.noreply.github.com> [None][chore] Upgrade CuteDSL to 4.3.0 (NVIDIA#9444) Signed-off-by: Enwei Zhu <21126786+syuoni@users.noreply.github.com> [None][feat] Support MLA chunked prefill for DeepSeek V3.2 model (NVIDIA#9376) Signed-off-by: Chang Liu (Enterprise Products) <9713593+chang-l@users.noreply.github.com> [None][feat] Add environment variable to force spec-dec number of accepted tokens (NVIDIA#9371) Signed-off-by: Aurelien Chartier <2567591+achartier@users.noreply.github.com> [None][infra] Update allowed list 2025.11.25 (NVIDIA#9468) Signed-off-by: Yuanjing Xue <197832395+yuanjingx87@users.noreply.github.com> [None][infra] Fail the pipeline when slurm ssh dropped (NVIDIA#9157) Signed-off-by: Yuanjing Xue <197832395+yuanjingx87@users.noreply.github.com> [None][feat] AutoDeploy: Remove redundant copies in mamba layers (NVIDIA#9461) Signed-off-by: Chenghao Zhang <211069071+nvchenghaoz@users.noreply.github.com> Co-authored-by: Suyog Gupta <41447211+suyoggupta@users.noreply.github.com> [None][feat] AutoDeploy: Add A_log fusion for Mamba layers (NVIDIA#9422) Signed-off-by: Chenghao Zhang <211069071+nvchenghaoz@users.noreply.github.com> [None][ci] Waive blackwell test on spec gate. (NVIDIA#9502) Signed-off-by: Zheyu Fu <zheyuf@NVIDIA.com> [https://nvbugs/5608930][fix] Fix a typo (NVIDIA#9487) Signed-off-by: Shixiaowei02 <39303645+Shixiaowei02@users.noreply.github.com> [NVIDIA#9463][feat] Add revision option to trtllm commands (NVIDIA#9498) Signed-off-by: Aurelien Chartier <2567591+achartier@users.noreply.github.com> [TRTLLM-9085][doc] fix math formula rendering issues (NVIDIA#9481) Signed-off-by: junq <22017000+QiJune@users.noreply.github.com> [None][chore] update comments in llm_args.py (NVIDIA#9472) Signed-off-by: junq <22017000+QiJune@users.noreply.github.com> [None][infra] Check in most recent lock file from nightly pipeline Signed-off-by: TensorRT LLM <90828364+tensorrt-cicd@users.noreply.github.com> [https://nvbugs/5680310][fix] Fix ctx only timed out test (NVIDIA#9410) Signed-off-by: Patrice Castonguay <55748270+pcastonguay@users.noreply.github.com> [https://nvbugs/5547414][fix] enable case after using local cache model (NVIDIA#9473) Signed-off-by: Hui Gao <huig@nvidia.com> [None][fix] Replace PYTORCH_CUDA_ALLOC_CONF with PYTORCH_ALLOC_CONF to fix deprecation warning (NVIDIA#9294) Signed-off-by: Jiagan Cheng <jiaganc@nvidia.com> [https://nvbugs/5698581][fix] Init draft tokens for CUDA graph dummy request (NVIDIA#9505) Signed-off-by: ziyixiong-nv <219238287+ziyixiong-nv@users.noreply.github.com> [None][infra] Waive failed case in pre-merge on 11/27 (NVIDIA#9507) Signed-off-by: qqiao <qqiao@nvidia.com> [TRTLLM-9513][docs] Qwen3 deployment guide (NVIDIA#9488) Signed-off-by: Lanyu Liao <laliao@laliao-mlt.client.nvidia.com> Co-authored-by: Lanyu Liao <laliao@laliao-mlt.client.nvidia.com> [None][chore] revert batch_size=1 to prevent timeout and lower accuracy reference by 0.12% as a WAR (NVIDIA#9447) Signed-off-by: Lizhi Zhou <1432185+reasonsolo@users.noreply.github.com> Co-authored-by: Shi Xiaowei <39303645+Shixiaowei02@users.noreply.github.com> [TRTLLM-9279][infra] Use flexcache for gh200 nodes since they locate in Austin (NVIDIA#9405) Signed-off-by: qqiao <qqiao@nvidia.com> Signed-off-by: Emma Qiao <qqiao@nvidia.com> Co-authored-by: Yanchao Lu <yanchaol@nvidia.com> [cherry-pick][https://nvbugs/5670793][fix] Solve trtllm-serve launch_disaggregated issue (NVIDIA#9346) Signed-off-by: xxi <xxi@nvidia.com> [None][infra] Fix Slurm job script (NVIDIA#9508) Signed-off-by: Yuanjing Xue <197832395+yuanjingx87@users.noreply.github.com> [None][fix] change allreduce workspace dtype to torch.int64 to avoid overflow (NVIDIA#9479) Signed-off-by: Zhenhuan Chen <zhenhuanc@nvidia.com> [None][feat] add qwen3-next CI test of accuracy on BF16 and NVFP4 (NVIDIA#9330) Signed-off-by: jiant <107457950+JadoTu@users.noreply.github.com> [None][fix] fix TP support for DeepSeek-V3.2 on hopper (NVIDIA#9484) Signed-off-by: Fanrong Li <23290157+lfr-0531@users.noreply.github.com> [TRTLLM-9389][chore] Refactor AlltoallMethodType. (NVIDIA#9388) Signed-off-by: Bo Li <22713281+bobboli@users.noreply.github.com> [https://nvbugs/5674665][chore] Add test coverage for https://nvbugspro.nvidia.com/bug/5674665 (NVIDIA#9518) Signed-off-by: eopXD <yuehtingc@nvidia.com> [TRTLLM-7288][infra] Download merged waive list in slurm script (NVIDIA#8999) Signed-off-by: Yiqing Yan <yiqingy@nvidia.com> Signed-off-by: Yanchao Lu <yanchaol@nvidia.com> Co-authored-by: Yanchao Lu <yanchaol@nvidia.com> [https://nvbugs/5687820][fix] Remove self.abort() in DetokenizedGenerationResult (NVIDIA#9449) Signed-off-by: Enwei Zhu <21126786+syuoni@users.noreply.github.com> [NVIDIA#9150][feat] AutoDeploy Nemotron-Flash support (NVIDIA#9504) Signed-off-by: Lucas Liebenwein <11156568+lucaslie@users.noreply.github.com> [None] [chore] Update to cutlass 4.3 (NVIDIA#8637) Signed-off-by: Kaiyu Xie <26294424+kaiyux@users.noreply.github.com> [https://nvbugs/5637037][chore] Update waive lists. (NVIDIA#9386) Signed-off-by: Bo Li <22713281+bobboli@users.noreply.github.com> Signed-off-by: Enwei Zhu <21126786+syuoni@users.noreply.github.com> Co-authored-by: Enwei Zhu <21126786+syuoni@users.noreply.github.com> [None][infra] Check in most recent lock file from nightly pipeline Signed-off-by: TensorRT LLM <90828364+tensorrt-cicd@users.noreply.github.com> [TRTLLM-8970][infra] Fix generate report when has isolation test result (NVIDIA#8861) Signed-off-by: qqiao <qqiao@nvidia.com> Signed-off-by: Emma Qiao <qqiao@nvidia.com> [https://nvbugs/5685015][fix] Update invalid max_token test (NVIDIA#9435) Signed-off-by: Junyi Xu <219237550+JunyiXu-nv@users.noreply.github.com> [None][fix] Fix on-disk cache and revise logger/statistics for AutoTuner. (NVIDIA#9211) Signed-off-by: Yukun He <23156053+hyukn@users.noreply.github.com> [https://nvbugs/5689658][test] Fix gpu lock issue running on cluster (NVIDIA#9441) Signed-off-by: yufeiwu <230315618+yufeiwu-nv@users.noreply.github.com> [None][chore] add spec_decoding configs in perf benchmark scripts and fix typos (NVIDIA#9533) Signed-off-by: Lanyu Liao <lancelly@users.noreply.github.com> Co-authored-by: Lanyu Liao <lancelly@users.noreply.github.com> [None][fix] Remove FP8 K/V buffer from TRTLLM sparse MLA attention kernel (NVIDIA#9529) Signed-off-by: Chang Liu (Enterprise Products) <9713593+chang-l@users.noreply.github.com> [None] [chore] Enhancements and clean up to slurm scripts (NVIDIA#9493) Signed-off-by: Kaiyu Xie <26294424+kaiyux@users.noreply.github.com> [None][chore] Revert "[None][fix] change allreduce workspace dtype to torch.int64 t… (NVIDIA#9538) Signed-off-by: Zhenhuan Chen <zhenhuanc@nvidia.com> [None][infra] Waive failed cases for main branch on 11/28 (NVIDIA#9539) Signed-off-by: qqiao <qqiao@nvidia.com> [None][fix] Pass checkpoint_format to create_input_processor (NVIDIA#9521) Signed-off-by: Robin Kobus <19427718+Funatiq@users.noreply.github.com> [TRTLLM-9541][infra] Use artifactory mirror for download.pytorch.org (NVIDIA#9477) Signed-off-by: ZhanruiSunCh <184402041+ZhanruiSunCh@users.noreply.github.com> Signed-off-by: Zhanrui Sun <184402041+ZhanruiSunCh@users.noreply.github.com> Co-authored-by: Yanchao Lu <yanchaol@nvidia.com> [TRTLLM-9488][feat] add 'disable_flashinfer_sampling' config option (NVIDIA#9454) Signed-off-by: ixlmar <206748156+ixlmar@users.noreply.github.com> [None][infra] Waive failed case in pre-merge on 11/28 (NVIDIA#9537) Signed-off-by: Wangshanshan <30051912+dominicshanshan@users.noreply.github.com> [None][perf] Helix: improve all-to-all perf for large CP size (NVIDIA#9494) Signed-off-by: Matthias Jouanneaux <mjoux@nvidia.com> Signed-off-by: Zheyu Fu <zheyuf@NVIDIA.com> Co-authored-by: Zheyu Fu <zheyuf@nvidia.com> [None][feat] support for more accurate AR calculation (NVIDIA#9323) Signed-off-by: binghanc <176802681+binghanc@users.noreply.github.com> [TRTLLM-9488][fix] llmapi references (NVIDIA#9547) Signed-off-by: ixlmar <206748156+ixlmar@users.noreply.github.com> [NVIDIA#8948][feat] Support custom sharding config (NVIDIA#9143) Signed-off-by: greg-kwasniewski1 <213329731+greg-kwasniewski1@users.noreply.github.com> [None][infra] Check in most recent lock file from nightly pipeline Signed-off-by: TensorRT LLM <90828364+tensorrt-cicd@users.noreply.github.com> [None][chore] Weekly mass integration of release/1.1 -- rebase (NVIDIA#9522) Signed-off-by: yunruis <205571022+yunruis@users.noreply.github.com> Signed-off-by: Mike Iovine <6158008+mikeiovine@users.noreply.github.com> Signed-off-by: Mike Iovine <miovine@nvidia.com> Signed-off-by: Wangshanshan <30051912+dominicshanshan@users.noreply.github.com> Signed-off-by: qgai <qgai@nvidia.com> Signed-off-by: Balaram Buddharaju <169953907+brb-nv@users.noreply.github.com> Signed-off-by: Yan Chunwei <328693+Superjomn@users.noreply.github.com> Signed-off-by: Junyi Xu <219237550+JunyiXu-nv@users.noreply.github.com> Signed-off-by: Simeng Liu <simengl@nvidia.com> Signed-off-by: nv-guomingz <137257613+nv-guomingz@users.noreply.github.com> Signed-off-by: Jin Li <59594262+liji-nv@users.noreply.github.com> Signed-off-by: Ivy Zhang <25222398+crazydemo@users.noreply.github.com> Signed-off-by: Vincent Zhang <vinczhang@nvidia.com> Signed-off-by: peaceh <103117813+peaceh-nv@users.noreply.github.com> Signed-off-by: Michal Guzek <mguzek@nvidia.com> Signed-off-by: Michal Guzek <moraxu@users.noreply.github.com> Signed-off-by: Chang Liu (Enterprise Products) <9713593+chang-l@users.noreply.github.com> Signed-off-by: leslie-fang25 <leslief@nvidia.com> Signed-off-by: Shunkang <182541032+Shunkangz@users.noreply.github.co> Signed-off-by: junq <22017000+QiJune@users.noreply.github.com> Co-authored-by: yunruis <205571022+yunruis@users.noreply.github.com> Co-authored-by: sunnyqgg <159101675+sunnyqgg@users.noreply.github.com> Co-authored-by: brb-nv <169953907+brb-nv@users.noreply.github.com> Co-authored-by: Yan Chunwei <328693+Superjomn@users.noreply.github.com> Co-authored-by: JunyiXu-nv <219237550+JunyiXu-nv@users.noreply.github.com> Co-authored-by: Simeng Liu <109828133+SimengLiu-nv@users.noreply.github.com> Co-authored-by: Guoming Zhang <137257613+nv-guomingz@users.noreply.github.com> Co-authored-by: Jin Li <59594262+liji-nv@users.noreply.github.com> Co-authored-by: Ivy Zhang <25222398+crazydemo@users.noreply.github.com> Co-authored-by: Vincent Zhang <vcheungyi@163.com> Co-authored-by: peaceh-nv <103117813+peaceh-nv@users.noreply.github.com> Co-authored-by: Michal Guzek <moraxu@users.noreply.github.com> Co-authored-by: Chang Liu <9713593+chang-l@users.noreply.github.com> Co-authored-by: Leslie Fang <leslief@nvidia.com> Co-authored-by: Shunkangz <182541032+Shunkangz@users.noreply.github.com> Co-authored-by: Shunkang <182541032+Shunkangz@users.noreply.github.co> Co-authored-by: QI JUN <22017000+QiJune@users.noreply.github.com> [TRTLLM-5971][feat] Integrate helix parallelism (NVIDIA#9342) Signed-off-by: Balaram Buddharaju <169953907+brb-nv@users.noreply.github.com> [None][infra] Check in most recent lock file from nightly pipeline Signed-off-by: TensorRT LLM <90828364+tensorrt-cicd@users.noreply.github.com> [None][infra] - Request idle time exemption for OCI jobs (NVIDIA#9528) Signed-off-by: Yanchao Lu <yanchaol@nvidia.com> [None][infra] Wiave failed tests for main branch on 11/30 (NVIDIA#9555) Signed-off-by: qqiao <qqiao@nvidia.com> [None][fix] Fix port conflict in disagg tests (NVIDIA#9474) Signed-off-by: Junyi Xu <219237550+JunyiXu-nv@users.noreply.github.com> [None][ci] Split H100_PCIe-PyTorch-Post-Merge test stage (NVIDIA#9558) Signed-off-by: Yanchao Lu <yanchaol@nvidia.com> [None][ci] Split H100_PCIe-PyTorch-Post-Merge test stage (NVIDIA#9559) Signed-off-by: Yanchao Lu <yanchaol@nvidia.com> [TRTLLM-8958][feat] and [TRTLLM-8960]: create ConfigurableMoE and support TRTLLMGenFusedMoE as backend (NVIDIA#9486) [None] [feat] Optimize the algorithm part of RocketKV (NVIDIA#9333) Signed-off-by: yuhangh <58161490+heyuhhh@users.noreply.github.com> [https://nvbugs/5690172][fix] Fix Qwen3-235B ATP accuracy issue with PDL (NVIDIA#9530) Signed-off-by: Enwei Zhu <21126786+syuoni@users.noreply.github.com> [TRTLLM-6222][feat] Extend cute_dsl_nvfp4_gemm to sm103. (NVIDIA#9543) Signed-off-by: Mindy Li <11663212+limin2021@users.noreply.github.com> [None][fix] Correct virtual memory allocation alignment (NVIDIA#9491) Signed-off-by: Yuan Tong <13075180+tongyuantongyu@users.noreply.github.com> [None][infra] Check in most recent lock file from nightly pipeline Signed-off-by: TensorRT LLM <90828364+tensorrt-cicd@users.noreply.github.com> [https://nvbugs/5684703][fix] Unwaive disagg guided decoding test (NVIDIA#9466) Signed-off-by: Enwei Zhu <21126786+syuoni@users.noreply.github.com> [https://nvbugs/5503479][fix] Temporarily lower reference accuracy to stabilize CI (NVIDIA#9398) Signed-off-by: Pengbo Wang <221450789+pengbowang-nv@users.noreply.github.com> [None][chore] remove qwen3-next accuracy tests (NVIDIA#9534) Signed-off-by: jiant <107457950+JadoTu@users.noreply.github.com> [None][doc] fix mtp.py typo (NVIDIA#9307) Signed-off-by: liugaoji <757394026@qq.com> [None][feat] add chat template kwargs support to longbench-v2 (NVIDIA#9544) Signed-off-by: Fanrong Li <23290157+lfr-0531@users.noreply.github.com> [NVIDIA#9496][fix] AutoDeploy: remove auto-tuner from nvfp4_gemm forward (NVIDIA#9497) Signed-off-by: Neta Zmora <96238833+nzmora-nvidia@users.noreply.github.com> [None][fix] Replace hash method with unique_id for cutedsl MoE runners. (NVIDIA#9569) Signed-off-by: Yukun He <23156053+hyukn@users.noreply.github.com> [None][chore] refactor disaggregated scripts to use named arguments (NVIDIA#9581) Signed-off-by: Zhenhuan Chen <zhenhuanc@nvidia.com> [TRTLLM-6222][feat] Several perf opt for cuteDSL nvf4 gemm (NVIDIA#9428) Signed-off-by: Yuhan Li <51736452+liyuhannnnn@users.noreply.github.com> [None][chore] reduce the layers of the `devel` docker image (NVIDIA#9077) Signed-off-by: Martin Marciniszyn Mehringer <11665257+MartinMarciniszyn@users.noreply.github.com> [https://nvbugs/5651854][infra] Enable perf metrics during accuracy testing (NVIDIA#9140) [None][fix] Skip Allreduce init for Attention DP (NVIDIA#9542) Signed-off-by: Enwei Zhu <21126786+syuoni@users.noreply.github.com> [None][test] [None][test] Waive main branch test failures 12/1 (NVIDIA#9566) Signed-off-by: Yanchao Lu <yanchaol@nvidia.com> [None][ci] Minor change for Slurm scripts (NVIDIA#9561) Signed-off-by: Yanchao Lu <yanchaol@nvidia.com> [TRTLLM-6768][infra] Fix params for not updating github status (NVIDIA#6747) Signed-off-by: Yiqing Yan <yiqingy@nvidia.com> [None][infra] Update the pytest options after MI (NVIDIA#9579) Signed-off-by: qqiao <qqiao@nvidia.com> [TRTLLM-6756][feat] Add Beam Search to TorchSampler (NVIDIA#8509) Signed-off-by: Stefan Niebler <82932102+stnie@users.noreply.github.com> [None][chore] Defer exposing context parallel configs (NVIDIA#9552) Signed-off-by: Balaram Buddharaju <169953907+brb-nv@users.noreply.github.com> [TRTC-1943][feat] Env vars override support in LLM API (NVIDIA#9104) Signed-off-by: Venky Ganesh <23023424+venkywonka@users.noreply.github.com> [None][feat] AutoDeploy: Use the router gemm op for nemotron MOE (NVIDIA#9500) Signed-off-by: Chenghao Zhang <211069071+nvchenghaoz@users.noreply.github.com> [NVIDIA#9198][feat] Refactor dist ops in AutoDeploy (NVIDIA#9301) Signed-off-by: Eran Geva <19514940+MrGeva@users.noreply.github.com> [None][fix] Prevent YAML partial kv_cache_config from incorrectly overriding the complete kv_cache_config (NVIDIA#9262) Signed-off-by: Yuening Li <62227368+Yuening-wa@users.noreply.github.com> [TRTLLM-9085][doc] fix math formula rendering issues in github (NVIDIA#9605) Signed-off-by: junq <22017000+QiJune@users.noreply.github.com> [None][feat] Unify nvfp4 gemm backend (NVIDIA#8963) Signed-off-by: Shijie Wang <jaywan@nvidia.com> Signed-off-by: Yukun He <23156053+hyukn@users.noreply.github.com> Signed-off-by: Shijie <jaywan@nvidia.com> Co-authored-by: Yukun He <23156053+hyukn@users.noreply.github.com> [None][feat] Add support for KVCache reuse for DSv32 (NVIDIA#9383) Signed-off-by: Iman Tabrizian <10105175+tabrizian@users.noreply.github.com> [None][infra] Check in most recent lock file from nightly pipeline Signed-off-by: TensorRT LLM <90828364+tensorrt-cicd@users.noreply.github.com> [None][chroe] Polish qwen3-next modeling code. (NVIDIA#8902) Signed-off-by: nv-guomingz <137257613+nv-guomingz@users.noreply.github.com> [https://nvbugs/5703953][fix] Use random port for disagg tests (NVIDIA#9582) Signed-off-by: Junyi Xu <219237550+JunyiXu-nv@users.noreply.github.com> [None][fix] Waive gb200 (NVIDIA#9580) Signed-off-by: Xin He (SW-GPU) <200704525+xinhe-nv@users.noreply.github.com> [FMDL-1328][feat] Add support for nano-v3 and super-v3 with pytorch backend (NVIDIA#9261) Signed-off-by: Wanli Jiang <35160485+Wanli-Jiang@users.noreply.github.com> [https://nvbugs/5582091][test] increase warmup times in testing for multi-gpu cases (NVIDIA#9578) Signed-off-by: Ruodi Lu <ruodil@users.noreply.github.com> Co-authored-by: Ruodi Lu <ruodil@users.noreply.github.com> [None][chore] Add failed cases into waives.txt (NVIDIA#9588) Signed-off-by: xinhe-nv <200704525+xinhe-nv@users.noreply.github.com> [https://nvbugs/5702793][fix] Fix uncontiguous tensor view (NVIDIA#9576) Signed-off-by: shuyix <219646547+shuyixiong@users.noreply.github.com> [None][infra] Waive failed cases for main branch (NVIDIA#9615) Signed-off-by: qqiao <qqiao@nvidia.com> [TRTLLM-9488][feat] use FlashInfer.sampling by default (NVIDIA#9545) Signed-off-by: ixlmar <206748156+ixlmar@users.noreply.github.com> [None][infra] Update allowlist 2025/12/01 (NVIDIA#9616) Signed-off-by: Yuanjing Xue <197832395+yuanjingx87@users.noreply.github.com> [None][infra] Remove an invalid test name in waives.txt (NVIDIA#9620) Signed-off-by: qqiao <qqiao@nvidia.com> Lock the gpu clocks in L0 perf tests (NVIDIA#9585) Signed-off-by: Eran Geva <19514940+MrGeva@users.noreply.github.com> [TRTLLM-9466][test] Evaluate helix parallelism with DSV3 Lite (NVIDIA#9597) Signed-off-by: Balaram Buddharaju <169953907+brb-nv@users.noreply.github.com> [None][fix] Extract GPU count from single-node stage names (NVIDIA#9599) Signed-off-by: Chang Liu (Enterprise Products) <9713593+chang-l@users.noreply.github.com> [https://nvbugs/5667774][fix] Refine Piecewise Cuda Graph Condition for DP (NVIDIA#9393) Signed-off-by: Jin Li <59594262+liji-nv@users.noreply.github.com> [TRTLLM-9144][fix] enhance RPC robustness (NVIDIA#8711) Signed-off-by: Superjomn <328693+Superjomn@users.noreply.github.com> Signed-off-by: Erin Ho <14718778+hchings@users.noreply.github.com> Signed-off-by: Yan Chunwei <328693+Superjomn@users.noreply.github.com> Co-authored-by: Erin Ho <14718778+hchings@users.noreply.github.com> [https://nvbugs/5627710][fix] Fix synchronization bugs in KvCacheTransferManager that can cause corrupted blocks (NVIDIA#9056) Signed-off-by: thorjohnsen <41591019+thorjohnsen@users.noreply.github.com> Signed-off-by: Thor Johnsen <41591019+thorjohnsen@users.noreply.github.com> Co-authored-by: Iman Tabrizian <10105175+tabrizian@users.noreply.github.com> Co-authored-by: Robin Kobus <19427718+Funatiq@users.noreply.github.com> [TRTLLM-8980][test] Clean up spec dec tests in test_llm_api_pytorch (NVIDIA#8889) Signed-off-by: Mike Iovine <6158008+mikeiovine@users.noreply.github.com> Signed-off-by: Mike Iovine <miovine@nvidia.com> [NVIDIA#9150][feat] Add code for nano v3 to custom implementation in AD (NVIDIA#9465) * Why? We would like to show an alternative to monkey-patching in AutoDeploy. * What? This commit builds on the existing custom model implementation for NemotronH and adds the bits relevant for MoE layers. Part of NVIDIA#9150. Signed-off-by: William Zhang <133824995+2ez4bz@users.noreply.github.com> [NVIDIA#9150][feat] AutoDeploy: reviewer comments for NVIDIA#9150 (NVIDIA#9527) Signed-off-by: Lucas Liebenwein <11156568+lucaslie@users.noreply.github.com> [https://nvbugs/5651854][fix] Fix dist-serving perf by clearing CPU affinity (NVIDIA#9549) Signed-off-by: Shixiaowei02 <39303645+Shixiaowei02@users.noreply.github.com> [NVIDIA#9550][feat] AutoDeploy: Add NVFP4 Cutlass MoE kernels (NVIDIA#9551) Signed-off-by: Neta Zmora <96238833+nzmora-nvidia@users.noreply.github.com> [https://nvbugs/5688388][fix] fix: Reducing num request in disagg test to speed up (NVIDIA#9598) Signed-off-by: Patrice Castonguay <55748270+pcastonguay@users.noreply.github.com> [TRTLLM-8946][feat] Improved heuristics to detect shardable regions (NVIDIA#9200) Signed-off-by: Lucas Liebenwein <11156568+lucaslie@users.noreply.github.com> Signed-off-by: greg-kwasniewski1 <213329731+greg-kwasniewski1@users.noreply.github.com> Co-authored-by: Lucas Liebenwein <11156568+lucaslie@users.noreply.github.com> [NVIDIA#9632][feat] Support EXTRA_WHEEL_BUILD_ARGS during wheel build (NVIDIA#9633) Signed-off-by: Yu Chi Li <yuchil@nvidia.com> [None][chore] Waive test failing on pre-merge (NVIDIA#9638) Signed-off-by: Balaram Buddharaju <169953907+brb-nv@users.noreply.github.com> [None][chore] Remove traceback dump for multimodal input processor (NVIDIA#9634) Signed-off-by: Chang Liu (Enterprise Products) <9713593+chang-l@users.noreply.github.com> [None][chore] Fix trtllm-eval and move GroupedGemmInputsHelper (NVIDIA#9612) Signed-off-by: Enwei Zhu <21126786+syuoni@users.noreply.github.com> [https://nvbugs/5698434][fix] Use separate weight mapper for draft (NVIDIA#9607) Signed-off-by: Anurag Mukkara <134339030+amukkara@users.noreply.github.com> [TRTLLM-7101][infra] Reuse passed tests (NVIDIA#6894) Signed-off-by: Yiqing Yan <yiqingy@nvidia.com> Co-authored-by: Yanchao Lu <yanchaol@nvidia.com> [None][test] Remove duplicate test cases (NVIDIA#9623) Signed-off-by: yufeiwu <230315618+yufeiwu-nv@users.noreply.github.com> [None][infra] Check in most recent lock file from nightly pipeline Signed-off-by: TensorRT LLM <90828364+tensorrt-cicd@users.noreply.github.com> [None][feat] Add RocketKV usage doc and e2e accuracy test on LongBenchV2 (NVIDIA#9572) Signed-off-by: yuhangh <58161490+heyuhhh@users.noreply.github.com> [TRTLLM-9242][doc] Add examples showcasing openai compatible APIs (NVIDIA#9520) Signed-off-by: Junyi Xu <219237550+JunyiXu-nv@users.noreply.github.com> [None][chore] AutoDeploy update cuda stream manager for multi-device (NVIDIA#9575) Signed-off-by: Suyog Gupta <41447211+suyoggupta@users.noreply.github.com> [TRTLLM-9391][chore] Automatically estimate required workspace. (NVIDIA#9535) Signed-off-by: Bo Li <22713281+bobboli@users.noreply.github.com> [https://nvbugs/5708475][fix] Fix e2e eval accuracy for helix parallelism (NVIDIA#9647) Signed-off-by: Balaram Buddharaju <169953907+brb-nv@users.noreply.github.com> [https://nvbugs/5561153][test] Fix log error for perf test (NVIDIA#9622) Signed-off-by: FredricZ-2007 <226039983+fredricz-20070104@users.noreply.github.com> [TRTLLM-8241][feat] Aliasing to comply to LlmArgs (NVIDIA#9586) Signed-off-by: Pengyun Lin <81065165+LinPoly@users.noreply.github.com> [None][chore] Add failed cases into waives.txt (NVIDIA#9593) Signed-off-by: Jie Li <lijie@nvidia.com> Co-authored-by: Jie Li <lijie@nvidia.com> [TRTLLM-6842][feat] Support Response API for general purpose (NVIDIA#9392) Signed-off-by: Junyi Xu <219237550+JunyiXu-nv@users.noreply.github.com> [None][test] Update Qwen3-next accuracy testing by setting the cuda … (NVIDIA#9613) Signed-off-by: nv-guomingz <137257613+nv-guomingz@users.noreply.github.com> [None][feat] update trtllm-gen nvfp4 kernels with better performance (NVIDIA#9510) Signed-off-by: Perkz Zheng <67892460+PerkzZheng@users.noreply.github.com> [None][doc] Replace the tensorrt icon with torch icon on overview.md (NVIDIA#9644) Signed-off-by: nv-guomingz <137257613+nv-guomingz@users.noreply.github.com> [https://nvbugs/5705197][chore] Unwaive timeout disagg tests (NVIDIA#9637) Signed-off-by: Patrice Castonguay <55748270+pcastonguay@users.noreply.github.com> [https://nvbugs/5552132][fix] Enable LoRa for GPT OSS Torch (NVIDIA#8253) Signed-off-by: Michal Guzek <mguzek@nvidia.com> [None][fix] Fix wide ep MoE error (NVIDIA#9642) Signed-off-by: Iman Tabrizian <10105175+tabrizian@users.noreply.github.com> [https://nvbugs/5702795][fix] Remove the warning message for aten.log. (NVIDIA#9665) Signed-off-by: nv-guomingz <137257613+nv-guomingz@users.noreply.github.com> [https://nvbugs/5693853][fix] Fix error handling when querying machin… (NVIDIA#9483) Signed-off-by: Gal Hubara Agam <96368689+galagam@users.noreply.github.com> [OMNIML-2932] [feat] nvfp4 awq support (NVIDIA#8698) Signed-off-by: weimingc <17592131+meenchen@users.noreply.github.com> [NVIDIA#9643][fix] AutoDeploy: fix nano sharding config (NVIDIA#9668) Signed-off-by: Lucas Liebenwein <11156568+lucaslie@users.noreply.github.com> [NVIDIA#9147][feat] AutoDeploy: Draft Target Speculative Decoding (NVIDIA#9275) Signed-off-by: Govind Ramnarayan <105831528+govind-ramnarayan@users.noreply.github.com> [None][feat] Update Qwen3CodeToolParser to align tool-calling parameters (NVIDIA#9540) Signed-off-by: Wanli Jiang <35160485+Wanli-Jiang@users.noreply.github.com> [TRTLLM-7181][infra] Generate test results when pytest timeout happens (NVIDIA#9396) Signed-off-by: Yiqing Yan <yiqingy@nvidia.com> [None][infra] Check in most recent lock file from nightly pipeline Signed-off-by: TensorRT LLM <90828364+tensorrt-cicd@users.noreply.github.com> [TRTLLM-9522][fix] restore `trtllm-serve mm_embedding_serve` (NVIDIA#9669) [TRTLLM-5093][infra] Write env variables to a file in the interactive debug session (NVIDIA#6792) Signed-off-by: Yiqing Yan <yiqingy@nvidia.com> [None][fix] fix error when processing batches containing both text and mm data (NVIDIA#8381) Signed-off-by: Nekofish-L <liuxiangyang@mail.ustc.edu.cn> [TRTLLM-7073][feat] Support torch compile for PP for Llama and DeepSeekV3 (NVIDIA#7838) Signed-off-by: Jin Li <59594262+liji-nv@users.noreply.github.com> [None][feat] Add weights initialization and context phase parser to layer-wise benchmarks (NVIDIA#9667) Signed-off-by: Tailing Yuan <yuantailing@gmail.com> [TRTLLM-8274][feat] Check if executor is shutdown in /health entrypoint (NVIDIA#9057) Signed-off-by: Junyi Xu <219237550+JunyiXu-nv@users.noreply.github.com> [NVIDIA#8733][feat] Add Llama4 MoE handling to AutoDeploy (NVIDIA#9556) Signed-off-by: Tal Cherckez <127761168+tcherckez-nvidia@users.noreply.github.com> Signed-off-by: tcherckez-nvidia <127761168+tcherckez-nvidia@users.noreply.github.com> Co-authored-by: Neta Zmora <nzmora@nvidia.com> [None][ci] unwaive tests (NVIDIA#9651) Signed-off-by: Yan Chunwei <328693+Superjomn@users.noreply.github.com> [None][feat] Add NIXL-LIBFABRIC support (NVIDIA#9225) Signed-off-by: Yoray Zack <62789610+zackyoray@users.noreply.github.com> Signed-off-by: zackyoray <yorayz@nvidia.com> [None][test] rename wide ep and disagg metric name in perf test (NVIDIA#9704) Signed-off-by: Ruodi Lu <ruodil@users.noreply.github.com> Co-authored-by: Ruodi Lu <ruodil@users.noreply.github.com> [https://nvbugs/5467531][fix] Unwaive fused_moe all to all test with … (NVIDIA#9617) Signed-off-by: Jin Li <59594262+liji-nv@users.noreply.github.com> [None][fix] Recover TRTLLM MoE Perf for DEP (NVIDIA#9562) Signed-off-by: Anthony Chang <27950904+rosenrodt@users.noreply.github.com> [None][chore] Add failed cases into waives.txt (NVIDIA#9662) Signed-off-by: Xin He (SW-GPU) <200704525+xinhe-nv@users.noreply.github.com> Signed-off-by: xinhe-nv <200704525+xinhe-nv@users.noreply.github.com> Signed-off-by: Yanchao Lu <yanchaol@nvidia.com> Co-authored-by: Yanchao Lu <yanchaol@nvidia.com> [None][fix] Fix TLLM_SPEC_DECODE_FORCE_NUM_ACCEPTED_TOKENS for MTP/EAGLE (NVIDIA#9608) Signed-off-by: Aurelien Chartier <2567591+achartier@users.noreply.github.com> [None][infra] Add container notices and documentation (NVIDIA#9185) Signed-off-by: Parker Drake <pdrake@nvidia.com> [TRTLLM-5312][infra] Add triton trigger rules (NVIDIA#6440) Signed-off-by: Yiqing Yan <yiqingy@nvidia.com> [None][doc] Add feature docs for helix parallelism (NVIDIA#9684) Signed-off-by: Balaram Buddharaju <169953907+brb-nv@users.noreply.github.com> [TRTLLM-9579][infra] Set mergeWaiveList stage UNSTABLE when there is any issue (NVIDIA#9692) Signed-off-by: Yiqing Yan <yiqingy@nvidia.com> [None][doc] Added line about partial reuse (NVIDIA#7846) Signed-off-by: thorjohnsen <41591019+thorjohnsen@users.noreply.github.com> [TRTLLM-8920][feat] decouple disagg service from fastapi (NVIDIA#8714) Signed-off-by: Lizhi Zhou <1432185+reasonsolo@users.noreply.github.com> [https://nvbugs/5633340][fix] start disagg workers and servers on free ports (NVIDIA#9694) Signed-off-by: Lizhi Zhou <1432185+reasonsolo@users.noreply.github.com> [TRTLLM-9562] [doc] Add Deployment Guide for Kimi K2 Thinking on TensorRT LLM - Blackwell (NVIDIA#9711) Signed-off-by: Kaiyu Xie <26294424+kaiyux@users.noreply.github.com> [NVIDIA#9602][feat] AutoDeploy: Support TRTLLM Sampler (NVIDIA#9641) Signed-off-by: Govind Ramnarayan <105831528+govind-ramnarayan@users.noreply.github.com> [None][infra] Check in most recent lock file from nightly pipeline Signed-off-by: TensorRT LLM <90828364+tensorrt-cicd@users.noreply.github.com> [None] [tests] Unwaive EPLB tests (NVIDIA#9625) Signed-off-by: Kaiyu Xie <26294424+kaiyux@users.noreply.github.com> [https://nvbugs/5518713][test] Refactor core test lists by merging with llm_perf_cluster.yml (NVIDIA#9714) Signed-off-by: yufeiwu <230315618+yufeiwu-nv@users.noreply.github.com> [TRTLLM-7136][feat] Update load_weights method to include mapping parameter in checkpoint loaders (NVIDIA#9583) Signed-off-by: Robin Kobus <19427718+Funatiq@users.noreply.github.com> [None][refactor] Improve request processing function in sampler (NVIDIA#9671) Signed-off-by: Robin Kobus <19427718+Funatiq@users.noreply.github.com> [https://nvbugs/5670672][fix] Fix flaky KV connector tests (NVIDIA#9676) Signed-off-by: jthomson04 <jwillthomson19@gmail.com> [None][infra] Update allowed list 20251204 (NVIDIA#9718) Signed-off-by: Yuanjing Xue <197832395+yuanjingx87@users.noreply.github.com> [None][feat] AutoDeploy: Perf optimization for Attention and rmsnorm (NVIDIA#9719) Signed-off-by: Chenghao Zhang <211069071+nvchenghaoz@users.noreply.github.com> [None][chore] Waive flakey disagg tests (NVIDIA#9749) Signed-off-by: Mike Iovine <miovine@nvidia.com> [https://nvbugs/5601682][fix] Fix cacheTransceiver hang (NVIDIA#9311) Signed-off-by: Iman Tabrizian <10105175+tabrizian@users.noreply.github.com> Signed-off-by: Mike Iovine <6158008+mikeiovine@users.noreply.github.com> Signed-off-by: Mike Iovine <miovine@nvidia.com> [TRTLLM-9199][docs] KV Connector Docs (NVIDIA#9325) Signed-off-by: jthomson04 <jwillthomson19@gmail.com> Co-authored-by: coderabbitai[bot] <136622811+coderabbitai[bot]@users.noreply.github.com> Signed-off-by: Mike Iovine <6158008+mikeiovine@users.noreply.github.com> Signed-off-by: Mike Iovine <miovine@nvidia.com> [TRTLLM-9160][doc] add doc to llm_runtime.py (NVIDIA#9482) Signed-off-by: Yan Chunwei <328693+Superjomn@users.noreply.github.com> Signed-off-by: Mike Iovine <6158008+mikeiovine@users.noreply.github.com> Signed-off-by: Mike Iovine <miovine@nvidia.com> [None][doc] VDR 1.0 trtllm-serve doc enhancement (NVIDIA#9443) Signed-off-by: Pengyun Lin <81065165+LinPoly@users.noreply.github.com> Signed-off-by: Mike Iovine <6158008+mikeiovine@users.noreply.github.com> Signed-off-by: Mike Iovine <miovine@nvidia.com> [TRTLLM-9086][doc] Clean up TODOs in documentation (NVIDIA#9292) Signed-off-by: junq <22017000+QiJune@users.noreply.github.com> Signed-off-by: Mike Iovine <6158008+mikeiovine@users.noreply.github.com> Signed-off-by: Mike Iovine <miovine@nvidia.com> [TRTLLM-9157][doc] Guided decoding doc improvement (NVIDIA#9359) Signed-off-by: Enwei Zhu <21126786+syuoni@users.noreply.github.com> Signed-off-by: Mike Iovine <6158008+mikeiovine@users.noreply.github.com> Signed-off-by: Mike Iovine <miovine@nvidia.com> [None][infra] Updated Linux installation guide (NVIDIA#9485) Signed-off-by: Yiqing Yan <yiqingy@nvidia.com> Co-authored-by: Yanchao Lu <yanchaol@nvidia.com> Signed-off-by: Mike Iovine <6158008+mikeiovine@users.noreply.github.com> Signed-off-by: Mike Iovine <miovine@nvidia.com> [TRTLLM-9075][doc] refine the slurm examples (NVIDIA#9548) Signed-off-by: Yan Chunwei <328693+Superjomn@users.noreply.github.com> Signed-off-by: Mike Iovine <6158008+mikeiovine@users.noreply.github.com> Signed-off-by: Mike Iovine <miovine@nvidia.com> [TRTLLM-9093][doc] update hyper links in overview (NVIDIA#9568) Signed-off-by: junq <22017000+QiJune@users.noreply.github.com> Signed-off-by: Mike Iovine <6158008+mikeiovine@users.noreply.github.com> Signed-off-by: Mike Iovine <miovine@nvidia.com> [TRTLLM-9092][doc] link to modelopt checkpoints in quick start guide (NVIDIA#9571) Signed-off-by: junq <22017000+QiJune@users.noreply.github.com> Signed-off-by: Mike Iovine <6158008+mikeiovine@users.noreply.github.com> Signed-off-by: Mike Iovine <miovine@nvidia.com> [None][infra] Check in most recent lock file from nightly pipeline Signed-off-by: TensorRT LLM <90828364+tensorrt-cicd@users.noreply.github.com> [None][fix] Fix triton moe load_weight (NVIDIA#9649) Signed-off-by: shuyix <219646547+shuyixiong@users.noreply.github.com> [None][fix] fix a bug: deepseek_fp8_block_scales in TRTLLMGEN-MoE use 2D x_sf instead of 1D (NVIDIA#9658) Signed-off-by: xxi <xxi@nvidia.com> [TRTLLM-9372][feat] Enable CuteDSL MoE with Large EP (NVIDIA#9592) Signed-off-by: Enwei Zhu <21126786+syuoni@users.noreply.github.com> [TRTLLM-9522][chore] implement default `attach_multimodal_embeddings` (NVIDIA#9664) Signed-off-by: ixlmar <206748156+ixlmar@users.noreply.github.com> [TRTLLM-9660][feat] Convert cuteDSL GEMM to opt-in feature (NVIDIA#9682) Signed-off-by: Jonas Li <6110159+longlee0622@users.noreply.github.com> Co-authored-by: Kaiyu Xie <26294424+kaiyux@users.noreply.github.com> [None][fix] enable hmac in RPC (NVIDIA#9745) Signed-off-by: Superjomn <328693+Superjomn@users.noreply.github.com> [None][infra] Check in most recent lock file from nightly pipeline Signed-off-by: TensorRT LLM <90828364+tensorrt-cicd@users.noreply.github.com> [https://nvbugs/5703953][fix] Preserving ip:port for trtllm-serve before initializing llm (NVIDIA#9646) Signed-off-by: Junyi Xu <219237550+JunyiXu-nv@users.noreply.github.com> [None][infra] Waive failed cases for main branch on 12/07 (NVIDIA#9769) Signed-off-by: qqiao <qqiao@nvidia.com> [None][fix] Several minor fixes to CI setting (NVIDIA#9765) Signed-off-by: Yanchao Lu <yanchaol@nvidia.com> [OMNIML-3036][doc] Re-branding TensorRT-Model-Optimizer as Nvidia Model-Optimizer (NVIDIA#9679) Signed-off-by: Chenjie Luo <chenjiel@nvidia.com> [None][feat] Enable NCCL_SYMMETRIC as default fallback for AllReduce (NVIDIA#9314) Signed-off-by: Ludwig Schneider <lschneider@nvidia.com> [TRTLLM-9000][feat] Add multi-node Perf Tests into CI (NVIDIA#8800) Signed-off-by: Chenfei Zhang <chenfeiz@nvidia.com> [None][test] add ntp tolerance in time metrics verification (NVIDIA#9741) Signed-off-by: zhengd-nv <200704041+zhengd-nv@users.noreply.github.com> [TRTLLM-9603][feat] Enable ConfigurableMoE test in the CI (NVIDIA#9645) [https://nvbugs/5422621][test] Add GB 200 WIDEEP test case for RCCA 5422621 (NVIDIA#9506) Signed-off-by: FredricZ-2007 <226039983+fredricz-20070104@users.noreply.github.com> [None][fix] Fix two tuning cache miss issues. (NVIDIA#9743) Signed-off-by: Yukun He <23156053+hyukn@users.noreply.github.com> [None][infra] Check in most recent lock file from nightly pipeline Signed-off-by: TensorRT LLM <90828364+tensorrt-cicd@users.noreply.github.com> [TRTLLM-9706] [doc] Update wide EP documents (NVIDIA#9724) Signed-off-by: Kaiyu Xie <26294424+kaiyux@users.noreply.github.com> [https://nvbugs/5666804][test] only adding sampler config for limited models (NVIDIA#9512) Signed-off-by: Ruodi Lu <ruodil@users.noreply.github.com> Co-authored-by: Ruodi Lu <ruodil@users.noreply.github.com> Co-authored-by: yufeiwu-nv <230315618+yufeiwu-nv@users.noreply.github.com> Co-authored-by: Larry Xu <197874197+LarryXFly@users.noreply.github.com> [None][infra] Waive failed cases for main on 12/08 (NVIDIA#9773) Signed-off-by: qqiao <qqiao@nvidia.com> [None][chore] Move the rocketkv e2e test to post-merge (NVIDIA#9768) Signed-off-by: Fanrong Li <23290157+lfr-0531@users.noreply.github.com> [None][chore] Enable tvm_ffi for cute dsl nvfp4_gemm to reduce host overhead. (NVIDIA#9690) Signed-off-by: Mindy Li <11663212+limin2021@users.noreply.github.com> [TRTLLM-9431][perf] Enable multistream for Linear Attention in Qwen3-… (NVIDIA#9696) Signed-off-by: nv-guomingz <137257613+nv-guomingz@users.noreply.github.com> [None][chore] Remove closed bugs (NVIDIA#9770) Signed-off-by: xinhe-nv <200704525+xinhe-nv@users.noreply.github.com> [None][infra] update mooncake in docker images (NVIDIA#9584) Signed-off-by: zhengd-nv <200704041+zhengd-nv@users.noreply.github.com> Signed-off-by: Zheng Duan <200704041+zhengd-nv@users.noreply.github.com> [None][test] Add Kimi k2 WIDEEP perf and accuracy cases (NVIDIA#9686) Signed-off-by: FredricZ-2007 <226039983+fredricz-20070104@users.noreply.github.com> Signed-off-by: Kaiyu Xie <26294424+kaiyux@users.noreply.github.com> Co-authored-by: Kaiyu Xie <26294424+kaiyux@users.noreply.github.com> [https://nvbugs/5527655][test] Add test case for RCCA 5527655 (NVIDIA#9511) Signed-off-by: FredricZ-2007 <226039983+fredricz-20070104@users.noreply.github.com> [http://nvbugs/5649010][fix] fix test_auto_scaling.py::test_worker_restart timeout (NVIDIA#9775) Signed-off-by: Lizhi Zhou <1432185+reasonsolo@users.noreply.github.com> [None][fix] Switch AutoDeploy's default allreduce strategy to NCCL (NVIDIA#9666) Signed-off-by: Eran Geva <19514940+MrGeva@users.noreply.github.com> [TRTLLM-9506][fix] Fix AR for DeepSeek-R1 2 model path (NVIDIA#9661) Signed-off-by: qgai <qgai@nvidia.com> ray + updatew works trtllm works in async env trtllm works in sync and async env ray + updatew works rebase to the updated verl server mode still cherry pick still cherry pick still cherry pick integrated http interface hang at RyExecutor create workers ray.remote clean code use tensorrt_llm.rlhf_utils Signed-off-by: Liwei Ma <liweim@nvidia.com> placement, asyncllm, and basic tests Signed-off-by: Erin Ho <14718778+hchings@users.noreply.github.com> connect sleep and wakeup; Add support to pass None to update_weights Signed-off-by: Erin Ho <14718778+hchings@users.noreply.github.com> Batching ctx for IFB scheduler Signed-off-by: Yuan Tong <13075180+tongyuantongyu@users.noreply.github.com> accuracy WAR for TP>1: always use AllReduceStrategy.NCCL, refactored Signed-off-by: Erin Ho <14718778+hchings@users.noreply.github.com> fix e2e integration Signed-off-by: Superjomn <328693+Superjomn@users.noreply.github.com> update asyncllm, other nits Signed-off-by: Erin Ho <14718778+hchings@users.noreply.github.com> fix init setup Signed-off-by: Erin Ho <14718778+hchings@users.noreply.github.com> Fix TRTLLMSampler logprobs perf Signed-off-by: Yuan Tong <13075180+tongyuantongyu@users.noreply.github.com> fix and cleanup Signed-off-by: Erin Ho <14718778+hchings@users.noreply.github.com> fix server Signed-off-by: Erin Ho <14718778+hchings@users.noreply.github.com> Revert "Batching ctx for IFB scheduler" This reverts commit b51aac0 Signed-off-by: Yuan Tong <13075180+tongyuantongyu@users.noreply.github.com> update & address comments Signed-off-by: Erin Ho <14718778+hchings@users.noreply.github.com>
Signed-off-by: Tal Cherckez <127761168+tcherckez-nvidia@users.noreply.github.com> Signed-off-by: tcherckez-nvidia <127761168+tcherckez-nvidia@users.noreply.github.com> Co-authored-by: Neta Zmora <nzmora@nvidia.com>
Signed-off-by: Tal Cherckez <127761168+tcherckez-nvidia@users.noreply.github.com> Signed-off-by: tcherckez-nvidia <127761168+tcherckez-nvidia@users.noreply.github.com> Co-authored-by: Neta Zmora <nzmora@nvidia.com>
Add handling for Lllama4 MoE where experts are calculated in BMM with swiglu
Perf is up by ~2.5x compared to baseline, there is still a gap of 35% to trtllm, probably due to comms.
Added tests
Summary by CodeRabbit
Release Notes
New Features
Tests
✏️ Tip: You can customize this high-level summary in your review settings.
Description
Test Coverage
PR Checklist
Please review the following before submitting your PR:
PR description clearly explains what and why. If using CodeRabbit's summary, please make sure it makes sense.
PR Follows TRT-LLM CODING GUIDELINES to the best of your knowledge.
Test cases are provided for new code paths (see test instructions)
Any new dependencies have been scanned for license and vulnerabilities
CODEOWNERS updated if ownership changes
Documentation updated as needed
Update tava architecture diagram if there is a significant design change in PR.
The reviewers assigned automatically/manually are appropriate for the PR.
Please check this after reviewing the above items as appropriate for this PR.
GitHub Bot Help
/bot [-h] ['run', 'kill', 'skip', 'reuse-pipeline'] ...Provide a user friendly way for developers to interact with a Jenkins server.
Run
/bot [-h|--help]to print this help message.See details below for each supported subcommand.
Details
run [--reuse-test (optional)pipeline-id --disable-fail-fast --skip-test --stage-list "A10-PyTorch-1, xxx" --gpu-type "A30, H100_PCIe" --test-backend "pytorch, cpp" --add-multi-gpu-test --only-multi-gpu-test --disable-multi-gpu-test --post-merge --extra-stage "H100_PCIe-TensorRT-Post-Merge-1, xxx" --detailed-log --debug(experimental)]Launch build/test pipelines. All previously running jobs will be killed.
--reuse-test (optional)pipeline-id(OPTIONAL) : Allow the new pipeline to reuse build artifacts and skip successful test stages from a specified pipeline or the last pipeline if no pipeline-id is indicated. If the Git commit ID has changed, this option will be always ignored. The DEFAULT behavior of the bot is to reuse build artifacts and successful test results from the last pipeline.--disable-reuse-test(OPTIONAL) : Explicitly prevent the pipeline from reusing build artifacts and skipping successful test stages from a previous pipeline. Ensure that all builds and tests are run regardless of previous successes.--disable-fail-fast(OPTIONAL) : Disable fail fast on build/tests/infra failures.--skip-test(OPTIONAL) : Skip all test stages, but still run build stages, package stages and sanity check stages. Note: Does NOT update GitHub check status.--stage-list "A10-PyTorch-1, xxx"(OPTIONAL) : Only run the specified test stages. Examples: "A10-PyTorch-1, xxx". Note: Does NOT update GitHub check status.--gpu-type "A30, H100_PCIe"(OPTIONAL) : Only run the test stages on the specified GPU types. Examples: "A30, H100_PCIe". Note: Does NOT update GitHub check status.--test-backend "pytorch, cpp"(OPTIONAL) : Skip test stages which don't match the specified backends. Only support [pytorch, cpp, tensorrt, triton]. Examples: "pytorch, cpp" (does not run test stages with tensorrt or triton backend). Note: Does NOT update GitHub pipeline status.--only-multi-gpu-test(OPTIONAL) : Only run the multi-GPU tests. Note: Does NOT update GitHub check status.--disable-multi-gpu-test(OPTIONAL) : Disable the multi-GPU tests. Note: Does NOT update GitHub check status.--add-multi-gpu-test(OPTIONAL) : Force run the multi-GPU tests in addition to running L0 pre-merge pipeline.--post-merge(OPTIONAL) : Run the L0 post-merge pipeline instead of the ordinary L0 pre-merge pipeline.--extra-stage "H100_PCIe-TensorRT-Post-Merge-1, xxx"(OPTIONAL) : Run the ordinary L0 pre-merge pipeline and specified test stages. Examples: --extra-stage "H100_PCIe-TensorRT-Post-Merge-1, xxx".--detailed-log(OPTIONAL) : Enable flushing out all logs to the Jenkins console. This will significantly increase the log volume and may slow down the job.--debug(OPTIONAL) : Experimental feature. Enable access to the CI container for debugging purpose. Note: Specify exactly one stage in thestage-listparameter to access the appropriate container environment. Note: Does NOT update GitHub check status.For guidance on mapping tests to stage names, see
docs/source/reference/ci-overview.mdand the
scripts/test_to_stage_mapping.pyhelper.kill
killKill all running builds associated with pull request.
skip
skip --comment COMMENTSkip testing for latest commit on pull request.
--comment "Reason for skipping build/test"is required. IMPORTANT NOTE: This is dangerous since lack of user care and validation can cause top of tree to break.reuse-pipeline
reuse-pipelineReuse a previous pipeline to validate current commit. This action will also kill all currently running builds associated with the pull request. IMPORTANT NOTE: This is dangerous since lack of user care and validation can cause top of tree to break.