-
Notifications
You must be signed in to change notification settings - Fork 2k
[None][feat] Support MLA chunked prefill for DeepSeek V3.2 model #9376
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
[None][feat] Support MLA chunked prefill for DeepSeek V3.2 model #9376
Conversation
df6e304 to
e77a939
Compare
📝 WalkthroughWalkthroughChanges implement cache-aware KV token indexing across CUDA kernels and attention backends, add chunked prefill configuration support, refactor sequence length bound computations to handle optional cached tokens, and adjust backend configuration handling for the PyTorch evaluation pipeline. Changes
Sequence Diagram(s)sequenceDiagram
participant User as CLI / parse_arguments()
participant LLMConfig as LLM Config
participant Backend as Attention Backend (DSA)
participant Cache as KV Cache
User->>LLMConfig: enable_chunked_prefill flag + tokens_per_block
LLMConfig->>Backend: Initialize with chunked prefill config
alt Chunked Prefill Enabled + Cached Tokens Present
Backend->>Cache: Compute per-request cached_token_lens
Backend->>Backend: Derive cu_seqlen_ks from cached + seq_lens
Backend->>Backend: Compute cu_seqlen_ke with per-token cached offsets
Backend->>Backend: Build extended slot_mapping_fullkv for cached+current tokens
Backend->>Cache: Gather full KV (cached + current context)
else No Chunked Prefill or No Cache
Backend->>Backend: Compute cu_seqlen_ks from seq_lens only
Backend->>Backend: Compute cu_seqlen_ke from local Q positions
Backend->>Cache: Use standard per-token slot mappings
end
Note over Backend,Cache: Token indexing via local_token_idx + cached_offset
Estimated code review effort🎯 4 (Complex) | ⏱️ ~60 minutes
Pre-merge checks and finishing touches❌ Failed checks (2 warnings)
✅ Passed checks (1 passed)
✨ Finishing touches
🧪 Generate unit tests (beta)
Tip 📝 Customizable high-level summaries are now available in beta!You can now customize how CodeRabbit generates the high-level summary in your pull requests — including its content, structure, tone, and formatting.
Example instruction:
Note: This feature is currently in beta for Pro-tier users, and pricing will be announced later. Thanks for using CodeRabbit! It's free for OSS, and your support helps us grow. If you like it, consider giving us a shout-out. Comment |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Actionable comments posted: 1
🧹 Nitpick comments (3)
tests/unittest/_torch/attention/sparse/test_dsa_indexer.py (1)
124-127: Remove unnecessaryfprefixes from literal strings (Ruff F541)Several
favoids Ruff F541 warnings and slightly clarifies intent:- print(f"\n=== Test: Multi-request with different cache ===") + print("\n=== Test: Multi-request with different cache ===")Apply the same change to the other literal‑only f‑strings.
Also applies to: 2070-2172
tensorrt_llm/_torch/attention_backend/sparse/dsa.py (1)
225-282:compute_cu_seqlen_kv_bounds_with_cacheimplementation matches intended semanticsThe helper correctly:
- Builds per‑request total KV lengths (
kv_lens) including cached tokens when provided.- Computes per‑request KV offsets and per‑token batch IDs.
- Derives
cu_seqlen_ksfrom KV offsets andcu_seqlen_kefrom cached lengths + local Q positions.- Works for both cached and no‑cache cases.
Given the extensive unit and property tests added, this implementation looks solid. One maintenance nit: this function also exists in
tensorrt_llm/kernels/indexer_bounds.py; consider de‑duplicating by importing from a single source to avoid divergence over time.cpp/tensorrt_llm/kernels/mlaKernels.cu (1)
235-246: Consider guarding against degenerate zero‑lengthcurrent_seq_lenfor robustnessBoth updated loops assume
current_seq_len > 0when computing:int const current_seq_len = cu_q_seqlens[batch_idx + 1] - global_token_offset; int const safe_local_token_idx = std::min(local_token_idx, current_seq_len - 1); int const global_token_idx = safe_local_token_idx + global_token_offset;If, for any reason,
current_seq_lencould be zero for a batch entry,current_seq_len - 1becomes negative andglobal_token_idxwould underflow, leading to invalid reads fromhelix_position_offsets,q_pe_input, orfuse_bufeven thoughvalid_tokenwill always be false.If upstream logic guarantees
current_seq_len > 0whenever this kernel is launched for a batch, that’s fine; otherwise, a small guard would make this code more defensive, for example:if (current_seq_len <= 0) { continue; }placed right after computing
current_seq_lenin each loop.Also applies to: 320-339
📜 Review details
Configuration used: Path: .coderabbit.yaml
Review profile: CHILL
Plan: Pro
📒 Files selected for processing (5)
cpp/tensorrt_llm/kernels/mlaKernels.cu(2 hunks)examples/llm-api/llm_sparse_attention.py(3 hunks)tensorrt_llm/_torch/attention_backend/sparse/dsa.py(8 hunks)tensorrt_llm/commands/eval.py(1 hunks)tests/unittest/_torch/attention/sparse/test_dsa_indexer.py(7 hunks)
🧰 Additional context used
📓 Path-based instructions (4)
**/*.py
📄 CodeRabbit inference engine (CODING_GUIDELINES.md)
**/*.py: The code developed for TensorRT-LLM should conform to Python 3.8+
Indent Python code with 4 spaces; do not use tabs
Always maintain the namespace when importing in Python, even if only one class or function from a module is used (e.g., usefrom package.subpackage import fooand thenfoo.SomeClass()instead offrom package.subpackage.foo import SomeClass)
Python filenames should use snake_case (e.g.,some_file.py)
Python class names should use PascalCase (e.g.,class SomeClass)
Python function and method names should use snake_case (e.g.,def my_awesome_function():)
Python local variable names should use snake_case, with prefixkfor variable names that start with a number (e.g.,k_99th_percentile = ...)
Python global variables should use upper snake_case with prefixG(e.g.,G_MY_GLOBAL = ...)
Python constants should use upper snake_case (e.g.,MY_CONSTANT = ...)
Avoid shadowing variables declared in an outer scope in Python
Initialize all externally visible members of a Python class in the constructor
For Python interfaces that may be used outside a file, prefer docstrings over comments
Python comments should be reserved for code within a function, or interfaces that are local to a file
Use Google style docstrings for Python classes and functions, which can be parsed by Sphinx
Python attributes and variables can be documented inline with type and description (e.g.,self.x = 5followed by"""<type>: Description of 'x'""")
Avoid using reflection in Python when functionality can be easily achieved without reflection
When using try-except blocks in Python, limit the except clause to the smallest set of specific errors possible instead of catching all exceptions
When using try-except blocks in Python to handle multiple possible variable types (duck-typing), keep the body of the try as small as possible and use the else block to implement the logic
Files:
tensorrt_llm/commands/eval.pyexamples/llm-api/llm_sparse_attention.pytests/unittest/_torch/attention/sparse/test_dsa_indexer.pytensorrt_llm/_torch/attention_backend/sparse/dsa.py
**/*.{cpp,h,cu,py}
📄 CodeRabbit inference engine (CODING_GUIDELINES.md)
All TensorRT-LLM Open Source Software code files should contain an NVIDIA copyright header that includes the current year at the top
Files:
tensorrt_llm/commands/eval.pycpp/tensorrt_llm/kernels/mlaKernels.cuexamples/llm-api/llm_sparse_attention.pytests/unittest/_torch/attention/sparse/test_dsa_indexer.pytensorrt_llm/_torch/attention_backend/sparse/dsa.py
**/*.{cpp,h,cu}
📄 CodeRabbit inference engine (CODING_GUIDELINES.md)
**/*.{cpp,h,cu}: Closing braces of namespaces should have a comment saying the namespace it closes (e.g.,} // namespace foo)
Preferconstorconstexprvariables over#definewhenever possible, as the latter are not visible to the compiler
A variable that is not modified after its initialization should be declared asconst
Except0(only used in comparison for checking signness/existence/emptiness) andnullptr,true,false, all other literals should only be used for variable initialization and should be replaced with named constants
Use Allman indentation style for braces in C++
Put the semicolon for an emptyfororwhileloop in a new line
The statement forming the body of aswitch,while,do .. whileorforstatement shall be a compound statement (use brace-delimited statements)
Ifandelseshould always be followed by brace-delimited statements, even if empty or a single statement
C++ filenames should use camel case with first letter lowercase (e.g.,thisIsASubDirandthisIsAFilename.cpp)
All filenames involved in compilation of a compilation target must have case-insensitive unique filenames
All types (including class names) should use camel case with uppercase first letter (e.g.,FooBarClass)
Local variables, methods and namespaces should use camel case with first letter lowercase (e.g.,localFooBar)
Non-magic-number global variables that are non-static and not defined in anonymous namespace should use camel case prefixed by a lower case 'g' (e.g.,gDontUseGlobalFoos)
Non-magic-number global variables that are static or defined in an anonymous namespace should use camel case prefixed by a lower case 's' (e.g.,sMutableStaticGlobal)
Locally visible static variables should use camel case with lowercase prefix 's' as the first letter of the name (e.g.,static std::once_flag sFlag;)
Public, private and protected class member variables should use camel case prefixed with 'm' (e.g.,mNbFooValues), though the 'm' pre...
Files:
cpp/tensorrt_llm/kernels/mlaKernels.cu
**/*.cu
📄 CodeRabbit inference engine (CODING_GUIDELINES.md)
CUDA code must be compiled with a CUDA compiler and includes declarations/definitions with CUDA keywords (
__device__,__managed__,__constant__,__global__), device functions, and kernel launching with <<<...>>> syntax
Files:
cpp/tensorrt_llm/kernels/mlaKernels.cu
🧠 Learnings (24)
📓 Common learnings
Learnt from: thorjohnsen
Repo: NVIDIA/TensorRT-LLM PR: 6910
File: cpp/tensorrt_llm/batch_manager/kvCacheManager.cpp:0-0
Timestamp: 2025-08-14T21:04:50.248Z
Learning: In KV cache onboarding logic during prefill in cpp/tensorrt_llm/batch_manager/kvCacheManager.cpp, when calculating which blocks fall within the attention window, use getTokensPerBlock() to advance token indices rather than block->getUniqueTokens().size(), because the calculation needs to consider the post-prefill state where blocks will be filled to capacity, not their current token count.
Learnt from: eopXD
Repo: NVIDIA/TensorRT-LLM PR: 6767
File: cpp/tensorrt_llm/batch_manager/kvCacheManager.cpp:0-0
Timestamp: 2025-08-15T06:46:54.897Z
Learning: In cpp/tensorrt_llm/batch_manager/kvCacheManager.cpp addToken function, newly allocated blocks are unshared by design. The beam search path in addToken (when sequence.getNumTokens() > windowSize) is currently broken/non-functional with SWA, so the block allocation doesn't follow a shared-then-unshared pattern.
Learnt from: eopXD
Repo: NVIDIA/TensorRT-LLM PR: 6768
File: cpp/tensorrt_llm/batch_manager/kvCacheManager.cpp:2010-2045
Timestamp: 2025-08-21T09:41:49.347Z
Learning: In cpp/tensorrt_llm/batch_manager/kvCacheManager.cpp, updateSequenceCacheBlockOffsets is specifically for updating bookkeeping when blocks are added during the context phase, not for refreshing offsets after detach operations. During detach operations, GenerationRequest::removeFrontBlock handles the necessary cache block bookkeeping internally.
📚 Learning: 2025-08-26T09:37:10.463Z
Learnt from: jiaganc
Repo: NVIDIA/TensorRT-LLM PR: 7031
File: tensorrt_llm/bench/dataclasses/configuration.py:90-104
Timestamp: 2025-08-26T09:37:10.463Z
Learning: In TensorRT-LLM, the `get_pytorch_perf_config()` method returns `self.pytorch_config` which can contain default `cuda_graph_config` values, so `llm_args` may already have this config before the extra options processing.
Applied to files:
tensorrt_llm/commands/eval.py
📚 Learning: 2025-07-28T17:06:08.621Z
Learnt from: moraxu
Repo: NVIDIA/TensorRT-LLM PR: 6303
File: tests/integration/test_lists/qa/examples_test_list.txt:494-494
Timestamp: 2025-07-28T17:06:08.621Z
Learning: In TensorRT-LLM testing, it's common to have both CLI flow tests (test_cli_flow.py) and PyTorch API tests (test_llm_api_pytorch.py) for the same model. These serve different purposes: CLI flow tests validate the traditional command-line workflow, while PyTorch API tests validate the newer LLM API backend. Both are legitimate and should coexist.
Applied to files:
tensorrt_llm/commands/eval.py
📚 Learning: 2025-08-06T13:58:07.506Z
Learnt from: galagam
Repo: NVIDIA/TensorRT-LLM PR: 6487
File: tests/unittest/_torch/auto_deploy/unit/singlegpu/test_ad_trtllm_bench.py:1-12
Timestamp: 2025-08-06T13:58:07.506Z
Learning: In TensorRT-LLM, test files (files under tests/ directories) do not require NVIDIA copyright headers, unlike production source code files. Test files typically start directly with imports, docstrings, or code.
Applied to files:
tensorrt_llm/commands/eval.py
📚 Learning: 2025-08-19T12:45:11.997Z
Learnt from: amitz-nv
Repo: NVIDIA/TensorRT-LLM PR: 7033
File: tensorrt_llm/_torch/pyexecutor/model_engine.py:0-0
Timestamp: 2025-08-19T12:45:11.997Z
Learning: In tensorrt_llm/_torch/pyexecutor/model_engine.py, DoRA (Delta Orthogonal Rank Adaptation) functionality was removed from the PyTorch flow to eliminate issues with inverted DoRA detection logic. The original is_dora condition was checking if scaling_vec_pointer == 0, which was potentially incorrect.
Applied to files:
tensorrt_llm/commands/eval.py
📚 Learning: 2025-08-26T09:37:10.463Z
Learnt from: jiaganc
Repo: NVIDIA/TensorRT-LLM PR: 7031
File: tensorrt_llm/bench/dataclasses/configuration.py:90-104
Timestamp: 2025-08-26T09:37:10.463Z
Learning: In TensorRT-LLM's bench configuration, the `get_pytorch_perf_config()` method returns `self.pytorch_config` which is a Dict[str, Any] that can contain default values including `cuda_graph_config`, making the fallback `llm_args["cuda_graph_config"]` safe to use.
Applied to files:
tensorrt_llm/commands/eval.py
📚 Learning: 2025-08-14T15:43:23.107Z
Learnt from: MatthiasKohl
Repo: NVIDIA/TensorRT-LLM PR: 6904
File: tensorrt_llm/_torch/attention_backend/trtllm.py:259-262
Timestamp: 2025-08-14T15:43:23.107Z
Learning: In TensorRT-LLM's attention backend, tensor parameters in the plan() method are assigned directly without validation (dtype, device, contiguity checks). This maintains consistency across all tensor inputs and follows the pattern of trusting callers to provide correctly formatted tensors.
Applied to files:
tensorrt_llm/commands/eval.pytests/unittest/_torch/attention/sparse/test_dsa_indexer.py
📚 Learning: 2025-08-14T15:38:01.771Z
Learnt from: MatthiasKohl
Repo: NVIDIA/TensorRT-LLM PR: 6904
File: cpp/tensorrt_llm/pybind/thop/bindings.cpp:55-57
Timestamp: 2025-08-14T15:38:01.771Z
Learning: In TensorRT-LLM Python bindings, tensor parameter collections like mla_tensor_params and spec_decoding_tensor_params are kept as required parameters without defaults to maintain API consistency, even when it might affect backward compatibility.
Applied to files:
tensorrt_llm/commands/eval.pytests/unittest/_torch/attention/sparse/test_dsa_indexer.py
📚 Learning: 2025-08-18T09:08:07.687Z
Learnt from: tongyuantongyu
Repo: NVIDIA/TensorRT-LLM PR: 6984
File: cpp/tensorrt_llm/CMakeLists.txt:297-299
Timestamp: 2025-08-18T09:08:07.687Z
Learning: In the TensorRT-LLM project, artifacts are manually copied rather than installed via `cmake --install`, so INSTALL_RPATH properties are not needed - only BUILD_RPATH affects the final artifacts.
Applied to files:
tensorrt_llm/commands/eval.py
📚 Learning: 2025-09-09T09:40:45.658Z
Learnt from: fredricz-20070104
Repo: NVIDIA/TensorRT-LLM PR: 7645
File: tests/integration/test_lists/qa/llm_function_core.txt:648-648
Timestamp: 2025-09-09T09:40:45.658Z
Learning: In TensorRT-LLM test lists, it's common and intentional for the same test to appear in multiple test list files when they serve different purposes (e.g., llm_function_core.txt for comprehensive core functionality testing and llm_function_core_sanity.txt for quick sanity checks). This duplication allows tests to be run in different testing contexts.
Applied to files:
tensorrt_llm/commands/eval.py
📚 Learning: 2025-08-26T06:07:02.166Z
Learnt from: shaharmor98
Repo: NVIDIA/TensorRT-LLM PR: 7231
File: tensorrt_llm/_torch/pyexecutor/_util.py:504-509
Timestamp: 2025-08-26T06:07:02.166Z
Learning: In tensorrt_llm/_torch/pyexecutor/_util.py, when calling model_engine.set_lora_model_config(), pass model_binding_config.mlp_hidden_size directly without multiplying by mapping.tp_size, as the mlp_hidden_size from get_bindings_model_config() is already the per-TP rank value needed for LoRA weight packaging.
Applied to files:
tensorrt_llm/commands/eval.py
📚 Learning: 2025-09-16T09:30:09.716Z
Learnt from: tongyuantongyu
Repo: NVIDIA/TensorRT-LLM PR: 7763
File: cpp/tensorrt_llm/CMakeLists.txt:297-301
Timestamp: 2025-09-16T09:30:09.716Z
Learning: In the TensorRT-LLM project, NCCL libraries are loaded earlier by PyTorch libraries or the bindings library, so the main shared library doesn't need NCCL paths in its RPATH - the libraries will already be available in the process address space when needed.
Applied to files:
tensorrt_llm/commands/eval.pytests/unittest/_torch/attention/sparse/test_dsa_indexer.py
📚 Learning: 2025-08-14T21:04:50.248Z
Learnt from: thorjohnsen
Repo: NVIDIA/TensorRT-LLM PR: 6910
File: cpp/tensorrt_llm/batch_manager/kvCacheManager.cpp:0-0
Timestamp: 2025-08-14T21:04:50.248Z
Learning: In KV cache onboarding logic during prefill in cpp/tensorrt_llm/batch_manager/kvCacheManager.cpp, when calculating which blocks fall within the attention window, use getTokensPerBlock() to advance token indices rather than block->getUniqueTokens().size(), because the calculation needs to consider the post-prefill state where blocks will be filled to capacity, not their current token count.
Applied to files:
cpp/tensorrt_llm/kernels/mlaKernels.cuexamples/llm-api/llm_sparse_attention.pytests/unittest/_torch/attention/sparse/test_dsa_indexer.pytensorrt_llm/_torch/attention_backend/sparse/dsa.py
📚 Learning: 2025-08-15T06:46:54.897Z
Learnt from: eopXD
Repo: NVIDIA/TensorRT-LLM PR: 6767
File: cpp/tensorrt_llm/batch_manager/kvCacheManager.cpp:0-0
Timestamp: 2025-08-15T06:46:54.897Z
Learning: In cpp/tensorrt_llm/batch_manager/kvCacheManager.cpp addToken function, newly allocated blocks are unshared by design. The beam search path in addToken (when sequence.getNumTokens() > windowSize) is currently broken/non-functional with SWA, so the block allocation doesn't follow a shared-then-unshared pattern.
Applied to files:
cpp/tensorrt_llm/kernels/mlaKernels.cutensorrt_llm/_torch/attention_backend/sparse/dsa.py
📚 Learning: 2025-09-23T14:58:05.372Z
Learnt from: nv-lschneider
Repo: NVIDIA/TensorRT-LLM PR: 7910
File: cpp/tensorrt_llm/kernels/nccl_device/config.cu:42-49
Timestamp: 2025-09-23T14:58:05.372Z
Learning: In TensorRT-LLM NCCL device kernels (cpp/tensorrt_llm/kernels/nccl_device/), the token partitioning intentionally uses ceil-like distribution (same token_per_rank for all ranks) to ensure all ranks launch the same number of blocks. This is required for optimal NCCL device API barrier performance, even though it may launch extra blocks for non-existent tokens on later ranks. Runtime bounds checking in the kernel (blockID validation) handles the overshoot cases.
Applied to files:
cpp/tensorrt_llm/kernels/mlaKernels.cu
📚 Learning: 2025-09-23T15:01:00.070Z
Learnt from: nv-lschneider
Repo: NVIDIA/TensorRT-LLM PR: 7910
File: cpp/tensorrt_llm/kernels/nccl_device/config.cu:15-17
Timestamp: 2025-09-23T15:01:00.070Z
Learning: In TensorRT-LLM NCCL device kernels, the <sstream> header is not needed as an explicit include in config.cu because it's provided transitively through other headers. Local compilation testing confirms this works without the explicit include.
Applied to files:
cpp/tensorrt_llm/kernels/mlaKernels.cu
📚 Learning: 2025-08-21T09:41:49.347Z
Learnt from: eopXD
Repo: NVIDIA/TensorRT-LLM PR: 6768
File: cpp/tensorrt_llm/batch_manager/kvCacheManager.cpp:2010-2045
Timestamp: 2025-08-21T09:41:49.347Z
Learning: In cpp/tensorrt_llm/batch_manager/kvCacheManager.cpp, updateSequenceCacheBlockOffsets is specifically for updating bookkeeping when blocks are added during the context phase, not for refreshing offsets after detach operations. During detach operations, GenerationRequest::removeFrontBlock handles the necessary cache block bookkeeping internally.
Applied to files:
cpp/tensorrt_llm/kernels/mlaKernels.cutensorrt_llm/_torch/attention_backend/sparse/dsa.py
📚 Learning: 2025-08-09T20:57:04.084Z
Learnt from: sklevtsov-nvidia
Repo: NVIDIA/TensorRT-LLM PR: 3294
File: cpp/tensorrt_llm/kernels/cutlass_kernels/moe_gemm/moe_gemm_tma_warp_specialized_input.cu:118-127
Timestamp: 2025-08-09T20:57:04.084Z
Learning: In the CUTLASS MoE finalize fusion implementation (cpp/tensorrt_llm/kernels/cutlass_kernels/moe_gemm/moe_gemm_tma_warp_specialized_input.cu), when setting `fused_finalize_epilogue.stride_final_output` with shape `(hidden_size, num_output_tokens, 1)`, the `num_rows_in_final_output` should be set to `num_output_tokens` (not `hidden_size`) because of a swap+transpose operation that maps rows of the output tensor to `hidden_size` and columns to `num_output_tokens`.
Applied to files:
cpp/tensorrt_llm/kernels/mlaKernels.cu
📚 Learning: 2025-08-20T06:56:02.889Z
Learnt from: eopXD
Repo: NVIDIA/TensorRT-LLM PR: 6768
File: cpp/tensorrt_llm/batch_manager/kvCacheManager.cpp:577-579
Timestamp: 2025-08-20T06:56:02.889Z
Learning: In cpp/tensorrt_llm/batch_manager/kvCacheManager.cpp, maxSequenceLength is now enforced as a non-optional argument in the BlockManager constructor, so concerns about std::nullopt defaulting to 0 are not applicable. When windowSize > maxSequenceLength, a warning should be added instead of handling optional parameter cases.
Applied to files:
cpp/tensorrt_llm/kernels/mlaKernels.cu
📚 Learning: 2025-08-22T01:54:35.850Z
Learnt from: djns99
Repo: NVIDIA/TensorRT-LLM PR: 7104
File: cpp/tensorrt_llm/kernels/cutlass_kernels/include/moe_kernels.h:999-1000
Timestamp: 2025-08-22T01:54:35.850Z
Learning: The `internal_cutlass_kernels` directory in TensorRT-LLM is a mirror of an internal NVIDIA repository and maintains its own implementation and API that may diverge from the public `cutlass_kernels` version. API inconsistencies between these two directories are intentional and by design, not bugs to be fixed.
Applied to files:
cpp/tensorrt_llm/kernels/mlaKernels.cu
📚 Learning: 2025-08-21T02:39:12.009Z
Learnt from: djns99
Repo: NVIDIA/TensorRT-LLM PR: 7104
File: cpp/tensorrt_llm/kernels/cutlass_kernels/moe_gemm/moe_kernels.cu:1475-1480
Timestamp: 2025-08-21T02:39:12.009Z
Learning: The min latency mode functionality in TensorRT-LLM MOE kernels (cpp/tensorrt_llm/kernels/cutlass_kernels/moe_gemm/moe_kernels.cu) is deprecated and no longer being maintained/updated, as confirmed by djns99. Bug reports and optimization suggestions for the computeStridesTmaWarpSpecializedLowLatencyKernel and related min latency code paths should be deprioritized.
Applied to files:
cpp/tensorrt_llm/kernels/mlaKernels.cu
📚 Learning: 2025-08-19T03:35:20.866Z
Learnt from: djns99
Repo: NVIDIA/TensorRT-LLM PR: 6915
File: cpp/tensorrt_llm/kernels/cutlass_kernels/moe_gemm/moe_kernels.cu:4616-4626
Timestamp: 2025-08-19T03:35:20.866Z
Learning: In the MOE profiler TMA workspace preparation (cpp/tensorrt_llm/kernels/cutlass_kernels/moe_gemm/moe_kernels.cu), the overlapping of TMA WS regions for NONE and FINALIZE variants is deliberate design to save memory space, as confirmed by djns99. The comment "reuse the same pointers to save space" reflects this intentional behavior.
Applied to files:
cpp/tensorrt_llm/kernels/mlaKernels.cu
📚 Learning: 2025-08-20T06:48:45.368Z
Learnt from: eopXD
Repo: NVIDIA/TensorRT-LLM PR: 6768
File: cpp/include/tensorrt_llm/batch_manager/kvCacheManager.h:0-0
Timestamp: 2025-08-20T06:48:45.368Z
Learning: In cpp/tensorrt_llm/batch_manager/kvCacheManager.cpp, updateSequenceCacheBlockOffsets is only called when adding a sequence, not during detach operations. During detach, the cache block bookkeeping is handled by GenerationRequest::removeFrontBlock.
Applied to files:
cpp/tensorrt_llm/kernels/mlaKernels.cu
📚 Learning: 2025-08-15T06:46:53.813Z
Learnt from: eopXD
Repo: NVIDIA/TensorRT-LLM PR: 6767
File: cpp/tensorrt_llm/batch_manager/kvCacheManager.cpp:0-0
Timestamp: 2025-08-15T06:46:53.813Z
Learning: In the TensorRT-LLM KV cache manager, SWA (Sliding Window Attention) combined with beam search is currently in a broken/non-functional state and is planned for future rework. During preparatory refactoring phases, code related to SWA+beam search may intentionally remain in a non-working state until the broader rework is completed.
Applied to files:
tests/unittest/_torch/attention/sparse/test_dsa_indexer.pytensorrt_llm/_torch/attention_backend/sparse/dsa.py
🧬 Code graph analysis (2)
cpp/tensorrt_llm/kernels/mlaKernels.cu (1)
cpp/tensorrt_llm/kernels/mlaKernels.h (1)
helix_position_offsets(109-110)
examples/llm-api/llm_sparse_attention.py (3)
tests/unittest/llmapi/apps/test_tool_parsers.py (1)
parser(374-375)tensorrt_llm/builder.py (1)
default(45-50)tensorrt_llm/_torch/attention_backend/trtllm.py (1)
tokens_per_block(654-658)
🪛 Ruff (0.14.5)
tests/unittest/_torch/attention/sparse/test_dsa_indexer.py
1167-1167: Standard pseudo-random generators are not suitable for cryptographic purposes
(S311)
2070-2070: f-string without any placeholders
Remove extraneous f prefix
(F541)
2149-2149: f-string without any placeholders
Remove extraneous f prefix
(F541)
2151-2151: f-string without any placeholders
Remove extraneous f prefix
(F541)
2168-2168: f-string without any placeholders
Remove extraneous f prefix
(F541)
2172-2172: f-string without any placeholders
Remove extraneous f prefix
(F541)
⏰ Context from checks skipped due to timeout of 90000ms. You can increase the timeout in your CodeRabbit configuration to a maximum of 15 minutes (900000ms). (1)
- GitHub Check: Pre-commit Check
🔇 Additional comments (21)
tensorrt_llm/commands/eval.py (1)
136-141: Safe removal ofbuild_configfor PyTorch backendPopping
"build_config"fromllm_argsbefore constructingPyTorchLLMis a clean way to avoid passing a TensorRT‑specific argument to the PyTorch backend, while keeping the TensorRT path unchanged. This looks correct and maintainable.tests/unittest/_torch/attention/sparse/test_dsa_indexer.py (10)
20-22: Import switch to cache-aware bounds utility matches new APISwitching the import to
compute_cu_seqlen_kv_bounds_with_cachealigns the tests with the new cache‑aware helper used in the DSA backend, and the rest of the file consistently calls this function with and withoutcached_token_lens. This is the right direction.
374-512: ExtendedMockMetadatacorrectly mirrors new DSA metadata fieldsThe additions to
_create_mock_metadata(max_draft_tokens,enable_context_mla_with_cached_kv,host_ctx_cached_token_indptr, andruntime_features) line up with the new fields and expectations inDSAtrtllmAttentionMetadata/Indexer.prepare:
host_ctx_cached_token_indptrand its cumsum fromnum_cached_tokensare consistent with the real metadata’s cached‑token indptr logic.enable_context_mla_with_cached_kvandruntime_features.chunked_prefillgive tests a way to exercise the MLA‑chunked‑prefill path.- Defaults keep existing tests behavior unchanged (chunk size large, no cached‑KV MLA unless explicitly enabled).
This mock extension looks accurate and sufficient for the new flows.
462-493: Host cached‑KV indptr computation matches production semanticsThe computation of
host_ctx_cached_token_indptrvia a cumsum ofnum_cached_tokens[:num_contexts]mirrors whatDSAtrtllmAttentionMetadata.prepare()does for context cached‑token indptr. This ensures tests see the same structure that the kernels expect.
498-511:runtime_featuresstub is minimal but adequate for chunked prefill testsDefining
runtime_featureswithchunked_prefill,cache_reuse,has_speculative_draft_tokens,chunk_size, andchunked_prefill_buffer_batch_sizegivesIndexer.prepareenough state to differentiate MLA chunked prefill vs normal paths. The values are reasonable test defaults.
985-1015:test_compute_cu_seqlen_bounds_nocachecorrectly validates base behaviorThe expectations for
cu_seqlen_ks/cu_seqlen_kewith two sequences and no cache exactly match the logic ofcompute_cu_seqlen_kv_bounds_with_cachewhencached_token_lens=None(flat causal window per request). This is a solid sanity check of the core routine.
1018-1061:test_compute_cu_seqlen_bounds_with_cachenicely captures the cached‑KV semanticsThe cached‑aware test with
[2,1]cached tokens and[3,4]new tokens asserts:
ksjumps from 0 to 5 between requests, matching cumulative KV offsets.kegrows to include cached + local Q positions.The expected values align with the implementation and give good coverage of the intended behavior.
1064-1161: Edge‑case coverage for cached‑KV bounds is thoroughThe edge‑case tests (no cached tokens, single‑token sequences, varied cached amounts, and “all cached + one new” cases) exercise:
- Sequences with/without cache.
- Different per‑sequence cache lengths.
- Correct contiguity of KV indices across sequences.
All expected
ks/kevalues are consistent with the helper’s math. This is excellent coverage and should catch regressions in the indexing logic.
1163-1227: Property tests enforce key invariants forcompute_cu_seqlen_kv_bounds_with_cacheThe property‑based test checks:
- Output length equals
num_ctx_tokens.ke > ksfor every token.- Per‑sequence
keincrements by 1 per token.- First Q attends to
cached_len + 1KV tokens.- Final
keequals total KV length across sequences.These invariants are a great complement to the concrete examples and tightly match the helper’s intended contract.
1018-1227: Minor note on RNG usage in tests
randomandtorch.rand/torch.randintare used only to generate synthetic data and lengths in tests. The Ruff S311 hint about cryptographic suitability is harmless here; no change is needed.
2049-2223:test_indexer_topk_multi_request_with_different_cacheexercises the tricky cached‑KV multi‑request case wellThis new test builds a batch with very different cached lengths per request, enables
enable_context_mla_with_cached_kv, and validates:
- No invalid indices (< −1) from the custom top‑k kernel.
- For large attention windows, both custom and fallback paths produce exactly
index_topkvalid indices.- High Jaccard similarity between custom and fallback top‑k sets across all tokens.
This directly targets the previously failing scenario and is an appropriate regression test for the new chunked‑prefill + cache‑aware path.
examples/llm-api/llm_sparse_attention.py (3)
124-128: New--enable_chunked_prefillflag is wired cleanlyThe CLI flag is optional, defaults to
False, and is passed throughargswithout altering existing behavior. It’s a straightforward toggle for chunked prefill in this example script.
138-144: Settingtokens_per_block=64inKvCacheConfigmatches DSA indexer constraintsProviding
tokens_per_block=64inKvCacheConfigkeeps this example consistent withDSACacheManager’s assertion thattokens_per_blockmust be 64 for DeepSeek V3.2, preventing subtle mismatches between the config and the indexer kernels.
150-167: Passingenable_chunked_prefillintoLLMcompletes the configuration chainPlumbing
enable_chunked_prefill=args.enable_chunked_prefillinto theLLMconstructor ensures the runtime can actually activate the underlying chunked‑prefill logic when requested via CLI, without impacting existing default behavior.tensorrt_llm/_torch/attention_backend/sparse/dsa.py (5)
337-360: New context cached/KV indptr buffers align with MLA kernel requirementsAdding
ctx_cached_token_indptr/ctx_kv_indptrand their host mirrors provides the exact prefix‑sum structures the new MLA kernels expect for context prefill with cached KV. Types, shapes, and capture handling are consistent with the existing generation‑side indptr buffers.
556-580: Context cached/KV indptr population is consistent and guardedThe context‑side
num_ctx_cached_tokens,max_ctx_kv_len,max_ctx_seq_len, and the cumsums intohost_ctx_cached_token_indptr/host_ctx_kv_indptrmatch how the generation side is handled and are guarded onnum_contexts > 0. This safely feeds both the Python indexer and the underlying CUDA kernels.
754-858:prepare_one_prefill_chunkcorrectly handles both intra‑ and multi‑request chunks with cacheKey points:
- For intra‑request chunks,
cu_seqlen_ksstarts at 0 andcu_seqlen_kegrows fromnum_cached + token_start_in_req + 1up tonum_cached + token_end_in_req, giving a causal window over cached + current tokens.- For multi‑request chunks, it builds per‑request
seq_lens/cached_lensarrays and delegates tocompute_cu_seqlen_kv_bounds_with_cache, then setstoken_start/token_endandk_token_start/k_token_endrelative to the batch‑wide KV layout viahost_ctx_kv_indptr.- The final asserts ensure consistency between Q token count and the computed bounds.
This refactor matches the new full‑KV/chunked prefill design and looks correct.
1089-1144:_gather_k_cache_for_chunkis consistent with the new full‑KV mapping strategyThe gather path:
- Requires
slot_mapping_fp8_fullkvto be present (assert), which is satisfied either by full‑KV construction (MLA chunked prefill with caches) or aliasing to the per‑token mapping when there are no cached tokens.- Uses
[k_token_start:k_token_end]to select the relevant KV span for the chunk, with indices matching howprepare_one_prefill_chunkbuildsk_token_start/k_token_endfromctx_kv_indptr.- Reconstructs
k_fp8andk_scalevia byte‑level_unravel_indicesin the same layout used by_update_k_cache.This duality (scatter in
_update_k_cache, gather here) looks internally consistent.
1172-1241: Prefillsparse_attn_indexerchunked vs fallback paths are coherentIn the prefill portion of
sparse_attn_indexer:
- When
indexer_prefill_chunksis populated, each chunk gathers its own K window and runsfp8_mqa_logits, followed by either the custom top‑k kernel or a PyTorch fallback that localizes indices viacu_seqlen_{ks,ke}.- When
indexer_prefill_chunksisNone, it falls back to a single‑pass path overmetadata.cu_seqlen_{ks,ke}.This matches the test expectations (
test_indexer_chunked_prefill, single‑pass tests) and appears correct.cpp/tensorrt_llm/kernels/mlaKernels.cu (2)
231-249: Context kernel now correctly accounts for cached tokens when writing Q/K and KV cacheThe changes in
applyMLARopeAndAssignQKVKernelOptContext:
- Derive
current_seq_lenfromcu_q_seqlens[batch_idx + 1] - cu_q_seqlens[batch_idx].- Compute
cached_offset = cache_seq_len - current_seq_lenandtoken_idx_in_kv_cache = local_token_idx + cached_offset, so new tokens are placed after cached KV.- Gate writes with
valid_token = (token_idx_in_kv_cache < cache_seq_len) && (local_token_idx < current_seq_len).- Clamp both
token_idx_in_kv_cacheand the Q index (safe_local_token_idx) to keep loads within bounds, even for padding iterations.This fixes the previous assumption that
local_token_idxdirectly indexed the KV cache and makes the kernel cache‑aware without changing the main math path.
328-340: Mirror of cached‑aware indexing for the KV‑only block is consistentThe second block (head_idx ≥ head_num) mirrors the same
current_seq_len/cached_offset/valid_tokenlogic used in the main path. This keeps K‑only writes to the KV cache consistent across both halves of the kernel.
|
/bot run |
|
PR_Github #25647 [ run ] triggered by Bot. Commit: |
|
PR_Github #25647 [ run ] completed with state |
|
/bot run --disable-fail-fast |
|
PR_Github #25678 [ run ] triggered by Bot. Commit: |
|
PR_Github #25678 [ run ] completed with state |
Signed-off-by: Chang Liu (Enterprise Products) <9713593+chang-l@users.noreply.github.com>
Signed-off-by: Chang Liu (Enterprise Products) <9713593+chang-l@users.noreply.github.com>
Signed-off-by: Chang Liu (Enterprise Products) <9713593+chang-l@users.noreply.github.com>
Signed-off-by: Chang Liu (Enterprise Products) <9713593+chang-l@users.noreply.github.com>
Signed-off-by: Chang Liu (Enterprise Products) <9713593+chang-l@users.noreply.github.com>
Signed-off-by: Chang Liu (Enterprise Products) <9713593+chang-l@users.noreply.github.com>
Signed-off-by: Chang Liu (Enterprise Products) <9713593+chang-l@users.noreply.github.com>
Signed-off-by: Chang Liu (Enterprise Products) <9713593+chang-l@users.noreply.github.com>
Signed-off-by: Chang Liu (Enterprise Products) <9713593+chang-l@users.noreply.github.com>
d92ceac to
4552c46
Compare
|
/bot run |
|
PR_Github #25779 [ run ] triggered by Bot. Commit: |
|
PR_Github #25779 [ run ] completed with state |
Signed-off-by: Chang Liu (Enterprise Products) <9713593+chang-l@users.noreply.github.com>
|
/bot run |
|
PR_Github #25788 [ run ] triggered by Bot. Commit: |
Signed-off-by: Chang Liu (Enterprise Products) <9713593+chang-l@users.noreply.github.com>
Signed-off-by: Chang Liu (Enterprise Products) <9713593+chang-l@users.noreply.github.com>
|
/bot run --disable-fail-test |
|
PR_Github #25794 Bot args parsing error: usage: /bot [-h] |
|
/bot run --disable-fail-fast |
|
PR_Github #25798 [ run ] triggered by Bot. Commit: |
|
PR_Github #25788 [ run ] completed with state |
|
PR_Github #25798 [ run ] completed with state |
|
/bot run |
|
/bot run |
|
PR_Github #25829 [ run ] triggered by Bot. Commit: |
|
PR_Github #25830 [ run ] triggered by Bot. Commit: |
|
PR_Github #25829 [ run ] completed with state |
|
PR_Github #25830 [ run ] completed with state |
…VIDIA#8779) The performance results of some kernels could be easily affected by the warm/cold L2 cache status. To achieve more precise profiling results, the L2 cache is cleared for every execution by the circular buffer method for better benchmarking during autotuning. Signed-off-by: Yukun He <23156053+hyukn@users.noreply.github.com> [None][infra] Waive failed cases for main branch on 11/25 (NVIDIA#9429) Signed-off-by: qqiao <qqiao@nvidia.com> [NVIDIA#8391][chore] test_perf.py to lock clocks read from gpu_configs.yml instead of max freq (NVIDIA#9409) Signed-off-by: Eran Geva <19514940+MrGeva@users.noreply.github.com> [None][ci] Move more test stages to use OCI machines (NVIDIA#9395) Signed-off-by: Yanchao Lu <yanchaol@nvidia.com> Co-authored-by: Matt Lefebvre <matthewelefebvre@gmail.com> [None][feat] Improve TRTLLM MoE in small hidden size throughput cases (NVIDIA#9377) Signed-off-by: Anthony Chang <27950904+rosenrodt@users.noreply.github.com> [https://nvbugs/5537996][fix] Let KV cache manager block initialization be aware whether it is doing a dry run or not (NVIDIA#9093) Before this commit, the kv cache manager does the same regardless, which causes a mis-calculation in free memory available to allocate for the KV cache manager, hence causing a crash. This commit fixes this by letting KV cache manager initialization be aware whether it is doing the dry run or not. If it is a dry run, use the max_tokens setting that is already pre-calculated and filled into kv_cache_config.max_tokens. Signed-off-by: eopXD <yuehtingc@nvidia.com> [https://nvbugs/5667922][fix] Update long context evaluation config (NVIDIA#9426) Signed-off-by: mni <125171826+baize97@users.noreply.github.com> [None][fix] Mitigate test timeout issues (NVIDIA#9445) Signed-off-by: Shixiaowei02 <39303645+Shixiaowei02@users.noreply.github.com> [None][chore] Fix trtllm-eval for PyTorchLLM (NVIDIA#9427) Signed-off-by: Fanrong Li <23290157+lfr-0531@users.noreply.github.com> [None][feat] Add a parser to layer-wise benchmarks (NVIDIA#9440) Signed-off-by: Tailing Yuan <yuantailing@gmail.com> [None][feat] Support custom chat template for tool calling (NVIDIA#9297) Signed-off-by: Pengyun Lin <81065165+LinPoly@users.noreply.github.com> [TRTLLM-8160][feat] Add draft token tree runtime on CDL (NVIDIA#8586) Signed-off-by: Yue Weng <25103990+yweng0828@users.noreply.github.com> [None][ci] waive a test (NVIDIA#9458) Signed-off-by: Yan Chunwei <328693+Superjomn@users.noreply.github.com> [https://nvbugs/5680905][fix] Relax the MMLU accuracy requirement for DS-v3.2 (NVIDIA#9439) Signed-off-by: Fanrong Li <23290157+lfr-0531@users.noreply.github.com> [TRTLLM-8376][feat] top-p optimization (removes redundant softmax) (NVIDIA#9411) Signed-off-by: ixlmar <206748156+ixlmar@users.noreply.github.com> [TRTLLM-9490][feat] use FlashInfer's top_k_sampling_from_probs (NVIDIA#9457) Signed-off-by: ixlmar <206748156+ixlmar@users.noreply.github.com> [https://nvbugs/5647400] [fix] Enlarged the AllReduce workspace size to 64MB. Added AllReduce strategy to AD config. (NVIDIA#9145) Signed-off-by: Eran Geva <19514940+MrGeva@users.noreply.github.com> [TRTLLM-909][feat] Overlap context chunks in pipeline parallel mode (NVIDIA#9308) Signed-off-by: Robin Kobus <19427718+Funatiq@users.noreply.github.com> [None][chore] AutoDeploy add multi stream moe pass to default.yaml (NVIDIA#9430) Signed-off-by: Suyog Gupta <41447211+suyoggupta@users.noreply.github.com> [https://nvbugs/5685143][fix] avoid cudaFree overlap with cuda graph (NVIDIA#9438) Signed-off-by: Chuang Zhu <111838961+chuangz0@users.noreply.github.com> [None][chore] Bump version to 1.2.0rc5 (NVIDIA#9455) Signed-off-by: Yiqing Yan <yiqingy@nvidia.com> [TRTLLM-8936][test] Add disagg and wideep multi-node multi-gpu test cases (NVIDIA#9356) Signed-off-by: FredricZ-2007 <226039983+fredricz-20070104@users.noreply.github.com> [None][ci] move some slow test cases of DGX-B200 to post merge (NVIDIA#9467) Signed-off-by: junq <22017000+QiJune@users.noreply.github.com> [TRTLLM-9293][feat] Enable partial weight loading to support streaming update weights (NVIDIA#9224) Signed-off-by: shuyix <219646547+shuyixiong@users.noreply.github.com> [None][infra] Check in most recent lock file from nightly pipeline Signed-off-by: TensorRT LLM <90828364+tensorrt-cicd@users.noreply.github.com> [TRTLLM-9264][fix] Add accuracy/unit tests/doc for phi4mm (NVIDIA#9246) Signed-off-by: Wanli Jiang <35160485+Wanli-Jiang@users.noreply.github.com> [https://nvbugs/5580099][fix] Cherry pick IMA issue fix from release/1.1 (NVIDIA#9032) Signed-off-by: Junyi Xu <219237550+JunyiXu-nv@users.noreply.github.com> [None][chore] Upgrade CuteDSL to 4.3.0 (NVIDIA#9444) Signed-off-by: Enwei Zhu <21126786+syuoni@users.noreply.github.com> [None][feat] Support MLA chunked prefill for DeepSeek V3.2 model (NVIDIA#9376) Signed-off-by: Chang Liu (Enterprise Products) <9713593+chang-l@users.noreply.github.com> [None][feat] Add environment variable to force spec-dec number of accepted tokens (NVIDIA#9371) Signed-off-by: Aurelien Chartier <2567591+achartier@users.noreply.github.com> [None][infra] Update allowed list 2025.11.25 (NVIDIA#9468) Signed-off-by: Yuanjing Xue <197832395+yuanjingx87@users.noreply.github.com> [None][infra] Fail the pipeline when slurm ssh dropped (NVIDIA#9157) Signed-off-by: Yuanjing Xue <197832395+yuanjingx87@users.noreply.github.com> [None][feat] AutoDeploy: Remove redundant copies in mamba layers (NVIDIA#9461) Signed-off-by: Chenghao Zhang <211069071+nvchenghaoz@users.noreply.github.com> Co-authored-by: Suyog Gupta <41447211+suyoggupta@users.noreply.github.com> [None][feat] AutoDeploy: Add A_log fusion for Mamba layers (NVIDIA#9422) Signed-off-by: Chenghao Zhang <211069071+nvchenghaoz@users.noreply.github.com> [None][ci] Waive blackwell test on spec gate. (NVIDIA#9502) Signed-off-by: Zheyu Fu <zheyuf@NVIDIA.com> [https://nvbugs/5608930][fix] Fix a typo (NVIDIA#9487) Signed-off-by: Shixiaowei02 <39303645+Shixiaowei02@users.noreply.github.com> [NVIDIA#9463][feat] Add revision option to trtllm commands (NVIDIA#9498) Signed-off-by: Aurelien Chartier <2567591+achartier@users.noreply.github.com> [TRTLLM-9085][doc] fix math formula rendering issues (NVIDIA#9481) Signed-off-by: junq <22017000+QiJune@users.noreply.github.com> [None][chore] update comments in llm_args.py (NVIDIA#9472) Signed-off-by: junq <22017000+QiJune@users.noreply.github.com> [None][infra] Check in most recent lock file from nightly pipeline Signed-off-by: TensorRT LLM <90828364+tensorrt-cicd@users.noreply.github.com> [https://nvbugs/5680310][fix] Fix ctx only timed out test (NVIDIA#9410) Signed-off-by: Patrice Castonguay <55748270+pcastonguay@users.noreply.github.com> [https://nvbugs/5547414][fix] enable case after using local cache model (NVIDIA#9473) Signed-off-by: Hui Gao <huig@nvidia.com> [None][fix] Replace PYTORCH_CUDA_ALLOC_CONF with PYTORCH_ALLOC_CONF to fix deprecation warning (NVIDIA#9294) Signed-off-by: Jiagan Cheng <jiaganc@nvidia.com> [https://nvbugs/5698581][fix] Init draft tokens for CUDA graph dummy request (NVIDIA#9505) Signed-off-by: ziyixiong-nv <219238287+ziyixiong-nv@users.noreply.github.com> [None][infra] Waive failed case in pre-merge on 11/27 (NVIDIA#9507) Signed-off-by: qqiao <qqiao@nvidia.com> [TRTLLM-9513][docs] Qwen3 deployment guide (NVIDIA#9488) Signed-off-by: Lanyu Liao <laliao@laliao-mlt.client.nvidia.com> Co-authored-by: Lanyu Liao <laliao@laliao-mlt.client.nvidia.com> [None][chore] revert batch_size=1 to prevent timeout and lower accuracy reference by 0.12% as a WAR (NVIDIA#9447) Signed-off-by: Lizhi Zhou <1432185+reasonsolo@users.noreply.github.com> Co-authored-by: Shi Xiaowei <39303645+Shixiaowei02@users.noreply.github.com> [TRTLLM-9279][infra] Use flexcache for gh200 nodes since they locate in Austin (NVIDIA#9405) Signed-off-by: qqiao <qqiao@nvidia.com> Signed-off-by: Emma Qiao <qqiao@nvidia.com> Co-authored-by: Yanchao Lu <yanchaol@nvidia.com> [cherry-pick][https://nvbugs/5670793][fix] Solve trtllm-serve launch_disaggregated issue (NVIDIA#9346) Signed-off-by: xxi <xxi@nvidia.com> [None][infra] Fix Slurm job script (NVIDIA#9508) Signed-off-by: Yuanjing Xue <197832395+yuanjingx87@users.noreply.github.com> [None][fix] change allreduce workspace dtype to torch.int64 to avoid overflow (NVIDIA#9479) Signed-off-by: Zhenhuan Chen <zhenhuanc@nvidia.com> [None][feat] add qwen3-next CI test of accuracy on BF16 and NVFP4 (NVIDIA#9330) Signed-off-by: jiant <107457950+JadoTu@users.noreply.github.com> [None][fix] fix TP support for DeepSeek-V3.2 on hopper (NVIDIA#9484) Signed-off-by: Fanrong Li <23290157+lfr-0531@users.noreply.github.com> [TRTLLM-9389][chore] Refactor AlltoallMethodType. (NVIDIA#9388) Signed-off-by: Bo Li <22713281+bobboli@users.noreply.github.com> [https://nvbugs/5674665][chore] Add test coverage for https://nvbugspro.nvidia.com/bug/5674665 (NVIDIA#9518) Signed-off-by: eopXD <yuehtingc@nvidia.com> [TRTLLM-7288][infra] Download merged waive list in slurm script (NVIDIA#8999) Signed-off-by: Yiqing Yan <yiqingy@nvidia.com> Signed-off-by: Yanchao Lu <yanchaol@nvidia.com> Co-authored-by: Yanchao Lu <yanchaol@nvidia.com> [https://nvbugs/5687820][fix] Remove self.abort() in DetokenizedGenerationResult (NVIDIA#9449) Signed-off-by: Enwei Zhu <21126786+syuoni@users.noreply.github.com> [NVIDIA#9150][feat] AutoDeploy Nemotron-Flash support (NVIDIA#9504) Signed-off-by: Lucas Liebenwein <11156568+lucaslie@users.noreply.github.com> [None] [chore] Update to cutlass 4.3 (NVIDIA#8637) Signed-off-by: Kaiyu Xie <26294424+kaiyux@users.noreply.github.com> [https://nvbugs/5637037][chore] Update waive lists. (NVIDIA#9386) Signed-off-by: Bo Li <22713281+bobboli@users.noreply.github.com> Signed-off-by: Enwei Zhu <21126786+syuoni@users.noreply.github.com> Co-authored-by: Enwei Zhu <21126786+syuoni@users.noreply.github.com> [None][infra] Check in most recent lock file from nightly pipeline Signed-off-by: TensorRT LLM <90828364+tensorrt-cicd@users.noreply.github.com> [TRTLLM-8970][infra] Fix generate report when has isolation test result (NVIDIA#8861) Signed-off-by: qqiao <qqiao@nvidia.com> Signed-off-by: Emma Qiao <qqiao@nvidia.com> [https://nvbugs/5685015][fix] Update invalid max_token test (NVIDIA#9435) Signed-off-by: Junyi Xu <219237550+JunyiXu-nv@users.noreply.github.com> [None][fix] Fix on-disk cache and revise logger/statistics for AutoTuner. (NVIDIA#9211) Signed-off-by: Yukun He <23156053+hyukn@users.noreply.github.com> [https://nvbugs/5689658][test] Fix gpu lock issue running on cluster (NVIDIA#9441) Signed-off-by: yufeiwu <230315618+yufeiwu-nv@users.noreply.github.com> [None][chore] add spec_decoding configs in perf benchmark scripts and fix typos (NVIDIA#9533) Signed-off-by: Lanyu Liao <lancelly@users.noreply.github.com> Co-authored-by: Lanyu Liao <lancelly@users.noreply.github.com> [None][fix] Remove FP8 K/V buffer from TRTLLM sparse MLA attention kernel (NVIDIA#9529) Signed-off-by: Chang Liu (Enterprise Products) <9713593+chang-l@users.noreply.github.com> [None] [chore] Enhancements and clean up to slurm scripts (NVIDIA#9493) Signed-off-by: Kaiyu Xie <26294424+kaiyux@users.noreply.github.com> [None][chore] Revert "[None][fix] change allreduce workspace dtype to torch.int64 t… (NVIDIA#9538) Signed-off-by: Zhenhuan Chen <zhenhuanc@nvidia.com> [None][infra] Waive failed cases for main branch on 11/28 (NVIDIA#9539) Signed-off-by: qqiao <qqiao@nvidia.com> [None][fix] Pass checkpoint_format to create_input_processor (NVIDIA#9521) Signed-off-by: Robin Kobus <19427718+Funatiq@users.noreply.github.com> [TRTLLM-9541][infra] Use artifactory mirror for download.pytorch.org (NVIDIA#9477) Signed-off-by: ZhanruiSunCh <184402041+ZhanruiSunCh@users.noreply.github.com> Signed-off-by: Zhanrui Sun <184402041+ZhanruiSunCh@users.noreply.github.com> Co-authored-by: Yanchao Lu <yanchaol@nvidia.com> [TRTLLM-9488][feat] add 'disable_flashinfer_sampling' config option (NVIDIA#9454) Signed-off-by: ixlmar <206748156+ixlmar@users.noreply.github.com> [None][infra] Waive failed case in pre-merge on 11/28 (NVIDIA#9537) Signed-off-by: Wangshanshan <30051912+dominicshanshan@users.noreply.github.com> [None][perf] Helix: improve all-to-all perf for large CP size (NVIDIA#9494) Signed-off-by: Matthias Jouanneaux <mjoux@nvidia.com> Signed-off-by: Zheyu Fu <zheyuf@NVIDIA.com> Co-authored-by: Zheyu Fu <zheyuf@nvidia.com> [None][feat] support for more accurate AR calculation (NVIDIA#9323) Signed-off-by: binghanc <176802681+binghanc@users.noreply.github.com> [TRTLLM-9488][fix] llmapi references (NVIDIA#9547) Signed-off-by: ixlmar <206748156+ixlmar@users.noreply.github.com> [NVIDIA#8948][feat] Support custom sharding config (NVIDIA#9143) Signed-off-by: greg-kwasniewski1 <213329731+greg-kwasniewski1@users.noreply.github.com> [None][infra] Check in most recent lock file from nightly pipeline Signed-off-by: TensorRT LLM <90828364+tensorrt-cicd@users.noreply.github.com> [None][chore] Weekly mass integration of release/1.1 -- rebase (NVIDIA#9522) Signed-off-by: yunruis <205571022+yunruis@users.noreply.github.com> Signed-off-by: Mike Iovine <6158008+mikeiovine@users.noreply.github.com> Signed-off-by: Mike Iovine <miovine@nvidia.com> Signed-off-by: Wangshanshan <30051912+dominicshanshan@users.noreply.github.com> Signed-off-by: qgai <qgai@nvidia.com> Signed-off-by: Balaram Buddharaju <169953907+brb-nv@users.noreply.github.com> Signed-off-by: Yan Chunwei <328693+Superjomn@users.noreply.github.com> Signed-off-by: Junyi Xu <219237550+JunyiXu-nv@users.noreply.github.com> Signed-off-by: Simeng Liu <simengl@nvidia.com> Signed-off-by: nv-guomingz <137257613+nv-guomingz@users.noreply.github.com> Signed-off-by: Jin Li <59594262+liji-nv@users.noreply.github.com> Signed-off-by: Ivy Zhang <25222398+crazydemo@users.noreply.github.com> Signed-off-by: Vincent Zhang <vinczhang@nvidia.com> Signed-off-by: peaceh <103117813+peaceh-nv@users.noreply.github.com> Signed-off-by: Michal Guzek <mguzek@nvidia.com> Signed-off-by: Michal Guzek <moraxu@users.noreply.github.com> Signed-off-by: Chang Liu (Enterprise Products) <9713593+chang-l@users.noreply.github.com> Signed-off-by: leslie-fang25 <leslief@nvidia.com> Signed-off-by: Shunkang <182541032+Shunkangz@users.noreply.github.co> Signed-off-by: junq <22017000+QiJune@users.noreply.github.com> Co-authored-by: yunruis <205571022+yunruis@users.noreply.github.com> Co-authored-by: sunnyqgg <159101675+sunnyqgg@users.noreply.github.com> Co-authored-by: brb-nv <169953907+brb-nv@users.noreply.github.com> Co-authored-by: Yan Chunwei <328693+Superjomn@users.noreply.github.com> Co-authored-by: JunyiXu-nv <219237550+JunyiXu-nv@users.noreply.github.com> Co-authored-by: Simeng Liu <109828133+SimengLiu-nv@users.noreply.github.com> Co-authored-by: Guoming Zhang <137257613+nv-guomingz@users.noreply.github.com> Co-authored-by: Jin Li <59594262+liji-nv@users.noreply.github.com> Co-authored-by: Ivy Zhang <25222398+crazydemo@users.noreply.github.com> Co-authored-by: Vincent Zhang <vcheungyi@163.com> Co-authored-by: peaceh-nv <103117813+peaceh-nv@users.noreply.github.com> Co-authored-by: Michal Guzek <moraxu@users.noreply.github.com> Co-authored-by: Chang Liu <9713593+chang-l@users.noreply.github.com> Co-authored-by: Leslie Fang <leslief@nvidia.com> Co-authored-by: Shunkangz <182541032+Shunkangz@users.noreply.github.com> Co-authored-by: Shunkang <182541032+Shunkangz@users.noreply.github.co> Co-authored-by: QI JUN <22017000+QiJune@users.noreply.github.com> [TRTLLM-5971][feat] Integrate helix parallelism (NVIDIA#9342) Signed-off-by: Balaram Buddharaju <169953907+brb-nv@users.noreply.github.com> [None][infra] Check in most recent lock file from nightly pipeline Signed-off-by: TensorRT LLM <90828364+tensorrt-cicd@users.noreply.github.com> [None][infra] - Request idle time exemption for OCI jobs (NVIDIA#9528) Signed-off-by: Yanchao Lu <yanchaol@nvidia.com> [None][infra] Wiave failed tests for main branch on 11/30 (NVIDIA#9555) Signed-off-by: qqiao <qqiao@nvidia.com> [None][fix] Fix port conflict in disagg tests (NVIDIA#9474) Signed-off-by: Junyi Xu <219237550+JunyiXu-nv@users.noreply.github.com> [None][ci] Split H100_PCIe-PyTorch-Post-Merge test stage (NVIDIA#9558) Signed-off-by: Yanchao Lu <yanchaol@nvidia.com> [None][ci] Split H100_PCIe-PyTorch-Post-Merge test stage (NVIDIA#9559) Signed-off-by: Yanchao Lu <yanchaol@nvidia.com> [TRTLLM-8958][feat] and [TRTLLM-8960]: create ConfigurableMoE and support TRTLLMGenFusedMoE as backend (NVIDIA#9486) [None] [feat] Optimize the algorithm part of RocketKV (NVIDIA#9333) Signed-off-by: yuhangh <58161490+heyuhhh@users.noreply.github.com> [https://nvbugs/5690172][fix] Fix Qwen3-235B ATP accuracy issue with PDL (NVIDIA#9530) Signed-off-by: Enwei Zhu <21126786+syuoni@users.noreply.github.com> [TRTLLM-6222][feat] Extend cute_dsl_nvfp4_gemm to sm103. (NVIDIA#9543) Signed-off-by: Mindy Li <11663212+limin2021@users.noreply.github.com> [None][fix] Correct virtual memory allocation alignment (NVIDIA#9491) Signed-off-by: Yuan Tong <13075180+tongyuantongyu@users.noreply.github.com> [None][infra] Check in most recent lock file from nightly pipeline Signed-off-by: TensorRT LLM <90828364+tensorrt-cicd@users.noreply.github.com> [https://nvbugs/5684703][fix] Unwaive disagg guided decoding test (NVIDIA#9466) Signed-off-by: Enwei Zhu <21126786+syuoni@users.noreply.github.com> [https://nvbugs/5503479][fix] Temporarily lower reference accuracy to stabilize CI (NVIDIA#9398) Signed-off-by: Pengbo Wang <221450789+pengbowang-nv@users.noreply.github.com> [None][chore] remove qwen3-next accuracy tests (NVIDIA#9534) Signed-off-by: jiant <107457950+JadoTu@users.noreply.github.com> [None][doc] fix mtp.py typo (NVIDIA#9307) Signed-off-by: liugaoji <757394026@qq.com> [None][feat] add chat template kwargs support to longbench-v2 (NVIDIA#9544) Signed-off-by: Fanrong Li <23290157+lfr-0531@users.noreply.github.com> [NVIDIA#9496][fix] AutoDeploy: remove auto-tuner from nvfp4_gemm forward (NVIDIA#9497) Signed-off-by: Neta Zmora <96238833+nzmora-nvidia@users.noreply.github.com> [None][fix] Replace hash method with unique_id for cutedsl MoE runners. (NVIDIA#9569) Signed-off-by: Yukun He <23156053+hyukn@users.noreply.github.com> [None][chore] refactor disaggregated scripts to use named arguments (NVIDIA#9581) Signed-off-by: Zhenhuan Chen <zhenhuanc@nvidia.com> [TRTLLM-6222][feat] Several perf opt for cuteDSL nvf4 gemm (NVIDIA#9428) Signed-off-by: Yuhan Li <51736452+liyuhannnnn@users.noreply.github.com> [None][chore] reduce the layers of the `devel` docker image (NVIDIA#9077) Signed-off-by: Martin Marciniszyn Mehringer <11665257+MartinMarciniszyn@users.noreply.github.com> [https://nvbugs/5651854][infra] Enable perf metrics during accuracy testing (NVIDIA#9140) [None][fix] Skip Allreduce init for Attention DP (NVIDIA#9542) Signed-off-by: Enwei Zhu <21126786+syuoni@users.noreply.github.com> [None][test] [None][test] Waive main branch test failures 12/1 (NVIDIA#9566) Signed-off-by: Yanchao Lu <yanchaol@nvidia.com> [None][ci] Minor change for Slurm scripts (NVIDIA#9561) Signed-off-by: Yanchao Lu <yanchaol@nvidia.com> [TRTLLM-6768][infra] Fix params for not updating github status (NVIDIA#6747) Signed-off-by: Yiqing Yan <yiqingy@nvidia.com> [None][infra] Update the pytest options after MI (NVIDIA#9579) Signed-off-by: qqiao <qqiao@nvidia.com> [TRTLLM-6756][feat] Add Beam Search to TorchSampler (NVIDIA#8509) Signed-off-by: Stefan Niebler <82932102+stnie@users.noreply.github.com> [None][chore] Defer exposing context parallel configs (NVIDIA#9552) Signed-off-by: Balaram Buddharaju <169953907+brb-nv@users.noreply.github.com> [TRTC-1943][feat] Env vars override support in LLM API (NVIDIA#9104) Signed-off-by: Venky Ganesh <23023424+venkywonka@users.noreply.github.com> [None][feat] AutoDeploy: Use the router gemm op for nemotron MOE (NVIDIA#9500) Signed-off-by: Chenghao Zhang <211069071+nvchenghaoz@users.noreply.github.com> [NVIDIA#9198][feat] Refactor dist ops in AutoDeploy (NVIDIA#9301) Signed-off-by: Eran Geva <19514940+MrGeva@users.noreply.github.com> [None][fix] Prevent YAML partial kv_cache_config from incorrectly overriding the complete kv_cache_config (NVIDIA#9262) Signed-off-by: Yuening Li <62227368+Yuening-wa@users.noreply.github.com> [TRTLLM-9085][doc] fix math formula rendering issues in github (NVIDIA#9605) Signed-off-by: junq <22017000+QiJune@users.noreply.github.com> [None][feat] Unify nvfp4 gemm backend (NVIDIA#8963) Signed-off-by: Shijie Wang <jaywan@nvidia.com> Signed-off-by: Yukun He <23156053+hyukn@users.noreply.github.com> Signed-off-by: Shijie <jaywan@nvidia.com> Co-authored-by: Yukun He <23156053+hyukn@users.noreply.github.com> [None][feat] Add support for KVCache reuse for DSv32 (NVIDIA#9383) Signed-off-by: Iman Tabrizian <10105175+tabrizian@users.noreply.github.com> [None][infra] Check in most recent lock file from nightly pipeline Signed-off-by: TensorRT LLM <90828364+tensorrt-cicd@users.noreply.github.com> [None][chroe] Polish qwen3-next modeling code. (NVIDIA#8902) Signed-off-by: nv-guomingz <137257613+nv-guomingz@users.noreply.github.com> [https://nvbugs/5703953][fix] Use random port for disagg tests (NVIDIA#9582) Signed-off-by: Junyi Xu <219237550+JunyiXu-nv@users.noreply.github.com> [None][fix] Waive gb200 (NVIDIA#9580) Signed-off-by: Xin He (SW-GPU) <200704525+xinhe-nv@users.noreply.github.com> [FMDL-1328][feat] Add support for nano-v3 and super-v3 with pytorch backend (NVIDIA#9261) Signed-off-by: Wanli Jiang <35160485+Wanli-Jiang@users.noreply.github.com> [https://nvbugs/5582091][test] increase warmup times in testing for multi-gpu cases (NVIDIA#9578) Signed-off-by: Ruodi Lu <ruodil@users.noreply.github.com> Co-authored-by: Ruodi Lu <ruodil@users.noreply.github.com> [None][chore] Add failed cases into waives.txt (NVIDIA#9588) Signed-off-by: xinhe-nv <200704525+xinhe-nv@users.noreply.github.com> [https://nvbugs/5702793][fix] Fix uncontiguous tensor view (NVIDIA#9576) Signed-off-by: shuyix <219646547+shuyixiong@users.noreply.github.com> [None][infra] Waive failed cases for main branch (NVIDIA#9615) Signed-off-by: qqiao <qqiao@nvidia.com> [TRTLLM-9488][feat] use FlashInfer.sampling by default (NVIDIA#9545) Signed-off-by: ixlmar <206748156+ixlmar@users.noreply.github.com> [None][infra] Update allowlist 2025/12/01 (NVIDIA#9616) Signed-off-by: Yuanjing Xue <197832395+yuanjingx87@users.noreply.github.com> [None][infra] Remove an invalid test name in waives.txt (NVIDIA#9620) Signed-off-by: qqiao <qqiao@nvidia.com> Lock the gpu clocks in L0 perf tests (NVIDIA#9585) Signed-off-by: Eran Geva <19514940+MrGeva@users.noreply.github.com> [TRTLLM-9466][test] Evaluate helix parallelism with DSV3 Lite (NVIDIA#9597) Signed-off-by: Balaram Buddharaju <169953907+brb-nv@users.noreply.github.com> [None][fix] Extract GPU count from single-node stage names (NVIDIA#9599) Signed-off-by: Chang Liu (Enterprise Products) <9713593+chang-l@users.noreply.github.com> [https://nvbugs/5667774][fix] Refine Piecewise Cuda Graph Condition for DP (NVIDIA#9393) Signed-off-by: Jin Li <59594262+liji-nv@users.noreply.github.com> [TRTLLM-9144][fix] enhance RPC robustness (NVIDIA#8711) Signed-off-by: Superjomn <328693+Superjomn@users.noreply.github.com> Signed-off-by: Erin Ho <14718778+hchings@users.noreply.github.com> Signed-off-by: Yan Chunwei <328693+Superjomn@users.noreply.github.com> Co-authored-by: Erin Ho <14718778+hchings@users.noreply.github.com> [https://nvbugs/5627710][fix] Fix synchronization bugs in KvCacheTransferManager that can cause corrupted blocks (NVIDIA#9056) Signed-off-by: thorjohnsen <41591019+thorjohnsen@users.noreply.github.com> Signed-off-by: Thor Johnsen <41591019+thorjohnsen@users.noreply.github.com> Co-authored-by: Iman Tabrizian <10105175+tabrizian@users.noreply.github.com> Co-authored-by: Robin Kobus <19427718+Funatiq@users.noreply.github.com> [TRTLLM-8980][test] Clean up spec dec tests in test_llm_api_pytorch (NVIDIA#8889) Signed-off-by: Mike Iovine <6158008+mikeiovine@users.noreply.github.com> Signed-off-by: Mike Iovine <miovine@nvidia.com> [NVIDIA#9150][feat] Add code for nano v3 to custom implementation in AD (NVIDIA#9465) * Why? We would like to show an alternative to monkey-patching in AutoDeploy. * What? This commit builds on the existing custom model implementation for NemotronH and adds the bits relevant for MoE layers. Part of NVIDIA#9150. Signed-off-by: William Zhang <133824995+2ez4bz@users.noreply.github.com> [NVIDIA#9150][feat] AutoDeploy: reviewer comments for NVIDIA#9150 (NVIDIA#9527) Signed-off-by: Lucas Liebenwein <11156568+lucaslie@users.noreply.github.com> [https://nvbugs/5651854][fix] Fix dist-serving perf by clearing CPU affinity (NVIDIA#9549) Signed-off-by: Shixiaowei02 <39303645+Shixiaowei02@users.noreply.github.com> [NVIDIA#9550][feat] AutoDeploy: Add NVFP4 Cutlass MoE kernels (NVIDIA#9551) Signed-off-by: Neta Zmora <96238833+nzmora-nvidia@users.noreply.github.com> [https://nvbugs/5688388][fix] fix: Reducing num request in disagg test to speed up (NVIDIA#9598) Signed-off-by: Patrice Castonguay <55748270+pcastonguay@users.noreply.github.com> [TRTLLM-8946][feat] Improved heuristics to detect shardable regions (NVIDIA#9200) Signed-off-by: Lucas Liebenwein <11156568+lucaslie@users.noreply.github.com> Signed-off-by: greg-kwasniewski1 <213329731+greg-kwasniewski1@users.noreply.github.com> Co-authored-by: Lucas Liebenwein <11156568+lucaslie@users.noreply.github.com> [NVIDIA#9632][feat] Support EXTRA_WHEEL_BUILD_ARGS during wheel build (NVIDIA#9633) Signed-off-by: Yu Chi Li <yuchil@nvidia.com> [None][chore] Waive test failing on pre-merge (NVIDIA#9638) Signed-off-by: Balaram Buddharaju <169953907+brb-nv@users.noreply.github.com> [None][chore] Remove traceback dump for multimodal input processor (NVIDIA#9634) Signed-off-by: Chang Liu (Enterprise Products) <9713593+chang-l@users.noreply.github.com> [None][chore] Fix trtllm-eval and move GroupedGemmInputsHelper (NVIDIA#9612) Signed-off-by: Enwei Zhu <21126786+syuoni@users.noreply.github.com> [https://nvbugs/5698434][fix] Use separate weight mapper for draft (NVIDIA#9607) Signed-off-by: Anurag Mukkara <134339030+amukkara@users.noreply.github.com> [TRTLLM-7101][infra] Reuse passed tests (NVIDIA#6894) Signed-off-by: Yiqing Yan <yiqingy@nvidia.com> Co-authored-by: Yanchao Lu <yanchaol@nvidia.com> [None][test] Remove duplicate test cases (NVIDIA#9623) Signed-off-by: yufeiwu <230315618+yufeiwu-nv@users.noreply.github.com> [None][infra] Check in most recent lock file from nightly pipeline Signed-off-by: TensorRT LLM <90828364+tensorrt-cicd@users.noreply.github.com> [None][feat] Add RocketKV usage doc and e2e accuracy test on LongBenchV2 (NVIDIA#9572) Signed-off-by: yuhangh <58161490+heyuhhh@users.noreply.github.com> [TRTLLM-9242][doc] Add examples showcasing openai compatible APIs (NVIDIA#9520) Signed-off-by: Junyi Xu <219237550+JunyiXu-nv@users.noreply.github.com> [None][chore] AutoDeploy update cuda stream manager for multi-device (NVIDIA#9575) Signed-off-by: Suyog Gupta <41447211+suyoggupta@users.noreply.github.com> [TRTLLM-9391][chore] Automatically estimate required workspace. (NVIDIA#9535) Signed-off-by: Bo Li <22713281+bobboli@users.noreply.github.com> [https://nvbugs/5708475][fix] Fix e2e eval accuracy for helix parallelism (NVIDIA#9647) Signed-off-by: Balaram Buddharaju <169953907+brb-nv@users.noreply.github.com> [https://nvbugs/5561153][test] Fix log error for perf test (NVIDIA#9622) Signed-off-by: FredricZ-2007 <226039983+fredricz-20070104@users.noreply.github.com> [TRTLLM-8241][feat] Aliasing to comply to LlmArgs (NVIDIA#9586) Signed-off-by: Pengyun Lin <81065165+LinPoly@users.noreply.github.com> [None][chore] Add failed cases into waives.txt (NVIDIA#9593) Signed-off-by: Jie Li <lijie@nvidia.com> Co-authored-by: Jie Li <lijie@nvidia.com> [TRTLLM-6842][feat] Support Response API for general purpose (NVIDIA#9392) Signed-off-by: Junyi Xu <219237550+JunyiXu-nv@users.noreply.github.com> [None][test] Update Qwen3-next accuracy testing by setting the cuda … (NVIDIA#9613) Signed-off-by: nv-guomingz <137257613+nv-guomingz@users.noreply.github.com> [None][feat] update trtllm-gen nvfp4 kernels with better performance (NVIDIA#9510) Signed-off-by: Perkz Zheng <67892460+PerkzZheng@users.noreply.github.com> [None][doc] Replace the tensorrt icon with torch icon on overview.md (NVIDIA#9644) Signed-off-by: nv-guomingz <137257613+nv-guomingz@users.noreply.github.com> [https://nvbugs/5705197][chore] Unwaive timeout disagg tests (NVIDIA#9637) Signed-off-by: Patrice Castonguay <55748270+pcastonguay@users.noreply.github.com> [https://nvbugs/5552132][fix] Enable LoRa for GPT OSS Torch (NVIDIA#8253) Signed-off-by: Michal Guzek <mguzek@nvidia.com> [None][fix] Fix wide ep MoE error (NVIDIA#9642) Signed-off-by: Iman Tabrizian <10105175+tabrizian@users.noreply.github.com> [https://nvbugs/5702795][fix] Remove the warning message for aten.log. (NVIDIA#9665) Signed-off-by: nv-guomingz <137257613+nv-guomingz@users.noreply.github.com> [https://nvbugs/5693853][fix] Fix error handling when querying machin… (NVIDIA#9483) Signed-off-by: Gal Hubara Agam <96368689+galagam@users.noreply.github.com> [OMNIML-2932] [feat] nvfp4 awq support (NVIDIA#8698) Signed-off-by: weimingc <17592131+meenchen@users.noreply.github.com> [NVIDIA#9643][fix] AutoDeploy: fix nano sharding config (NVIDIA#9668) Signed-off-by: Lucas Liebenwein <11156568+lucaslie@users.noreply.github.com> [NVIDIA#9147][feat] AutoDeploy: Draft Target Speculative Decoding (NVIDIA#9275) Signed-off-by: Govind Ramnarayan <105831528+govind-ramnarayan@users.noreply.github.com> [None][feat] Update Qwen3CodeToolParser to align tool-calling parameters (NVIDIA#9540) Signed-off-by: Wanli Jiang <35160485+Wanli-Jiang@users.noreply.github.com> [TRTLLM-7181][infra] Generate test results when pytest timeout happens (NVIDIA#9396) Signed-off-by: Yiqing Yan <yiqingy@nvidia.com> [None][infra] Check in most recent lock file from nightly pipeline Signed-off-by: TensorRT LLM <90828364+tensorrt-cicd@users.noreply.github.com> [TRTLLM-9522][fix] restore `trtllm-serve mm_embedding_serve` (NVIDIA#9669) [TRTLLM-5093][infra] Write env variables to a file in the interactive debug session (NVIDIA#6792) Signed-off-by: Yiqing Yan <yiqingy@nvidia.com> [None][fix] fix error when processing batches containing both text and mm data (NVIDIA#8381) Signed-off-by: Nekofish-L <liuxiangyang@mail.ustc.edu.cn> [TRTLLM-7073][feat] Support torch compile for PP for Llama and DeepSeekV3 (NVIDIA#7838) Signed-off-by: Jin Li <59594262+liji-nv@users.noreply.github.com> [None][feat] Add weights initialization and context phase parser to layer-wise benchmarks (NVIDIA#9667) Signed-off-by: Tailing Yuan <yuantailing@gmail.com> [TRTLLM-8274][feat] Check if executor is shutdown in /health entrypoint (NVIDIA#9057) Signed-off-by: Junyi Xu <219237550+JunyiXu-nv@users.noreply.github.com> [NVIDIA#8733][feat] Add Llama4 MoE handling to AutoDeploy (NVIDIA#9556) Signed-off-by: Tal Cherckez <127761168+tcherckez-nvidia@users.noreply.github.com> Signed-off-by: tcherckez-nvidia <127761168+tcherckez-nvidia@users.noreply.github.com> Co-authored-by: Neta Zmora <nzmora@nvidia.com> [None][ci] unwaive tests (NVIDIA#9651) Signed-off-by: Yan Chunwei <328693+Superjomn@users.noreply.github.com> [None][feat] Add NIXL-LIBFABRIC support (NVIDIA#9225) Signed-off-by: Yoray Zack <62789610+zackyoray@users.noreply.github.com> Signed-off-by: zackyoray <yorayz@nvidia.com> [None][test] rename wide ep and disagg metric name in perf test (NVIDIA#9704) Signed-off-by: Ruodi Lu <ruodil@users.noreply.github.com> Co-authored-by: Ruodi Lu <ruodil@users.noreply.github.com> [https://nvbugs/5467531][fix] Unwaive fused_moe all to all test with … (NVIDIA#9617) Signed-off-by: Jin Li <59594262+liji-nv@users.noreply.github.com> [None][fix] Recover TRTLLM MoE Perf for DEP (NVIDIA#9562) Signed-off-by: Anthony Chang <27950904+rosenrodt@users.noreply.github.com> [None][chore] Add failed cases into waives.txt (NVIDIA#9662) Signed-off-by: Xin He (SW-GPU) <200704525+xinhe-nv@users.noreply.github.com> Signed-off-by: xinhe-nv <200704525+xinhe-nv@users.noreply.github.com> Signed-off-by: Yanchao Lu <yanchaol@nvidia.com> Co-authored-by: Yanchao Lu <yanchaol@nvidia.com> [None][fix] Fix TLLM_SPEC_DECODE_FORCE_NUM_ACCEPTED_TOKENS for MTP/EAGLE (NVIDIA#9608) Signed-off-by: Aurelien Chartier <2567591+achartier@users.noreply.github.com> [None][infra] Add container notices and documentation (NVIDIA#9185) Signed-off-by: Parker Drake <pdrake@nvidia.com> [TRTLLM-5312][infra] Add triton trigger rules (NVIDIA#6440) Signed-off-by: Yiqing Yan <yiqingy@nvidia.com> [None][doc] Add feature docs for helix parallelism (NVIDIA#9684) Signed-off-by: Balaram Buddharaju <169953907+brb-nv@users.noreply.github.com> [TRTLLM-9579][infra] Set mergeWaiveList stage UNSTABLE when there is any issue (NVIDIA#9692) Signed-off-by: Yiqing Yan <yiqingy@nvidia.com> [None][doc] Added line about partial reuse (NVIDIA#7846) Signed-off-by: thorjohnsen <41591019+thorjohnsen@users.noreply.github.com> [TRTLLM-8920][feat] decouple disagg service from fastapi (NVIDIA#8714) Signed-off-by: Lizhi Zhou <1432185+reasonsolo@users.noreply.github.com> [https://nvbugs/5633340][fix] start disagg workers and servers on free ports (NVIDIA#9694) Signed-off-by: Lizhi Zhou <1432185+reasonsolo@users.noreply.github.com> [TRTLLM-9562] [doc] Add Deployment Guide for Kimi K2 Thinking on TensorRT LLM - Blackwell (NVIDIA#9711) Signed-off-by: Kaiyu Xie <26294424+kaiyux@users.noreply.github.com> [NVIDIA#9602][feat] AutoDeploy: Support TRTLLM Sampler (NVIDIA#9641) Signed-off-by: Govind Ramnarayan <105831528+govind-ramnarayan@users.noreply.github.com> [None][infra] Check in most recent lock file from nightly pipeline Signed-off-by: TensorRT LLM <90828364+tensorrt-cicd@users.noreply.github.com> [None] [tests] Unwaive EPLB tests (NVIDIA#9625) Signed-off-by: Kaiyu Xie <26294424+kaiyux@users.noreply.github.com> [https://nvbugs/5518713][test] Refactor core test lists by merging with llm_perf_cluster.yml (NVIDIA#9714) Signed-off-by: yufeiwu <230315618+yufeiwu-nv@users.noreply.github.com> [TRTLLM-7136][feat] Update load_weights method to include mapping parameter in checkpoint loaders (NVIDIA#9583) Signed-off-by: Robin Kobus <19427718+Funatiq@users.noreply.github.com> [None][refactor] Improve request processing function in sampler (NVIDIA#9671) Signed-off-by: Robin Kobus <19427718+Funatiq@users.noreply.github.com> [https://nvbugs/5670672][fix] Fix flaky KV connector tests (NVIDIA#9676) Signed-off-by: jthomson04 <jwillthomson19@gmail.com> [None][infra] Update allowed list 20251204 (NVIDIA#9718) Signed-off-by: Yuanjing Xue <197832395+yuanjingx87@users.noreply.github.com> [None][feat] AutoDeploy: Perf optimization for Attention and rmsnorm (NVIDIA#9719) Signed-off-by: Chenghao Zhang <211069071+nvchenghaoz@users.noreply.github.com> [None][chore] Waive flakey disagg tests (NVIDIA#9749) Signed-off-by: Mike Iovine <miovine@nvidia.com> [https://nvbugs/5601682][fix] Fix cacheTransceiver hang (NVIDIA#9311) Signed-off-by: Iman Tabrizian <10105175+tabrizian@users.noreply.github.com> Signed-off-by: Mike Iovine <6158008+mikeiovine@users.noreply.github.com> Signed-off-by: Mike Iovine <miovine@nvidia.com> [TRTLLM-9199][docs] KV Connector Docs (NVIDIA#9325) Signed-off-by: jthomson04 <jwillthomson19@gmail.com> Co-authored-by: coderabbitai[bot] <136622811+coderabbitai[bot]@users.noreply.github.com> Signed-off-by: Mike Iovine <6158008+mikeiovine@users.noreply.github.com> Signed-off-by: Mike Iovine <miovine@nvidia.com> [TRTLLM-9160][doc] add doc to llm_runtime.py (NVIDIA#9482) Signed-off-by: Yan Chunwei <328693+Superjomn@users.noreply.github.com> Signed-off-by: Mike Iovine <6158008+mikeiovine@users.noreply.github.com> Signed-off-by: Mike Iovine <miovine@nvidia.com> [None][doc] VDR 1.0 trtllm-serve doc enhancement (NVIDIA#9443) Signed-off-by: Pengyun Lin <81065165+LinPoly@users.noreply.github.com> Signed-off-by: Mike Iovine <6158008+mikeiovine@users.noreply.github.com> Signed-off-by: Mike Iovine <miovine@nvidia.com> [TRTLLM-9086][doc] Clean up TODOs in documentation (NVIDIA#9292) Signed-off-by: junq <22017000+QiJune@users.noreply.github.com> Signed-off-by: Mike Iovine <6158008+mikeiovine@users.noreply.github.com> Signed-off-by: Mike Iovine <miovine@nvidia.com> [TRTLLM-9157][doc] Guided decoding doc improvement (NVIDIA#9359) Signed-off-by: Enwei Zhu <21126786+syuoni@users.noreply.github.com> Signed-off-by: Mike Iovine <6158008+mikeiovine@users.noreply.github.com> Signed-off-by: Mike Iovine <miovine@nvidia.com> [None][infra] Updated Linux installation guide (NVIDIA#9485) Signed-off-by: Yiqing Yan <yiqingy@nvidia.com> Co-authored-by: Yanchao Lu <yanchaol@nvidia.com> Signed-off-by: Mike Iovine <6158008+mikeiovine@users.noreply.github.com> Signed-off-by: Mike Iovine <miovine@nvidia.com> [TRTLLM-9075][doc] refine the slurm examples (NVIDIA#9548) Signed-off-by: Yan Chunwei <328693+Superjomn@users.noreply.github.com> Signed-off-by: Mike Iovine <6158008+mikeiovine@users.noreply.github.com> Signed-off-by: Mike Iovine <miovine@nvidia.com> [TRTLLM-9093][doc] update hyper links in overview (NVIDIA#9568) Signed-off-by: junq <22017000+QiJune@users.noreply.github.com> Signed-off-by: Mike Iovine <6158008+mikeiovine@users.noreply.github.com> Signed-off-by: Mike Iovine <miovine@nvidia.com> [TRTLLM-9092][doc] link to modelopt checkpoints in quick start guide (NVIDIA#9571) Signed-off-by: junq <22017000+QiJune@users.noreply.github.com> Signed-off-by: Mike Iovine <6158008+mikeiovine@users.noreply.github.com> Signed-off-by: Mike Iovine <miovine@nvidia.com> [None][infra] Check in most recent lock file from nightly pipeline Signed-off-by: TensorRT LLM <90828364+tensorrt-cicd@users.noreply.github.com> [None][fix] Fix triton moe load_weight (NVIDIA#9649) Signed-off-by: shuyix <219646547+shuyixiong@users.noreply.github.com> [None][fix] fix a bug: deepseek_fp8_block_scales in TRTLLMGEN-MoE use 2D x_sf instead of 1D (NVIDIA#9658) Signed-off-by: xxi <xxi@nvidia.com> [TRTLLM-9372][feat] Enable CuteDSL MoE with Large EP (NVIDIA#9592) Signed-off-by: Enwei Zhu <21126786+syuoni@users.noreply.github.com> [TRTLLM-9522][chore] implement default `attach_multimodal_embeddings` (NVIDIA#9664) Signed-off-by: ixlmar <206748156+ixlmar@users.noreply.github.com> [TRTLLM-9660][feat] Convert cuteDSL GEMM to opt-in feature (NVIDIA#9682) Signed-off-by: Jonas Li <6110159+longlee0622@users.noreply.github.com> Co-authored-by: Kaiyu Xie <26294424+kaiyux@users.noreply.github.com> [None][fix] enable hmac in RPC (NVIDIA#9745) Signed-off-by: Superjomn <328693+Superjomn@users.noreply.github.com> [None][infra] Check in most recent lock file from nightly pipeline Signed-off-by: TensorRT LLM <90828364+tensorrt-cicd@users.noreply.github.com> [https://nvbugs/5703953][fix] Preserving ip:port for trtllm-serve before initializing llm (NVIDIA#9646) Signed-off-by: Junyi Xu <219237550+JunyiXu-nv@users.noreply.github.com> [None][infra] Waive failed cases for main branch on 12/07 (NVIDIA#9769) Signed-off-by: qqiao <qqiao@nvidia.com> [None][fix] Several minor fixes to CI setting (NVIDIA#9765) Signed-off-by: Yanchao Lu <yanchaol@nvidia.com> [OMNIML-3036][doc] Re-branding TensorRT-Model-Optimizer as Nvidia Model-Optimizer (NVIDIA#9679) Signed-off-by: Chenjie Luo <chenjiel@nvidia.com> [None][feat] Enable NCCL_SYMMETRIC as default fallback for AllReduce (NVIDIA#9314) Signed-off-by: Ludwig Schneider <lschneider@nvidia.com> [TRTLLM-9000][feat] Add multi-node Perf Tests into CI (NVIDIA#8800) Signed-off-by: Chenfei Zhang <chenfeiz@nvidia.com> [None][test] add ntp tolerance in time metrics verification (NVIDIA#9741) Signed-off-by: zhengd-nv <200704041+zhengd-nv@users.noreply.github.com> [TRTLLM-9603][feat] Enable ConfigurableMoE test in the CI (NVIDIA#9645) [https://nvbugs/5422621][test] Add GB 200 WIDEEP test case for RCCA 5422621 (NVIDIA#9506) Signed-off-by: FredricZ-2007 <226039983+fredricz-20070104@users.noreply.github.com> [None][fix] Fix two tuning cache miss issues. (NVIDIA#9743) Signed-off-by: Yukun He <23156053+hyukn@users.noreply.github.com> [None][infra] Check in most recent lock file from nightly pipeline Signed-off-by: TensorRT LLM <90828364+tensorrt-cicd@users.noreply.github.com> [TRTLLM-9706] [doc] Update wide EP documents (NVIDIA#9724) Signed-off-by: Kaiyu Xie <26294424+kaiyux@users.noreply.github.com> [https://nvbugs/5666804][test] only adding sampler config for limited models (NVIDIA#9512) Signed-off-by: Ruodi Lu <ruodil@users.noreply.github.com> Co-authored-by: Ruodi Lu <ruodil@users.noreply.github.com> Co-authored-by: yufeiwu-nv <230315618+yufeiwu-nv@users.noreply.github.com> Co-authored-by: Larry Xu <197874197+LarryXFly@users.noreply.github.com> [None][infra] Waive failed cases for main on 12/08 (NVIDIA#9773) Signed-off-by: qqiao <qqiao@nvidia.com> [None][chore] Move the rocketkv e2e test to post-merge (NVIDIA#9768) Signed-off-by: Fanrong Li <23290157+lfr-0531@users.noreply.github.com> [None][chore] Enable tvm_ffi for cute dsl nvfp4_gemm to reduce host overhead. (NVIDIA#9690) Signed-off-by: Mindy Li <11663212+limin2021@users.noreply.github.com> [TRTLLM-9431][perf] Enable multistream for Linear Attention in Qwen3-… (NVIDIA#9696) Signed-off-by: nv-guomingz <137257613+nv-guomingz@users.noreply.github.com> [None][chore] Remove closed bugs (NVIDIA#9770) Signed-off-by: xinhe-nv <200704525+xinhe-nv@users.noreply.github.com> [None][infra] update mooncake in docker images (NVIDIA#9584) Signed-off-by: zhengd-nv <200704041+zhengd-nv@users.noreply.github.com> Signed-off-by: Zheng Duan <200704041+zhengd-nv@users.noreply.github.com> [None][test] Add Kimi k2 WIDEEP perf and accuracy cases (NVIDIA#9686) Signed-off-by: FredricZ-2007 <226039983+fredricz-20070104@users.noreply.github.com> Signed-off-by: Kaiyu Xie <26294424+kaiyux@users.noreply.github.com> Co-authored-by: Kaiyu Xie <26294424+kaiyux@users.noreply.github.com> [https://nvbugs/5527655][test] Add test case for RCCA 5527655 (NVIDIA#9511) Signed-off-by: FredricZ-2007 <226039983+fredricz-20070104@users.noreply.github.com> [http://nvbugs/5649010][fix] fix test_auto_scaling.py::test_worker_restart timeout (NVIDIA#9775) Signed-off-by: Lizhi Zhou <1432185+reasonsolo@users.noreply.github.com> [None][fix] Switch AutoDeploy's default allreduce strategy to NCCL (NVIDIA#9666) Signed-off-by: Eran Geva <19514940+MrGeva@users.noreply.github.com> [TRTLLM-9506][fix] Fix AR for DeepSeek-R1 2 model path (NVIDIA#9661) Signed-off-by: qgai <qgai@nvidia.com> ray + updatew works trtllm works in async env trtllm works in sync and async env ray + updatew works rebase to the updated verl server mode still cherry pick still cherry pick still cherry pick integrated http interface hang at RyExecutor create workers ray.remote clean code use tensorrt_llm.rlhf_utils Signed-off-by: Liwei Ma <liweim@nvidia.com> placement, asyncllm, and basic tests Signed-off-by: Erin Ho <14718778+hchings@users.noreply.github.com> connect sleep and wakeup; Add support to pass None to update_weights Signed-off-by: Erin Ho <14718778+hchings@users.noreply.github.com> Batching ctx for IFB scheduler Signed-off-by: Yuan Tong <13075180+tongyuantongyu@users.noreply.github.com> accuracy WAR for TP>1: always use AllReduceStrategy.NCCL, refactored Signed-off-by: Erin Ho <14718778+hchings@users.noreply.github.com> fix e2e integration Signed-off-by: Superjomn <328693+Superjomn@users.noreply.github.com> update asyncllm, other nits Signed-off-by: Erin Ho <14718778+hchings@users.noreply.github.com> fix init setup Signed-off-by: Erin Ho <14718778+hchings@users.noreply.github.com> Fix TRTLLMSampler logprobs perf Signed-off-by: Yuan Tong <13075180+tongyuantongyu@users.noreply.github.com> fix and cleanup Signed-off-by: Erin Ho <14718778+hchings@users.noreply.github.com> fix server Signed-off-by: Erin Ho <14718778+hchings@users.noreply.github.com> Revert "Batching ctx for IFB scheduler" This reverts commit b51aac0 Signed-off-by: Yuan Tong <13075180+tongyuantongyu@users.noreply.github.com> update & address comments Signed-off-by: Erin Ho <14718778+hchings@users.noreply.github.com>
…DIA#9376) Signed-off-by: Chang Liu (Enterprise Products) <9713593+chang-l@users.noreply.github.com>
With chunked prefill (
max_num_tokens=1024andenable_chunked_prefill=True)With chunked prefill (
max_num_tokens=512andenable_chunked_prefill=True)With chunked prefill (
max_num_tokens=256andenable_chunked_prefill=True)Todos:
Custom topk kernel does not support cached tokens, i.e., running:pytest tests/unittest/_torch/attention/sparse/test_dsa_indexer.py -k test_indexer_topk_multi_request_with_different_cache
would fail. cc. @ChristinaZ
FP8 KV cache does not work because trtllm attention kernel does not support chunked prefill.
applyMLARopeAndAssignQKVKernelOptContexthas nocached_offset; it only hascu_q_seqlens(Q offsets per batch) and
kv_cache_lengths(total KV lengths), but is missingcached_token_indptr. cc. @lfr-0531 @PerkzZhengSummary by CodeRabbit
Release Notes
New Features
--enable_chunked_prefillCLI option to sparse attention examples for optimized prefill processing configuration.Improvements
✏️ Tip: You can customize this high-level summary in your review settings.
Description
Test Coverage
PR Checklist
Please review the following before submitting your PR:
PR description clearly explains what and why. If using CodeRabbit's summary, please make sure it makes sense.
PR Follows TRT-LLM CODING GUIDELINES to the best of your knowledge.
Test cases are provided for new code paths (see test instructions)
Any new dependencies have been scanned for license and vulnerabilities
CODEOWNERS updated if ownership changes
Documentation updated as needed
Update tava architecture diagram if there is a significant design change in PR.
The reviewers assigned automatically/manually are appropriate for the PR.
Please check this after reviewing the above items as appropriate for this PR.
GitHub Bot Help
/bot [-h] ['run', 'kill', 'skip', 'reuse-pipeline'] ...Provide a user friendly way for developers to interact with a Jenkins server.
Run
/bot [-h|--help]to print this help message.See details below for each supported subcommand.
Details
run [--reuse-test (optional)pipeline-id --disable-fail-fast --skip-test --stage-list "A10-PyTorch-1, xxx" --gpu-type "A30, H100_PCIe" --test-backend "pytorch, cpp" --add-multi-gpu-test --only-multi-gpu-test --disable-multi-gpu-test --post-merge --extra-stage "H100_PCIe-TensorRT-Post-Merge-1, xxx" --detailed-log --debug(experimental)]Launch build/test pipelines. All previously running jobs will be killed.
--reuse-test (optional)pipeline-id(OPTIONAL) : Allow the new pipeline to reuse build artifacts and skip successful test stages from a specified pipeline or the last pipeline if no pipeline-id is indicated. If the Git commit ID has changed, this option will be always ignored. The DEFAULT behavior of the bot is to reuse build artifacts and successful test results from the last pipeline.--disable-reuse-test(OPTIONAL) : Explicitly prevent the pipeline from reusing build artifacts and skipping successful test stages from a previous pipeline. Ensure that all builds and tests are run regardless of previous successes.--disable-fail-fast(OPTIONAL) : Disable fail fast on build/tests/infra failures.--skip-test(OPTIONAL) : Skip all test stages, but still run build stages, package stages and sanity check stages. Note: Does NOT update GitHub check status.--stage-list "A10-PyTorch-1, xxx"(OPTIONAL) : Only run the specified test stages. Examples: "A10-PyTorch-1, xxx". Note: Does NOT update GitHub check status.--gpu-type "A30, H100_PCIe"(OPTIONAL) : Only run the test stages on the specified GPU types. Examples: "A30, H100_PCIe". Note: Does NOT update GitHub check status.--test-backend "pytorch, cpp"(OPTIONAL) : Skip test stages which don't match the specified backends. Only support [pytorch, cpp, tensorrt, triton]. Examples: "pytorch, cpp" (does not run test stages with tensorrt or triton backend). Note: Does NOT update GitHub pipeline status.--only-multi-gpu-test(OPTIONAL) : Only run the multi-GPU tests. Note: Does NOT update GitHub check status.--disable-multi-gpu-test(OPTIONAL) : Disable the multi-GPU tests. Note: Does NOT update GitHub check status.--add-multi-gpu-test(OPTIONAL) : Force run the multi-GPU tests in addition to running L0 pre-merge pipeline.--post-merge(OPTIONAL) : Run the L0 post-merge pipeline instead of the ordinary L0 pre-merge pipeline.--extra-stage "H100_PCIe-TensorRT-Post-Merge-1, xxx"(OPTIONAL) : Run the ordinary L0 pre-merge pipeline and specified test stages. Examples: --extra-stage "H100_PCIe-TensorRT-Post-Merge-1, xxx".--detailed-log(OPTIONAL) : Enable flushing out all logs to the Jenkins console. This will significantly increase the log volume and may slow down the job.--debug(OPTIONAL) : Experimental feature. Enable access to the CI container for debugging purpose. Note: Specify exactly one stage in thestage-listparameter to access the appropriate container environment. Note: Does NOT update GitHub check status.For guidance on mapping tests to stage names, see
docs/source/reference/ci-overview.mdand the
scripts/test_to_stage_mapping.pyhelper.kill
killKill all running builds associated with pull request.
skip
skip --comment COMMENTSkip testing for latest commit on pull request.
--comment "Reason for skipping build/test"is required. IMPORTANT NOTE: This is dangerous since lack of user care and validation can cause top of tree to break.reuse-pipeline
reuse-pipelineReuse a previous pipeline to validate current commit. This action will also kill all currently running builds associated with the pull request. IMPORTANT NOTE: This is dangerous since lack of user care and validation can cause top of tree to break.