Skip to content

Conversation

@heyuhhh
Copy link
Collaborator

@heyuhhh heyuhhh commented Nov 20, 2025

Summary by CodeRabbit

  • New Features

    • Added CLI arguments: --topk (replaces --topr), --kt_cache_dtype, and --tokens_per_block for enhanced sparse attention configuration.
    • Support for configurable KT cache data type selection (bfloat16 or float8_e5m2).
  • Updates

    • Updated RocketSparseAttentionConfig defaults: window_size (32), kernel_size (63), topk (64), topr (128), prompt_budget (2048), page_size (4).
    • KvCacheConfig now includes tokens_per_block parameter for improved KV cache control.

✏️ Tip: You can customize this high-level summary in your review settings.

Description

In this PR, mainly optimized the algorithm part of RocketKV based on the first triton implements (PR8682). The main optimizations are:

  • Optimize several key triton kernels, including paged_kt_cache_bmm and update_kt_cache_ctx kernels
  • Support fp8 kt cache for RocketKV in trtllm backend
  • Others: the default config settings update and several minor bugs fix

After the optimization, using RocketKV can achieve higher throughput and lower latency than before:

8k_1k_pareto_curve 32k_4k_pareto_curve

The accuracy is also competitive with TRTLLM baseline on Longbench v1 task:

  • TRTLLM: 48.7
  • RocketKV: 48.15

Test Coverage

PR Checklist

Please review the following before submitting your PR:

  • PR description clearly explains what and why. If using CodeRabbit's summary, please make sure it makes sense.

  • PR Follows TRT-LLM CODING GUIDELINES to the best of your knowledge.

  • Test cases are provided for new code paths (see test instructions)

  • Any new dependencies have been scanned for license and vulnerabilities

  • CODEOWNERS updated if ownership changes

  • Documentation updated as needed

  • Update tava architecture diagram if there is a significant design change in PR.

  • The reviewers assigned automatically/manually are appropriate for the PR.

  • Please check this after reviewing the above items as appropriate for this PR.

GitHub Bot Help

/bot [-h] ['run', 'kill', 'skip', 'reuse-pipeline'] ...

Provide a user friendly way for developers to interact with a Jenkins server.

Run /bot [-h|--help] to print this help message.

See details below for each supported subcommand.

Details

run [--reuse-test (optional)pipeline-id --disable-fail-fast --skip-test --stage-list "A10-PyTorch-1, xxx" --gpu-type "A30, H100_PCIe" --test-backend "pytorch, cpp" --add-multi-gpu-test --only-multi-gpu-test --disable-multi-gpu-test --post-merge --extra-stage "H100_PCIe-TensorRT-Post-Merge-1, xxx" --detailed-log --debug(experimental)]

Launch build/test pipelines. All previously running jobs will be killed.

--reuse-test (optional)pipeline-id (OPTIONAL) : Allow the new pipeline to reuse build artifacts and skip successful test stages from a specified pipeline or the last pipeline if no pipeline-id is indicated. If the Git commit ID has changed, this option will be always ignored. The DEFAULT behavior of the bot is to reuse build artifacts and successful test results from the last pipeline.

--disable-reuse-test (OPTIONAL) : Explicitly prevent the pipeline from reusing build artifacts and skipping successful test stages from a previous pipeline. Ensure that all builds and tests are run regardless of previous successes.

--disable-fail-fast (OPTIONAL) : Disable fail fast on build/tests/infra failures.

--skip-test (OPTIONAL) : Skip all test stages, but still run build stages, package stages and sanity check stages. Note: Does NOT update GitHub check status.

--stage-list "A10-PyTorch-1, xxx" (OPTIONAL) : Only run the specified test stages. Examples: "A10-PyTorch-1, xxx". Note: Does NOT update GitHub check status.

--gpu-type "A30, H100_PCIe" (OPTIONAL) : Only run the test stages on the specified GPU types. Examples: "A30, H100_PCIe". Note: Does NOT update GitHub check status.

--test-backend "pytorch, cpp" (OPTIONAL) : Skip test stages which don't match the specified backends. Only support [pytorch, cpp, tensorrt, triton]. Examples: "pytorch, cpp" (does not run test stages with tensorrt or triton backend). Note: Does NOT update GitHub pipeline status.

--only-multi-gpu-test (OPTIONAL) : Only run the multi-GPU tests. Note: Does NOT update GitHub check status.

--disable-multi-gpu-test (OPTIONAL) : Disable the multi-GPU tests. Note: Does NOT update GitHub check status.

--add-multi-gpu-test (OPTIONAL) : Force run the multi-GPU tests in addition to running L0 pre-merge pipeline.

--post-merge (OPTIONAL) : Run the L0 post-merge pipeline instead of the ordinary L0 pre-merge pipeline.

--extra-stage "H100_PCIe-TensorRT-Post-Merge-1, xxx" (OPTIONAL) : Run the ordinary L0 pre-merge pipeline and specified test stages. Examples: --extra-stage "H100_PCIe-TensorRT-Post-Merge-1, xxx".

--detailed-log (OPTIONAL) : Enable flushing out all logs to the Jenkins console. This will significantly increase the log volume and may slow down the job.

--debug (OPTIONAL) : Experimental feature. Enable access to the CI container for debugging purpose. Note: Specify exactly one stage in the stage-list parameter to access the appropriate container environment. Note: Does NOT update GitHub check status.

For guidance on mapping tests to stage names, see docs/source/reference/ci-overview.md
and the scripts/test_to_stage_mapping.py helper.

kill

kill

Kill all running builds associated with pull request.

skip

skip --comment COMMENT

Skip testing for latest commit on pull request. --comment "Reason for skipping build/test" is required. IMPORTANT NOTE: This is dangerous since lack of user care and validation can cause top of tree to break.

reuse-pipeline

reuse-pipeline

Reuse a previous pipeline to validate current commit. This action will also kill all currently running builds associated with the pull request. IMPORTANT NOTE: This is dangerous since lack of user care and validation can cause top of tree to break.

@heyuhhh heyuhhh requested review from a team as code owners November 20, 2025 07:43
@coderabbitai
Copy link
Contributor

coderabbitai bot commented Nov 20, 2025

📝 Walkthrough

Walkthrough

The PR updates RocketKV sparse attention by replacing the top-r parameter with top-k, introducing KT cache data type selection, and refactoring kernels to use block-oriented indexing. Configuration defaults are adjusted across multiple files, and new parameters kt_cache_dtype and tokens_per_block are introduced to CLI arguments, configuration classes, and kernel signatures throughout the stack.

Changes

Cohort / File(s) Summary
Example scripts – CLI argument updates
examples/llm-api/llm_sparse_attention.py, examples/longbench/eval_longbench_v1.py, examples/longbench/eval_longbench_v2.py
Added CLI arguments --topk (default 64), --kt_cache_dtype (default 'float8_e5m2', choices ['bfloat16', 'float8_e5m2']), and --tokens_per_block (default 64). Renamed --topr to --topk in RocketKV configurations, updating defaults from 90 to 64.
Configuration classes
tensorrt_llm/llmapi/llm_args.py
RocketSparseAttentionConfig: updated defaults (window_size: 32, kernel_size: 63, topr: 128, topk: 64, prompt_budget: 2048, page_size: 4), added new field kt_cache_dtype (str, default 'float8_e5m2'). KvCacheConfig: added tokens_per_block parameter.
Sparse kernel implementation
tensorrt_llm/_torch/attention_backend/sparse/kernel.py
Replaced tensor-dimension positional computations with block-oriented indexing. Added total_rocket_k_ctx_tokens and prompt_budget parameters to multiple triton kernels. Generalized triton_softmax to support 2D and 3D input tensors. Updated grid calculations and DIM_BLOCK_SIZE logic for improved tiling. Removed dim_pos-based indexing in favor of explicit head/block-based computations.
RocketKV implementation
tensorrt_llm/_torch/attention_backend/sparse/rocket.py
Added topr_filter() method to RocketTrtllmAttention and RocketVanillaAttention for top-r gating. Introduced total_rocket_k_ctx_tokens and max_rocket_k_ctx_len tracking during context preparation. Added kt_cache_dtype support in RocketKVCacheManager with dtype-aware buffer management. Updated preprocess_for_gen to return only (q, k) instead of (q, k, dim_pos). Enforced page_size as power of two via assertion.
Unit tests – RocketKV
tests/unittest/_torch/attention/sparse/test_rocketkv.py
Updated RocketSparseAttentionConfig instantiations to include kt_cache_dtype parameter. Adjusted page_size expectations (3 → 4). Added dtype-aware KT buffer initialization and explicit dtype casting during data transfer between buffers (float8_e5m2 ↔ bfloat16).
Unit tests – Triton BMM
tests/unittest/_torch/attention/sparse/test_triton_bmm.py
Removed dim_pos parameter from pytorch_reference_paged_kt_cache_bmm() signature. Updated output tensor shape from [total_num_heads, 1, total_kt_tokens] to [num_kv_heads, num_heads_per_kv, total_kt_tokens]. Reworked indexing and accumulation logic to match new tensor layout. Removed dim_pos-related test scaffolding.

Sequence Diagram(s)

sequenceDiagram
    participant CLI as CLI Arguments
    participant Config as RocketSparseAttentionConfig
    participant KVCache as KvCacheConfig
    participant KVMgr as RocketKVCacheManager
    participant Kernel as Sparse Kernels

    Note over CLI: --topk, --kt_cache_dtype, --tokens_per_block

    CLI->>Config: topk (int, default 64)
    CLI->>Config: kt_cache_dtype (str, default 'float8_e5m2')
    CLI->>KVCache: tokens_per_block (int, default 64)

    Config->>KVMgr: Pass topk, kt_cache_dtype
    KVCache->>KVMgr: Pass tokens_per_block

    KVMgr->>KVMgr: Set KT cache buffer dtype based on kt_cache_dtype
    KVMgr->>Kernel: total_rocket_k_ctx_tokens, prompt_budget
    
    Note over Kernel: Block-oriented indexing (replaces dim_pos)
    Kernel->>Kernel: Grid config: (batch_size, num_kv_heads, num_KT_token_tiles)
Loading

Estimated code review effort

🎯 4 (Complex) | ⏱️ ~45 minutes

  • tensorrt_llm/_torch/attention_backend/sparse/kernel.py: Dense refactoring with block-oriented indexing replacing dimension-based positional logic; multiple kernel signatures updated with new parameters; grid calculation changes require careful validation of correctness.
  • tensorrt_llm/_torch/attention_backend/sparse/rocket.py: Introduction of topr_filter() method, kt_cache_dtype dtype-aware buffer management, and preprocess_for_gen() return signature change; integration of total_rocket_k_ctx_tokens and max_rocket_k_ctx_len tracking.
  • tensorrt_llm/llmapi/llm_args.py: Multiple default value changes and new field addition; verify that defaults align with downstream expectations.
  • Test updates: Verification that new tensor shapes, dtype conversions, and parameter propagation are correctly validated across test_rocketkv.py and test_triton_bmm.py.

Pre-merge checks and finishing touches

❌ Failed checks (2 warnings)
Check name Status Explanation Resolution
Docstring Coverage ⚠️ Warning Docstring coverage is 43.33% which is insufficient. The required threshold is 80.00%. You can run @coderabbitai generate docstrings to improve docstring coverage.
Description check ⚠️ Warning PR description provides clear explanation of RocketKV algorithm optimizations, performance improvements, and test coverage. However, the Test Coverage section is completely empty, leaving it unclear what specific tests safeguard the changes. Add specific test names/paths in the Test Coverage section to clarify which tests validate the kernel optimizations, fp8 cache support, and configuration changes.
✅ Passed checks (1 passed)
Check name Status Explanation
Title check ✅ Passed The title 'Optimize the algorithm part of RocketKV' clearly and specifically summarizes the main optimization work described in the raw summary and PR description.
✨ Finishing touches
  • 📝 Generate docstrings
🧪 Generate unit tests (beta)
  • Create PR with unit tests
  • Post copyable unit tests in a comment

Tip

📝 Customizable high-level summaries are now available in beta!

You can now customize how CodeRabbit generates the high-level summary in your pull requests — including its content, structure, tone, and formatting.

  • Provide your own instructions using the high_level_summary_instructions setting.
  • Format the summary however you like (bullet lists, tables, multi-section layouts, contributor stats, etc.).
  • Use high_level_summary_in_walkthrough to move the summary from the description to the walkthrough section.

Example instruction:

"Divide the high-level summary into five sections:

  1. 📝 Description — Summarize the main change in 50–60 words, explaining what was done.
  2. 📓 References — List relevant issues, discussions, documentation, or related PRs.
  3. 📦 Dependencies & Requirements — Mention any new/updated dependencies, environment variable changes, or configuration updates.
  4. 📊 Contributor Summary — Include a Markdown table showing contributions:
    | Contributor | Lines Added | Lines Removed | Files Changed |
  5. ✔️ Additional Notes — Add any extra reviewer context.
    Keep each section concise (under 200 words) and use bullet or numbered lists for clarity."

Note: This feature is currently in beta for Pro-tier users, and pricing will be announced later.


Thanks for using CodeRabbit! It's free for OSS, and your support helps us grow. If you like it, consider giving us a shout-out.

❤️ Share

Comment @coderabbitai help to get the list of available commands and usage tips.

Copy link
Contributor

@coderabbitai coderabbitai bot left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Actionable comments posted: 4

Caution

Some comments are outside the diff and can’t be posted inline due to platform limitations.

⚠️ Outside diff range comments (2)
tensorrt_llm/llmapi/llm_args.py (1)

1440-1516: Add validation for KvCacheConfig.tokens_per_block to prevent invalid KV cache layouts

tokens_per_block is the logical capacity of a KV cache block and is used in block-count computations (and in downstream logic like paged KT cache / attention windows). If a caller sets it to 0 or a negative value, you will eventually hit division-by-zero or out‑of‑range indexing in those paths.

It’s worth enforcing a positive value at the config level, similar to the existing validators on free_gpu_memory_fraction and max_gpu_total_bytes. For example:

 class KvCacheConfig(StrictBaseModel, PybindMirror):
@@
-    tokens_per_block: int = Field(default=32,
-                                  description="The number of tokens per block.")
+    tokens_per_block: int = Field(
+        default=32,
+        description="The number of tokens per block.")
@@
     @field_validator('max_attention_window')
     @classmethod
     def validate_max_attention_window(cls, v: Optional[List[int]]):
@@
         return v
+
+    @field_validator('tokens_per_block')
+    @classmethod
+    def validate_tokens_per_block(cls, v: int) -> int:
+        if v <= 0:
+            raise ValueError(
+                "kv_cache_config.tokens_per_block must be a positive integer")
+        return v

This keeps misconfigurations from propagating into the KV cache manager where they’re harder to diagnose. Based on learnings

tensorrt_llm/_torch/attention_backend/sparse/kernel.py (1)

894-981: Critical: Mismatch in KT token calculation between wrapper and kernel.

The wrapper function calculates grid dimension z using prompt_budget but the kernel recalculates total_kt_tokens per-batch using num_sparse_tokens from sparse offsets. These can differ, causing the grid to be sized incorrectly relative to actual token counts:

  • Wrapper (kernel.py:1018-1020): total_kt_tokens = (prompt_budget + kt_page_size - 1) // kt_page_size
  • Kernel (kernel.py:923): total_kt_tokens = (num_sparse_tokens + kt_page_size - 1) // kt_page_size

When per-batch num_sparse_tokens < prompt_budget, the kernel mask at line 925 uses the smaller value while grid.z was sized for the larger value. This creates a correctness risk.

Additionally, no test coverage exists for this kernel. The search found tests for other sparse kernels (test_triton_bmm.py, test_triton_topk.py, test_flash_mla.py) but nothing for rocket_update_kt_cache_ctx.

Fix the calculation to use a consistent total_kt_tokens value, and add comprehensive test coverage for edge cases: partial pages, varying batch sizes, and different head dimensions.

🧹 Nitpick comments (7)
tensorrt_llm/llmapi/llm_args.py (1)

222-240: RocketSparseAttentionConfig RocketKV knobs look consistent; small API polish possible

The new defaults (window_size=32, kernel_size=63, topr=128, topk=64, prompt_budget=2048) and the added page_size / kt_cache_dtype fields are coherent with the example scripts and tests, and supports_backend correctly limits this to the PyTorch backend.

Two optional improvements:

  • The page_size name is very close to KvCacheConfig.tokens_per_block. A brief clarification in the page_size description that it is the KT index page size (not KV cache block size) would help avoid confusion now that a separate tokens_per_block knob exists.
  • For kt_cache_dtype, consider tightening the type to a Literal['bfloat16', 'float8_e5m2'] or an Enum instead of Optional[str] plus choices, so that Pydantic and static tooling enforce valid values at type level.
tests/unittest/_torch/attention/sparse/test_triton_bmm.py (1)

183-216: Reference paged KT BMM matches new layout; minor cleanups are optional

The reference now correctly produces scores with shape [num_kv_heads, num_heads_per_kv, total_kt_tokens] and uses output_offset = batch_idx * max_kt_tokens, which aligns with how output_offsets/mask are computed in the test, so the layout/indexing look sound.

A couple of non‑essential cleanups you could consider:

  • k_vec and k_selected depend only on kv_head_idx, but are recomputed inside the q_head_idx loop; they could be moved one level up.
  • Given you intentionally use the same tensor for min/max, k_selected = torch.where(dim_pos_vec, k_vec, k_vec) is a no‑op; keeping the dim_pos_vec comment for documentation but dropping the where call would reduce confusion.

These are purely cosmetic in a test‑only reference path.

examples/llm-api/llm_sparse_attention.py (1)

68-76: RocketKV CLI knobs are wired correctly; consider clarifying KT vs KV dtypes and tokens_per_block

The new arguments --topk, --kt_cache_dtype, and --tokens_per_block are correctly plumbed:

  • topk / kt_cache_dtype go into RocketSparseAttentionConfig, matching its updated signature.
  • tokens_per_block and kv_cache_dtype go into KvCacheConfig, matching the Pydantic model.

Two small clarity improvements you might consider:

  • In the help text for --kt_cache_dtype, call out explicitly that it controls the KT cache precision and is independent of --kv_cache_dtype, which still sets the KV cache dtype.
  • For --tokens_per_block, a short note that this affects the PyTorch backend’s KV cache manager page/block size (and is ignored by the TensorRT backend) would help users understand when the knob has an effect.

Behavior-wise this looks good as is.

Also applies to: 117-117, 143-149, 193-200

examples/longbench/eval_longbench_v1.py (1)

153-162: LongBench v1 RocketKV knobs are correctly integrated; only minor doc consistency nits

Here, --topk, --kt_cache_dtype, and --tokens_per_block are all correctly threaded:

  • topk / kt_cache_dtype are passed into RocketSparseAttentionConfig when --rocket_sparse is enabled.
  • tokens_per_block is passed into KvCacheConfig, aligning with the new KV cache block‑size knob.

If you want to polish further (optional):

  • Mirror the --kt_cache_dtype help string from llm_sparse_attention.py to keep CLI UX consistent across examples.
  • Consider mentioning in the --tokens_per_block help that this primarily affects the PyTorch backend’s KV cache manager so users don’t expect it to change prebuilt TensorRT engines.

Functionally this looks solid.

Also applies to: 168-173, 325-330, 341-347

tensorrt_llm/_torch/attention_backend/sparse/rocket.py (2)

462-465: Verify contiguity check performance impact.

The contiguity checks with conditional .contiguous() calls are defensive but create new tensors if the input is non-contiguous. If this method is called frequently in the hot path, consider whether upstream callers should be required to provide contiguous tensors to avoid allocation overhead.

Based on learnings: TensorRT-LLM's attention backend typically trusts callers to provide correctly formatted tensors without validation. Consider documenting the contiguity requirement instead of runtime checks, or profile to confirm the overhead is negligible.


625-625: Restrictive assertion may limit future extensibility.

The hard assertion assert sparse_attention_config.kt_cache_dtype == 'bfloat16' prevents Vanilla RocketKV from supporting FP8 KT cache. If FP8 support for Vanilla is planned or could be useful, consider replacing this with a capability check or warning.

-        assert sparse_attention_config.kt_cache_dtype == 'bfloat16', "Only bfloat16 kt cache is supported for Vanilla RocketKV"
+        if sparse_attention_config.kt_cache_dtype != 'bfloat16':
+            raise NotImplementedError(f"Vanilla RocketKV currently only supports bfloat16 kt_cache, got {sparse_attention_config.kt_cache_dtype}")

This makes the temporary limitation clearer and more maintainable.

tensorrt_llm/_torch/attention_backend/sparse/kernel.py (1)

1195-1195: Static analysis: Replace lambda with def.

Ruff flags the lambda expression as a style issue. While this works, following the style guideline improves readability.

Apply this diff:

-    grid = lambda meta: (num_gen_tokens, num_kv_heads)
+    def grid(meta):
+        return (num_gen_tokens, num_kv_heads)

However, since meta is unused, you could also use:

-    grid = lambda meta: (num_gen_tokens, num_kv_heads)
+    grid = (num_gen_tokens, num_kv_heads)

if the kernel invocation accepts a tuple directly.

📜 Review details

Configuration used: Path: .coderabbit.yaml

Review profile: CHILL

Plan: Pro

📥 Commits

Reviewing files that changed from the base of the PR and between a39e8c5 and 63934ff.

📒 Files selected for processing (8)
  • examples/llm-api/llm_sparse_attention.py (4 hunks)
  • examples/longbench/eval_longbench_v1.py (3 hunks)
  • examples/longbench/eval_longbench_v2.py (2 hunks)
  • tensorrt_llm/_torch/attention_backend/sparse/kernel.py (13 hunks)
  • tensorrt_llm/_torch/attention_backend/sparse/rocket.py (10 hunks)
  • tensorrt_llm/llmapi/llm_args.py (1 hunks)
  • tests/unittest/_torch/attention/sparse/test_rocketkv.py (5 hunks)
  • tests/unittest/_torch/attention/sparse/test_triton_bmm.py (2 hunks)
🧰 Additional context used
🧠 Learnings (10)
📓 Common learnings
Learnt from: thorjohnsen
Repo: NVIDIA/TensorRT-LLM PR: 6910
File: cpp/tensorrt_llm/batch_manager/kvCacheManager.cpp:0-0
Timestamp: 2025-08-14T21:04:50.248Z
Learning: In KV cache onboarding logic during prefill in cpp/tensorrt_llm/batch_manager/kvCacheManager.cpp, when calculating which blocks fall within the attention window, use getTokensPerBlock() to advance token indices rather than block->getUniqueTokens().size(), because the calculation needs to consider the post-prefill state where blocks will be filled to capacity, not their current token count.
Learnt from: eopXD
Repo: NVIDIA/TensorRT-LLM PR: 6767
File: cpp/tensorrt_llm/batch_manager/kvCacheManager.cpp:0-0
Timestamp: 2025-08-15T06:46:54.897Z
Learning: In cpp/tensorrt_llm/batch_manager/kvCacheManager.cpp addToken function, newly allocated blocks are unshared by design. The beam search path in addToken (when sequence.getNumTokens() > windowSize) is currently broken/non-functional with SWA, so the block allocation doesn't follow a shared-then-unshared pattern.
Learnt from: eopXD
Repo: NVIDIA/TensorRT-LLM PR: 6767
File: cpp/tensorrt_llm/batch_manager/kvCacheManager.cpp:0-0
Timestamp: 2025-08-15T06:46:53.813Z
Learning: In the TensorRT-LLM KV cache manager, SWA (Sliding Window Attention) combined with beam search is currently in a broken/non-functional state and is planned for future rework. During preparatory refactoring phases, code related to SWA+beam search may intentionally remain in a non-working state until the broader rework is completed.
📚 Learning: 2025-08-14T15:38:01.771Z
Learnt from: MatthiasKohl
Repo: NVIDIA/TensorRT-LLM PR: 6904
File: cpp/tensorrt_llm/pybind/thop/bindings.cpp:55-57
Timestamp: 2025-08-14T15:38:01.771Z
Learning: In TensorRT-LLM Python bindings, tensor parameter collections like mla_tensor_params and spec_decoding_tensor_params are kept as required parameters without defaults to maintain API consistency, even when it might affect backward compatibility.

Applied to files:

  • tensorrt_llm/llmapi/llm_args.py
📚 Learning: 2025-08-14T21:04:50.248Z
Learnt from: thorjohnsen
Repo: NVIDIA/TensorRT-LLM PR: 6910
File: cpp/tensorrt_llm/batch_manager/kvCacheManager.cpp:0-0
Timestamp: 2025-08-14T21:04:50.248Z
Learning: In KV cache onboarding logic during prefill in cpp/tensorrt_llm/batch_manager/kvCacheManager.cpp, when calculating which blocks fall within the attention window, use getTokensPerBlock() to advance token indices rather than block->getUniqueTokens().size(), because the calculation needs to consider the post-prefill state where blocks will be filled to capacity, not their current token count.

Applied to files:

  • tests/unittest/_torch/attention/sparse/test_rocketkv.py
  • examples/longbench/eval_longbench_v1.py
  • examples/llm-api/llm_sparse_attention.py
  • tests/unittest/_torch/attention/sparse/test_triton_bmm.py
  • tensorrt_llm/_torch/attention_backend/sparse/rocket.py
  • examples/longbench/eval_longbench_v2.py
  • tensorrt_llm/_torch/attention_backend/sparse/kernel.py
📚 Learning: 2025-08-26T09:37:10.463Z
Learnt from: jiaganc
Repo: NVIDIA/TensorRT-LLM PR: 7031
File: tensorrt_llm/bench/dataclasses/configuration.py:90-104
Timestamp: 2025-08-26T09:37:10.463Z
Learning: In TensorRT-LLM's bench configuration, the `get_pytorch_perf_config()` method returns `self.pytorch_config` which is a Dict[str, Any] that can contain default values including `cuda_graph_config`, making the fallback `llm_args["cuda_graph_config"]` safe to use.

Applied to files:

  • tests/unittest/_torch/attention/sparse/test_rocketkv.py
📚 Learning: 2025-08-14T15:43:23.107Z
Learnt from: MatthiasKohl
Repo: NVIDIA/TensorRT-LLM PR: 6904
File: tensorrt_llm/_torch/attention_backend/trtllm.py:259-262
Timestamp: 2025-08-14T15:43:23.107Z
Learning: In TensorRT-LLM's attention backend, tensor parameters in the plan() method are assigned directly without validation (dtype, device, contiguity checks). This maintains consistency across all tensor inputs and follows the pattern of trusting callers to provide correctly formatted tensors.

Applied to files:

  • tests/unittest/_torch/attention/sparse/test_rocketkv.py
  • tensorrt_llm/_torch/attention_backend/sparse/kernel.py
📚 Learning: 2025-08-15T06:46:54.897Z
Learnt from: eopXD
Repo: NVIDIA/TensorRT-LLM PR: 6767
File: cpp/tensorrt_llm/batch_manager/kvCacheManager.cpp:0-0
Timestamp: 2025-08-15T06:46:54.897Z
Learning: In cpp/tensorrt_llm/batch_manager/kvCacheManager.cpp addToken function, newly allocated blocks are unshared by design. The beam search path in addToken (when sequence.getNumTokens() > windowSize) is currently broken/non-functional with SWA, so the block allocation doesn't follow a shared-then-unshared pattern.

Applied to files:

  • examples/llm-api/llm_sparse_attention.py
  • tensorrt_llm/_torch/attention_backend/sparse/kernel.py
📚 Learning: 2025-09-23T14:58:05.372Z
Learnt from: nv-lschneider
Repo: NVIDIA/TensorRT-LLM PR: 7910
File: cpp/tensorrt_llm/kernels/nccl_device/config.cu:42-49
Timestamp: 2025-09-23T14:58:05.372Z
Learning: In TensorRT-LLM NCCL device kernels (cpp/tensorrt_llm/kernels/nccl_device/), the token partitioning intentionally uses ceil-like distribution (same token_per_rank for all ranks) to ensure all ranks launch the same number of blocks. This is required for optimal NCCL device API barrier performance, even though it may launch extra blocks for non-existent tokens on later ranks. Runtime bounds checking in the kernel (blockID validation) handles the overshoot cases.

Applied to files:

  • tensorrt_llm/_torch/attention_backend/sparse/kernel.py
📚 Learning: 2025-08-15T06:46:53.813Z
Learnt from: eopXD
Repo: NVIDIA/TensorRT-LLM PR: 6767
File: cpp/tensorrt_llm/batch_manager/kvCacheManager.cpp:0-0
Timestamp: 2025-08-15T06:46:53.813Z
Learning: In the TensorRT-LLM KV cache manager, SWA (Sliding Window Attention) combined with beam search is currently in a broken/non-functional state and is planned for future rework. During preparatory refactoring phases, code related to SWA+beam search may intentionally remain in a non-working state until the broader rework is completed.

Applied to files:

  • tensorrt_llm/_torch/attention_backend/sparse/kernel.py
📚 Learning: 2025-08-22T01:54:35.850Z
Learnt from: djns99
Repo: NVIDIA/TensorRT-LLM PR: 7104
File: cpp/tensorrt_llm/kernels/cutlass_kernels/include/moe_kernels.h:999-1000
Timestamp: 2025-08-22T01:54:35.850Z
Learning: The `internal_cutlass_kernels` directory in TensorRT-LLM is a mirror of an internal NVIDIA repository and maintains its own implementation and API that may diverge from the public `cutlass_kernels` version. API inconsistencies between these two directories are intentional and by design, not bugs to be fixed.

Applied to files:

  • tensorrt_llm/_torch/attention_backend/sparse/kernel.py
📚 Learning: 2025-08-21T09:41:49.347Z
Learnt from: eopXD
Repo: NVIDIA/TensorRT-LLM PR: 6768
File: cpp/tensorrt_llm/batch_manager/kvCacheManager.cpp:2010-2045
Timestamp: 2025-08-21T09:41:49.347Z
Learning: In cpp/tensorrt_llm/batch_manager/kvCacheManager.cpp, updateSequenceCacheBlockOffsets is specifically for updating bookkeeping when blocks are added during the context phase, not for refreshing offsets after detach operations. During detach operations, GenerationRequest::removeFrontBlock handles the necessary cache block bookkeeping internally.

Applied to files:

  • tensorrt_llm/_torch/attention_backend/sparse/kernel.py
🧬 Code graph analysis (6)
tensorrt_llm/llmapi/llm_args.py (1)
tensorrt_llm/_torch/attention_backend/flashinfer.py (1)
  • page_size (200-204)
tests/unittest/_torch/attention/sparse/test_rocketkv.py (1)
tensorrt_llm/llmapi/llm_args.py (1)
  • RocketSparseAttentionConfig (222-250)
examples/longbench/eval_longbench_v1.py (2)
tensorrt_llm/_torch/attention_backend/trtllm.py (1)
  • tokens_per_block (654-658)
tensorrt_llm/functional.py (1)
  • topk (7318-7414)
examples/llm-api/llm_sparse_attention.py (2)
tensorrt_llm/_torch/attention_backend/trtllm.py (1)
  • tokens_per_block (654-658)
tensorrt_llm/functional.py (1)
  • topk (7318-7414)
tensorrt_llm/_torch/attention_backend/sparse/rocket.py (3)
tensorrt_llm/_torch/attention_backend/flashinfer.py (1)
  • page_size (200-204)
tensorrt_llm/_torch/attention_backend/trtllm.py (1)
  • tokens_per_block (654-658)
tensorrt_llm/_torch/attention_backend/sparse/dsa.py (1)
  • get_cache_bytes_per_token (1569-1589)
tensorrt_llm/_torch/attention_backend/sparse/kernel.py (2)
tensorrt_llm/_torch/attention_backend/trtllm.py (1)
  • tokens_per_block (654-658)
cpp/tensorrt_llm/kernels/sparseAttentionKernels.h (1)
  • sparse_kv_offsets (33-85)
🪛 Ruff (0.14.5)
tensorrt_llm/_torch/attention_backend/sparse/kernel.py

1195-1195: Do not assign a lambda expression, use a def

Rewrite grid as a def

(E731)


1195-1195: Unused lambda argument: meta

(ARG005)

⏰ Context from checks skipped due to timeout of 90000ms. You can increase the timeout in your CodeRabbit configuration to a maximum of 15 minutes (900000ms). (1)
  • GitHub Check: Pre-commit Check
🔇 Additional comments (7)
tests/unittest/_torch/attention/sparse/test_rocketkv.py (2)

374-386: Verify intentional differences in test configurations.

The test uses different configurations for vanilla vs trtllm:

  • page_size=2 for both
  • topk=128 for vanilla, topk=64 for trtllm
  • topr=96 for both

These differences may be intentional for testing different code paths, but please confirm this is the intended test design rather than an oversight.


468-473: FP8 initialization loses statistical properties without explicit scaling.

The naive conversion from float16 to float8_e5m2 does not preserve the normal distribution's properties. Quantization noise is large due to FP8 having only 2 mantissa bits and can change the sample mean and especially variance/tails. Per-tensor or per-channel scaling should be used when converting to FP8 to reduce bias and clipping.

The current implementation (lines 468-473) should either:

  1. Apply explicit per-tensor scaling before the conversion, or
  2. Use an alternative initialization approach that directly supports float8_e5m2, or
  3. Document why unscaled conversion is acceptable for this specific test
⛔ Skipped due to learnings
Learnt from: jhaotingc
Repo: NVIDIA/TensorRT-LLM PR: 7856
File: cpp/tensorrt_llm/thop/fp8BlockScaleMoe.cpp:159-166
Timestamp: 2025-09-19T21:28:13.751Z
Learning: In TensorRT-LLM blockScaleMoe routing (cpp/tensorrt_llm/kernels/trtllmGenKernels/blockScaleMoe/runner.cu), the DeepSeek routing method performs reinterpret_cast<float*>(routingLogits) at line 89, which could cause issues if routing_logits are BF16. However, Qwen3-FP8 models use RenormalizeNaive routing method and are not affected by this dtype casting issue.
Learnt from: nvchenghaoz
Repo: NVIDIA/TensorRT-LLM PR: 8469
File: tensorrt_llm/_torch/auto_deploy/transform/library/rms_norm.py:180-182
Timestamp: 2025-10-20T17:09:21.560Z
Learning: In tensorrt_llm/_torch/auto_deploy/transform/library/rms_norm.py, the _gated_rmsnorm_replacement function does not need to cast the output of torch.ops.auto_deploy.torch_rmsnorm_gated back to the input dtype, even though the custom op returns fp32. The dtype handling is managed elsewhere or the fp32 output is acceptable for downstream consumers.
tensorrt_llm/_torch/attention_backend/sparse/rocket.py (2)

48-49: Good validation: page_size must be power of 2.

This assertion enforces a critical constraint that the block-oriented indexing relies on. The error will catch misconfigurations early.


258-267: Properly handles empty valid batch case.

Setting max_rocket_k_ctx_len=0 and total_rocket_k_ctx_tokens=0 when valid_batch_size=0 prevents undefined behavior from calling .max().item() on an empty tensor slice.

tensorrt_llm/_torch/attention_backend/sparse/kernel.py (3)

508-520: Softmax kernel generalized for 2D and 3D inputs.

The updated logic correctly handles both input shapes:

  • 2D: [num_heads, total_k_tokens] with len_per_seq=1
  • 3D: [num_heads, len_per_seq, total_k_tokens]

The grid calculation (num_heads, batch_size * len_per_seq) properly accounts for both cases.


1062-1152: Review comment is unsupported by evidence.

The dim_pos computation via tl.sum(q_values, axis=0) > 0 is mathematically equivalent to and directly validated by the test reference (test_triton_bmm.py lines 200-201), which implements the identical logic. The test confirms this is the expected behavior, not a deviation.

The claim of a "critical logic change from the previous dim_pos-based approach" lacks supporting evidence. The current implementation IS the dim_pos-based approach and aligns perfectly with test expectations. No alternative previous implementation was found in the codebase.

The shape analysis (Q: [Q_BLOCK_SIZE, DIM_BLOCK_SIZE], KT: [DIM_BLOCK_SIZE, KT_BLOCK_SIZE], output: [Q_BLOCK_SIZE, KT_BLOCK_SIZE]) and output indexing logic are correct as stated.

Likely an incorrect or invalid review comment.


1190-1197: Output shape mismatch breaks downstream function compatibility.

The function returns [num_kv_heads, num_heads_per_kv, total_kt_tokens], but triton_rocket_reduce_scores (rocket.py:528) expects [num_kv_heads * num_heads_per_kv, 1, total_kt_tokens]. The dimensions are incompatible and no reshape operation exists between the calls (rocket.py:512-528). A reshape is needed before passing scores to triton_rocket_reduce_scores, or the function should flatten the first two dimensions before returning.

⛔ Skipped due to learnings
Learnt from: sklevtsov-nvidia
Repo: NVIDIA/TensorRT-LLM PR: 3294
File: cpp/tensorrt_llm/kernels/cutlass_kernels/moe_gemm/moe_gemm_tma_warp_specialized_input.cu:118-127
Timestamp: 2025-08-09T20:57:04.084Z
Learning: In the CUTLASS MoE finalize fusion implementation (cpp/tensorrt_llm/kernels/cutlass_kernels/moe_gemm/moe_gemm_tma_warp_specialized_input.cu), when setting `fused_finalize_epilogue.stride_final_output` with shape `(hidden_size, num_output_tokens, 1)`, the `num_rows_in_final_output` should be set to `num_output_tokens` (not `hidden_size`) because of a swap+transpose operation that maps rows of the output tensor to `hidden_size` and columns to `num_output_tokens`.
Learnt from: ixlmar
Repo: NVIDIA/TensorRT-LLM PR: 7294
File: tensorrt_llm/_torch/pyexecutor/sampler.py:887-891
Timestamp: 2025-08-28T10:25:22.370Z
Learning: In tensorrt_llm/_torch/pyexecutor/sampler.py, the draft_probs and target_probs tensors have shapes [1, steps] not [steps, vocab_size] as might be expected, making the .squeeze(0) operations appropriate for removing the batch dimension of size 1.

@heyuhhh
Copy link
Collaborator Author

heyuhhh commented Nov 20, 2025

/bot run --disable-fail-fast

@tensorrt-cicd
Copy link
Collaborator

PR_Github #25173 [ run ] triggered by Bot. Commit: 63934ff

@tensorrt-cicd
Copy link
Collaborator

PR_Github #25173 [ run ] completed with state SUCCESS. Commit: 63934ff
/LLM/main/L0_MergeRequest_PR pipeline #19033 completed with status: 'FAILURE'

@heyuhhh
Copy link
Collaborator Author

heyuhhh commented Nov 21, 2025

/bot run --disable-fail-fast

@tensorrt-cicd
Copy link
Collaborator

PR_Github #25277 [ run ] triggered by Bot. Commit: c1e0355

@tensorrt-cicd
Copy link
Collaborator

PR_Github #25277 [ run ] completed with state SUCCESS. Commit: c1e0355
/LLM/main/L0_MergeRequest_PR pipeline #19122 completed with status: 'FAILURE'

@heyuhhh
Copy link
Collaborator Author

heyuhhh commented Nov 21, 2025

/bot run --disable-fail-fast

@tensorrt-cicd
Copy link
Collaborator

PR_Github #25323 [ run ] triggered by Bot. Commit: 6520577

@tensorrt-cicd
Copy link
Collaborator

PR_Github #25323 [ run ] completed with state SUCCESS. Commit: 6520577
/LLM/main/L0_MergeRequest_PR pipeline #19156 completed with status: 'FAILURE'

@heyuhhh
Copy link
Collaborator Author

heyuhhh commented Nov 21, 2025

/bot run

@tensorrt-cicd
Copy link
Collaborator

PR_Github #25365 [ run ] triggered by Bot. Commit: 6520577

@tensorrt-cicd
Copy link
Collaborator

PR_Github #25365 [ run ] completed with state SUCCESS. Commit: 6520577
/LLM/main/L0_MergeRequest_PR pipeline #19186 completed with status: 'FAILURE'

@heyuhhh heyuhhh force-pushed the user/yuhangh/optimize_rocketkv_further branch from 519b120 to 7f77a2a Compare November 24, 2025 12:04
@heyuhhh
Copy link
Collaborator Author

heyuhhh commented Nov 24, 2025

/bot run --disable-fail-fast

@tensorrt-cicd
Copy link
Collaborator

PR_Github #25559 [ run ] triggered by Bot. Commit: 7f77a2a

@tensorrt-cicd
Copy link
Collaborator

PR_Github #25559 [ run ] completed with state SUCCESS. Commit: 7f77a2a
/LLM/main/L0_MergeRequest_PR pipeline #19357 completed with status: 'FAILURE'

@heyuhhh
Copy link
Collaborator Author

heyuhhh commented Nov 25, 2025

/bot run

@tensorrt-cicd
Copy link
Collaborator

PR_Github #25637 [ run ] triggered by Bot. Commit: 7f77a2a

@tensorrt-cicd
Copy link
Collaborator

PR_Github #25637 [ run ] completed with state FAILURE. Commit: 7f77a2a
LLM/main/L0_MergeRequest_PR #19425 (Blue Ocean) completed with status: ABORTED

@lfr-0531
Copy link
Collaborator

/bot run

@tensorrt-cicd
Copy link
Collaborator

PR_Github #26088 [ run ] triggered by Bot. Commit: 4f9ff81

@tensorrt-cicd
Copy link
Collaborator

PR_Github #26088 [ run ] completed with state SUCCESS. Commit: 4f9ff81
/LLM/main/L0_MergeRequest_PR pipeline #19808 completed with status: 'FAILURE'

@heyuhhh
Copy link
Collaborator Author

heyuhhh commented Nov 28, 2025

/bot run

@tensorrt-cicd
Copy link
Collaborator

PR_Github #26145 [ run ] triggered by Bot. Commit: 4f9ff81

@lfr-0531 lfr-0531 enabled auto-merge (squash) November 28, 2025 09:16
@tensorrt-cicd
Copy link
Collaborator

PR_Github #26145 [ run ] completed with state SUCCESS. Commit: 4f9ff81
/LLM/main/L0_MergeRequest_PR pipeline #19857 completed with status: 'FAILURE'

@lfr-0531
Copy link
Collaborator

/bot run

@tensorrt-cicd
Copy link
Collaborator

PR_Github #26186 [ run ] triggered by Bot. Commit: 4f9ff81

@tensorrt-cicd
Copy link
Collaborator

PR_Github #26186 [ run ] completed with state SUCCESS. Commit: 4f9ff81
/LLM/main/L0_MergeRequest_PR pipeline #19891 completed with status: 'FAILURE'

@heyuhhh
Copy link
Collaborator Author

heyuhhh commented Nov 28, 2025

/bot run

@tensorrt-cicd
Copy link
Collaborator

PR_Github #26215 [ run ] triggered by Bot. Commit: 4d9d6c8

@tensorrt-cicd
Copy link
Collaborator

PR_Github #26215 [ run ] completed with state SUCCESS. Commit: 4d9d6c8
/LLM/main/L0_MergeRequest_PR pipeline #19917 completed with status: 'FAILURE'

@heyuhhh
Copy link
Collaborator Author

heyuhhh commented Nov 29, 2025

/bot run

@tensorrt-cicd
Copy link
Collaborator

PR_Github #26234 [ run ] triggered by Bot. Commit: 65187c0

@tensorrt-cicd
Copy link
Collaborator

PR_Github #26234 [ run ] completed with state SUCCESS. Commit: 65187c0
/LLM/main/L0_MergeRequest_PR pipeline #19933 completed with status: 'FAILURE'

@heyuhhh
Copy link
Collaborator Author

heyuhhh commented Nov 29, 2025

/bot run

@tensorrt-cicd
Copy link
Collaborator

PR_Github #26245 [ run ] triggered by Bot. Commit: 65187c0

@tensorrt-cicd
Copy link
Collaborator

PR_Github #26245 [ run ] completed with state SUCCESS. Commit: 65187c0
/LLM/main/L0_MergeRequest_PR pipeline #19942 completed with status: 'FAILURE'

@heyuhhh
Copy link
Collaborator Author

heyuhhh commented Nov 29, 2025

/bot run

@tensorrt-cicd
Copy link
Collaborator

PR_Github #26263 [ run ] triggered by Bot. Commit: 65187c0

@tensorrt-cicd
Copy link
Collaborator

PR_Github #26263 [ run ] completed with state FAILURE. Commit: 65187c0
/LLM/main/L0_MergeRequest_PR pipeline #19958 completed with status: 'FAILURE'

@lfr-0531
Copy link
Collaborator

/bot run

@tensorrt-cicd
Copy link
Collaborator

PR_Github #26320 [ run ] triggered by Bot. Commit: 65187c0

@tensorrt-cicd
Copy link
Collaborator

PR_Github #26320 [ run ] completed with state SUCCESS. Commit: 65187c0
/LLM/main/L0_MergeRequest_PR pipeline #19986 completed with status: 'SUCCESS'

@lfr-0531 lfr-0531 merged commit 6e470aa into NVIDIA:main Dec 1, 2025
5 checks passed
Superjomn pushed a commit to hchings/TensorRT-LLM that referenced this pull request Dec 1, 2025
Signed-off-by: yuhangh <58161490+heyuhhh@users.noreply.github.com>
MinaHuai pushed a commit to davidmlw/TensorRT-LLM that referenced this pull request Dec 10, 2025
…VIDIA#8779)

The performance results of some kernels could be easily affected by the warm/cold L2 cache status. To achieve more precise profiling results, the L2 cache is cleared for every execution by the circular buffer method for better benchmarking during autotuning.

Signed-off-by: Yukun He <23156053+hyukn@users.noreply.github.com>

[None][infra] Waive failed cases for main branch on 11/25 (NVIDIA#9429)

Signed-off-by: qqiao <qqiao@nvidia.com>

[NVIDIA#8391][chore] test_perf.py to lock clocks read from gpu_configs.yml instead of max freq (NVIDIA#9409)

Signed-off-by: Eran Geva <19514940+MrGeva@users.noreply.github.com>

[None][ci] Move more test stages to use OCI machines (NVIDIA#9395)

Signed-off-by: Yanchao Lu <yanchaol@nvidia.com>
Co-authored-by: Matt Lefebvre <matthewelefebvre@gmail.com>

[None][feat] Improve TRTLLM MoE in small hidden size throughput cases (NVIDIA#9377)

Signed-off-by: Anthony Chang <27950904+rosenrodt@users.noreply.github.com>

[https://nvbugs/5537996][fix] Let KV cache manager block initialization be aware whether it is doing a dry run or not (NVIDIA#9093)

Before this commit, the kv cache manager does the same regardless, which causes a mis-calculation in free memory available to allocate for the KV cache manager, hence causing a crash.

This commit fixes this by letting KV cache manager initialization be aware whether it is doing the dry run or not. If it is a dry run, use the max_tokens setting that is already pre-calculated and filled into kv_cache_config.max_tokens.

Signed-off-by: eopXD <yuehtingc@nvidia.com>

[https://nvbugs/5667922][fix] Update long context evaluation config (NVIDIA#9426)

Signed-off-by: mni <125171826+baize97@users.noreply.github.com>

[None][fix] Mitigate test timeout issues (NVIDIA#9445)

Signed-off-by: Shixiaowei02 <39303645+Shixiaowei02@users.noreply.github.com>

[None][chore] Fix trtllm-eval for PyTorchLLM (NVIDIA#9427)

Signed-off-by: Fanrong Li <23290157+lfr-0531@users.noreply.github.com>

[None][feat] Add a parser to layer-wise benchmarks (NVIDIA#9440)

Signed-off-by: Tailing Yuan <yuantailing@gmail.com>

[None][feat] Support custom chat template for tool calling (NVIDIA#9297)

Signed-off-by: Pengyun Lin <81065165+LinPoly@users.noreply.github.com>

[TRTLLM-8160][feat] Add draft token tree runtime on CDL (NVIDIA#8586)

Signed-off-by: Yue Weng <25103990+yweng0828@users.noreply.github.com>

[None][ci] waive a test (NVIDIA#9458)

Signed-off-by: Yan Chunwei <328693+Superjomn@users.noreply.github.com>

[https://nvbugs/5680905][fix] Relax the MMLU accuracy requirement for DS-v3.2 (NVIDIA#9439)

Signed-off-by: Fanrong Li <23290157+lfr-0531@users.noreply.github.com>

[TRTLLM-8376][feat] top-p optimization (removes redundant softmax) (NVIDIA#9411)

Signed-off-by: ixlmar <206748156+ixlmar@users.noreply.github.com>

[TRTLLM-9490][feat] use FlashInfer's top_k_sampling_from_probs (NVIDIA#9457)

Signed-off-by: ixlmar <206748156+ixlmar@users.noreply.github.com>

[https://nvbugs/5647400] [fix] Enlarged the AllReduce workspace size to 64MB. Added AllReduce strategy to AD config. (NVIDIA#9145)

Signed-off-by: Eran Geva <19514940+MrGeva@users.noreply.github.com>

[TRTLLM-909][feat] Overlap context chunks in pipeline parallel mode (NVIDIA#9308)

Signed-off-by: Robin Kobus <19427718+Funatiq@users.noreply.github.com>

[None][chore] AutoDeploy add multi stream moe pass to default.yaml (NVIDIA#9430)

Signed-off-by: Suyog Gupta <41447211+suyoggupta@users.noreply.github.com>

[https://nvbugs/5685143][fix] avoid cudaFree overlap with cuda graph (NVIDIA#9438)

Signed-off-by: Chuang Zhu <111838961+chuangz0@users.noreply.github.com>

[None][chore] Bump version to 1.2.0rc5 (NVIDIA#9455)

Signed-off-by: Yiqing Yan <yiqingy@nvidia.com>

[TRTLLM-8936][test] Add disagg and wideep multi-node multi-gpu test cases (NVIDIA#9356)

Signed-off-by: FredricZ-2007 <226039983+fredricz-20070104@users.noreply.github.com>

[None][ci] move some slow test cases of DGX-B200 to post merge (NVIDIA#9467)

Signed-off-by: junq <22017000+QiJune@users.noreply.github.com>

[TRTLLM-9293][feat] Enable partial weight loading to support streaming update weights (NVIDIA#9224)

Signed-off-by: shuyix <219646547+shuyixiong@users.noreply.github.com>

[None][infra] Check in most recent lock file from nightly pipeline

Signed-off-by: TensorRT LLM <90828364+tensorrt-cicd@users.noreply.github.com>

[TRTLLM-9264][fix] Add accuracy/unit tests/doc for phi4mm (NVIDIA#9246)

Signed-off-by: Wanli Jiang <35160485+Wanli-Jiang@users.noreply.github.com>

[https://nvbugs/5580099][fix] Cherry pick IMA issue fix from release/1.1 (NVIDIA#9032)

Signed-off-by: Junyi Xu <219237550+JunyiXu-nv@users.noreply.github.com>

[None][chore] Upgrade CuteDSL to 4.3.0 (NVIDIA#9444)

Signed-off-by: Enwei Zhu <21126786+syuoni@users.noreply.github.com>

[None][feat] Support MLA chunked prefill for DeepSeek V3.2 model (NVIDIA#9376)

Signed-off-by: Chang Liu (Enterprise Products) <9713593+chang-l@users.noreply.github.com>

[None][feat] Add environment variable to force spec-dec number of accepted tokens (NVIDIA#9371)

Signed-off-by: Aurelien Chartier <2567591+achartier@users.noreply.github.com>

[None][infra] Update allowed list 2025.11.25 (NVIDIA#9468)

Signed-off-by: Yuanjing Xue <197832395+yuanjingx87@users.noreply.github.com>

[None][infra] Fail the pipeline when slurm ssh dropped (NVIDIA#9157)

Signed-off-by: Yuanjing Xue <197832395+yuanjingx87@users.noreply.github.com>

[None][feat] AutoDeploy: Remove redundant copies in mamba layers (NVIDIA#9461)

Signed-off-by: Chenghao Zhang <211069071+nvchenghaoz@users.noreply.github.com>
Co-authored-by: Suyog Gupta <41447211+suyoggupta@users.noreply.github.com>

[None][feat] AutoDeploy: Add A_log fusion for Mamba layers (NVIDIA#9422)

Signed-off-by: Chenghao Zhang <211069071+nvchenghaoz@users.noreply.github.com>

[None][ci] Waive blackwell test on spec gate. (NVIDIA#9502)

Signed-off-by: Zheyu Fu <zheyuf@NVIDIA.com>

[https://nvbugs/5608930][fix] Fix a typo (NVIDIA#9487)

Signed-off-by: Shixiaowei02 <39303645+Shixiaowei02@users.noreply.github.com>

[NVIDIA#9463][feat] Add revision option to trtllm commands (NVIDIA#9498)

Signed-off-by: Aurelien Chartier <2567591+achartier@users.noreply.github.com>

[TRTLLM-9085][doc] fix math formula rendering issues (NVIDIA#9481)

Signed-off-by: junq <22017000+QiJune@users.noreply.github.com>

[None][chore] update comments in llm_args.py (NVIDIA#9472)

Signed-off-by: junq <22017000+QiJune@users.noreply.github.com>

[None][infra] Check in most recent lock file from nightly pipeline

Signed-off-by: TensorRT LLM <90828364+tensorrt-cicd@users.noreply.github.com>

[https://nvbugs/5680310][fix] Fix ctx only timed out test (NVIDIA#9410)

Signed-off-by: Patrice Castonguay <55748270+pcastonguay@users.noreply.github.com>

[https://nvbugs/5547414][fix] enable case after using local cache model (NVIDIA#9473)

Signed-off-by: Hui Gao <huig@nvidia.com>

[None][fix] Replace PYTORCH_CUDA_ALLOC_CONF with PYTORCH_ALLOC_CONF to fix deprecation warning (NVIDIA#9294)

Signed-off-by: Jiagan Cheng <jiaganc@nvidia.com>

[https://nvbugs/5698581][fix] Init draft tokens for CUDA graph dummy request (NVIDIA#9505)

Signed-off-by: ziyixiong-nv <219238287+ziyixiong-nv@users.noreply.github.com>

[None][infra] Waive failed case in pre-merge on 11/27 (NVIDIA#9507)

Signed-off-by: qqiao <qqiao@nvidia.com>

[TRTLLM-9513][docs] Qwen3 deployment guide (NVIDIA#9488)

Signed-off-by: Lanyu Liao <laliao@laliao-mlt.client.nvidia.com>
Co-authored-by: Lanyu Liao <laliao@laliao-mlt.client.nvidia.com>

[None][chore] revert batch_size=1 to prevent timeout and lower accuracy reference by 0.12% as a WAR (NVIDIA#9447)

Signed-off-by: Lizhi Zhou <1432185+reasonsolo@users.noreply.github.com>
Co-authored-by: Shi Xiaowei <39303645+Shixiaowei02@users.noreply.github.com>

[TRTLLM-9279][infra] Use flexcache for gh200 nodes since they locate in Austin (NVIDIA#9405)

Signed-off-by: qqiao <qqiao@nvidia.com>
Signed-off-by: Emma Qiao <qqiao@nvidia.com>
Co-authored-by: Yanchao Lu <yanchaol@nvidia.com>

[cherry-pick][https://nvbugs/5670793][fix] Solve trtllm-serve launch_disaggregated issue (NVIDIA#9346)

Signed-off-by: xxi <xxi@nvidia.com>

[None][infra] Fix Slurm job script (NVIDIA#9508)

Signed-off-by: Yuanjing Xue <197832395+yuanjingx87@users.noreply.github.com>

[None][fix] change allreduce workspace dtype to torch.int64 to avoid overflow (NVIDIA#9479)

Signed-off-by: Zhenhuan Chen <zhenhuanc@nvidia.com>

[None][feat] add qwen3-next CI test of accuracy on BF16 and NVFP4 (NVIDIA#9330)

Signed-off-by: jiant <107457950+JadoTu@users.noreply.github.com>

[None][fix] fix TP support for DeepSeek-V3.2 on hopper (NVIDIA#9484)

Signed-off-by: Fanrong Li <23290157+lfr-0531@users.noreply.github.com>

[TRTLLM-9389][chore] Refactor AlltoallMethodType. (NVIDIA#9388)

Signed-off-by: Bo Li <22713281+bobboli@users.noreply.github.com>

[https://nvbugs/5674665][chore] Add test coverage for https://nvbugspro.nvidia.com/bug/5674665 (NVIDIA#9518)

Signed-off-by: eopXD <yuehtingc@nvidia.com>

[TRTLLM-7288][infra] Download merged waive list in slurm script (NVIDIA#8999)

Signed-off-by: Yiqing Yan <yiqingy@nvidia.com>
Signed-off-by: Yanchao Lu <yanchaol@nvidia.com>
Co-authored-by: Yanchao Lu <yanchaol@nvidia.com>

[https://nvbugs/5687820][fix] Remove self.abort() in DetokenizedGenerationResult (NVIDIA#9449)

Signed-off-by: Enwei Zhu <21126786+syuoni@users.noreply.github.com>

[NVIDIA#9150][feat] AutoDeploy Nemotron-Flash support (NVIDIA#9504)

Signed-off-by: Lucas Liebenwein <11156568+lucaslie@users.noreply.github.com>

[None] [chore] Update to cutlass 4.3 (NVIDIA#8637)

Signed-off-by: Kaiyu Xie <26294424+kaiyux@users.noreply.github.com>

[https://nvbugs/5637037][chore] Update waive lists. (NVIDIA#9386)

Signed-off-by: Bo Li <22713281+bobboli@users.noreply.github.com>
Signed-off-by: Enwei Zhu <21126786+syuoni@users.noreply.github.com>
Co-authored-by: Enwei Zhu <21126786+syuoni@users.noreply.github.com>

[None][infra] Check in most recent lock file from nightly pipeline

Signed-off-by: TensorRT LLM <90828364+tensorrt-cicd@users.noreply.github.com>

[TRTLLM-8970][infra] Fix generate report when has isolation test result (NVIDIA#8861)

Signed-off-by: qqiao <qqiao@nvidia.com>
Signed-off-by: Emma Qiao <qqiao@nvidia.com>

[https://nvbugs/5685015][fix] Update invalid max_token test (NVIDIA#9435)

Signed-off-by: Junyi Xu <219237550+JunyiXu-nv@users.noreply.github.com>

[None][fix] Fix on-disk cache and revise logger/statistics for AutoTuner. (NVIDIA#9211)

Signed-off-by: Yukun He <23156053+hyukn@users.noreply.github.com>

[https://nvbugs/5689658][test] Fix gpu lock issue running on cluster (NVIDIA#9441)

Signed-off-by: yufeiwu <230315618+yufeiwu-nv@users.noreply.github.com>

[None][chore] add spec_decoding configs in perf benchmark scripts and fix typos (NVIDIA#9533)

Signed-off-by: Lanyu Liao <lancelly@users.noreply.github.com>
Co-authored-by: Lanyu Liao <lancelly@users.noreply.github.com>

[None][fix] Remove FP8 K/V buffer from TRTLLM sparse MLA attention kernel (NVIDIA#9529)

Signed-off-by: Chang Liu (Enterprise Products) <9713593+chang-l@users.noreply.github.com>

[None] [chore] Enhancements and clean up to slurm scripts (NVIDIA#9493)

Signed-off-by: Kaiyu Xie <26294424+kaiyux@users.noreply.github.com>

[None][chore] Revert "[None][fix] change allreduce workspace dtype to torch.int64 t… (NVIDIA#9538)

Signed-off-by: Zhenhuan Chen <zhenhuanc@nvidia.com>

[None][infra] Waive failed cases for main branch on 11/28 (NVIDIA#9539)

Signed-off-by: qqiao <qqiao@nvidia.com>

[None][fix] Pass checkpoint_format to create_input_processor (NVIDIA#9521)

Signed-off-by: Robin Kobus <19427718+Funatiq@users.noreply.github.com>

[TRTLLM-9541][infra] Use artifactory mirror for download.pytorch.org (NVIDIA#9477)

Signed-off-by: ZhanruiSunCh <184402041+ZhanruiSunCh@users.noreply.github.com>
Signed-off-by: Zhanrui Sun <184402041+ZhanruiSunCh@users.noreply.github.com>
Co-authored-by: Yanchao Lu <yanchaol@nvidia.com>

[TRTLLM-9488][feat] add 'disable_flashinfer_sampling' config option (NVIDIA#9454)

Signed-off-by: ixlmar <206748156+ixlmar@users.noreply.github.com>

[None][infra] Waive failed case in pre-merge on 11/28 (NVIDIA#9537)

Signed-off-by: Wangshanshan <30051912+dominicshanshan@users.noreply.github.com>

[None][perf] Helix: improve all-to-all perf for large CP size (NVIDIA#9494)

Signed-off-by: Matthias Jouanneaux <mjoux@nvidia.com>
Signed-off-by: Zheyu Fu <zheyuf@NVIDIA.com>
Co-authored-by: Zheyu Fu <zheyuf@nvidia.com>

[None][feat] support for more accurate AR calculation (NVIDIA#9323)

Signed-off-by: binghanc <176802681+binghanc@users.noreply.github.com>

[TRTLLM-9488][fix] llmapi references (NVIDIA#9547)

Signed-off-by: ixlmar <206748156+ixlmar@users.noreply.github.com>

[NVIDIA#8948][feat] Support custom sharding config (NVIDIA#9143)

Signed-off-by: greg-kwasniewski1 <213329731+greg-kwasniewski1@users.noreply.github.com>

[None][infra] Check in most recent lock file from nightly pipeline

Signed-off-by: TensorRT LLM <90828364+tensorrt-cicd@users.noreply.github.com>

[None][chore] Weekly mass integration of release/1.1 -- rebase (NVIDIA#9522)

Signed-off-by: yunruis <205571022+yunruis@users.noreply.github.com>
Signed-off-by: Mike Iovine <6158008+mikeiovine@users.noreply.github.com>
Signed-off-by: Mike Iovine <miovine@nvidia.com>
Signed-off-by: Wangshanshan <30051912+dominicshanshan@users.noreply.github.com>
Signed-off-by: qgai <qgai@nvidia.com>
Signed-off-by: Balaram Buddharaju <169953907+brb-nv@users.noreply.github.com>
Signed-off-by: Yan Chunwei <328693+Superjomn@users.noreply.github.com>
Signed-off-by: Junyi Xu <219237550+JunyiXu-nv@users.noreply.github.com>
Signed-off-by: Simeng Liu <simengl@nvidia.com>
Signed-off-by: nv-guomingz <137257613+nv-guomingz@users.noreply.github.com>
Signed-off-by: Jin Li <59594262+liji-nv@users.noreply.github.com>
Signed-off-by: Ivy Zhang <25222398+crazydemo@users.noreply.github.com>
Signed-off-by: Vincent Zhang <vinczhang@nvidia.com>
Signed-off-by: peaceh <103117813+peaceh-nv@users.noreply.github.com>
Signed-off-by: Michal Guzek <mguzek@nvidia.com>
Signed-off-by: Michal Guzek <moraxu@users.noreply.github.com>
Signed-off-by: Chang Liu (Enterprise Products) <9713593+chang-l@users.noreply.github.com>
Signed-off-by: leslie-fang25 <leslief@nvidia.com>
Signed-off-by: Shunkang <182541032+Shunkangz@users.noreply.github.co>
Signed-off-by: junq <22017000+QiJune@users.noreply.github.com>
Co-authored-by: yunruis <205571022+yunruis@users.noreply.github.com>
Co-authored-by: sunnyqgg <159101675+sunnyqgg@users.noreply.github.com>
Co-authored-by: brb-nv <169953907+brb-nv@users.noreply.github.com>
Co-authored-by: Yan Chunwei <328693+Superjomn@users.noreply.github.com>
Co-authored-by: JunyiXu-nv <219237550+JunyiXu-nv@users.noreply.github.com>
Co-authored-by: Simeng Liu <109828133+SimengLiu-nv@users.noreply.github.com>
Co-authored-by: Guoming Zhang <137257613+nv-guomingz@users.noreply.github.com>
Co-authored-by: Jin Li <59594262+liji-nv@users.noreply.github.com>
Co-authored-by: Ivy Zhang <25222398+crazydemo@users.noreply.github.com>
Co-authored-by: Vincent Zhang <vcheungyi@163.com>
Co-authored-by: peaceh-nv <103117813+peaceh-nv@users.noreply.github.com>
Co-authored-by: Michal Guzek <moraxu@users.noreply.github.com>
Co-authored-by: Chang Liu <9713593+chang-l@users.noreply.github.com>
Co-authored-by: Leslie Fang <leslief@nvidia.com>
Co-authored-by: Shunkangz <182541032+Shunkangz@users.noreply.github.com>
Co-authored-by: Shunkang <182541032+Shunkangz@users.noreply.github.co>
Co-authored-by: QI JUN <22017000+QiJune@users.noreply.github.com>

[TRTLLM-5971][feat] Integrate helix parallelism (NVIDIA#9342)

Signed-off-by: Balaram Buddharaju <169953907+brb-nv@users.noreply.github.com>

[None][infra] Check in most recent lock file from nightly pipeline

Signed-off-by: TensorRT LLM <90828364+tensorrt-cicd@users.noreply.github.com>

[None][infra] - Request idle time exemption for OCI jobs (NVIDIA#9528)

Signed-off-by: Yanchao Lu <yanchaol@nvidia.com>

[None][infra] Wiave failed tests for main branch on 11/30 (NVIDIA#9555)

Signed-off-by: qqiao <qqiao@nvidia.com>

[None][fix] Fix port conflict in disagg tests (NVIDIA#9474)

Signed-off-by: Junyi Xu <219237550+JunyiXu-nv@users.noreply.github.com>

[None][ci] Split H100_PCIe-PyTorch-Post-Merge test stage (NVIDIA#9558)

Signed-off-by: Yanchao Lu <yanchaol@nvidia.com>

[None][ci] Split H100_PCIe-PyTorch-Post-Merge test stage (NVIDIA#9559)

Signed-off-by: Yanchao Lu <yanchaol@nvidia.com>

[TRTLLM-8958][feat] and [TRTLLM-8960]: create ConfigurableMoE and support TRTLLMGenFusedMoE as backend (NVIDIA#9486)

[None] [feat] Optimize the algorithm part of RocketKV (NVIDIA#9333)

Signed-off-by: yuhangh <58161490+heyuhhh@users.noreply.github.com>

[https://nvbugs/5690172][fix] Fix Qwen3-235B ATP accuracy issue with PDL (NVIDIA#9530)

Signed-off-by: Enwei Zhu <21126786+syuoni@users.noreply.github.com>

[TRTLLM-6222][feat] Extend cute_dsl_nvfp4_gemm to sm103. (NVIDIA#9543)

Signed-off-by: Mindy Li <11663212+limin2021@users.noreply.github.com>

[None][fix] Correct virtual memory allocation alignment (NVIDIA#9491)

Signed-off-by: Yuan Tong <13075180+tongyuantongyu@users.noreply.github.com>

[None][infra] Check in most recent lock file from nightly pipeline

Signed-off-by: TensorRT LLM <90828364+tensorrt-cicd@users.noreply.github.com>

[https://nvbugs/5684703][fix] Unwaive disagg guided decoding test (NVIDIA#9466)

Signed-off-by: Enwei Zhu <21126786+syuoni@users.noreply.github.com>

[https://nvbugs/5503479][fix] Temporarily lower reference accuracy to stabilize CI (NVIDIA#9398)

Signed-off-by: Pengbo Wang <221450789+pengbowang-nv@users.noreply.github.com>

[None][chore] remove qwen3-next accuracy tests (NVIDIA#9534)

Signed-off-by: jiant <107457950+JadoTu@users.noreply.github.com>

[None][doc] fix mtp.py typo (NVIDIA#9307)

Signed-off-by: liugaoji <757394026@qq.com>

[None][feat] add chat template kwargs support to longbench-v2 (NVIDIA#9544)

Signed-off-by: Fanrong Li <23290157+lfr-0531@users.noreply.github.com>

[NVIDIA#9496][fix] AutoDeploy: remove auto-tuner from nvfp4_gemm forward (NVIDIA#9497)

Signed-off-by: Neta Zmora <96238833+nzmora-nvidia@users.noreply.github.com>

[None][fix] Replace hash method with unique_id for cutedsl MoE runners. (NVIDIA#9569)

Signed-off-by: Yukun He <23156053+hyukn@users.noreply.github.com>

[None][chore] refactor disaggregated scripts to use named arguments (NVIDIA#9581)

Signed-off-by: Zhenhuan Chen <zhenhuanc@nvidia.com>

[TRTLLM-6222][feat] Several perf opt for cuteDSL nvf4 gemm (NVIDIA#9428)

Signed-off-by: Yuhan Li <51736452+liyuhannnnn@users.noreply.github.com>

[None][chore] reduce the layers of the `devel` docker image (NVIDIA#9077)

Signed-off-by: Martin Marciniszyn Mehringer <11665257+MartinMarciniszyn@users.noreply.github.com>

[https://nvbugs/5651854][infra] Enable perf metrics during accuracy testing (NVIDIA#9140)

[None][fix] Skip Allreduce init for Attention DP (NVIDIA#9542)

Signed-off-by: Enwei Zhu <21126786+syuoni@users.noreply.github.com>

[None][test] [None][test] Waive main branch test failures 12/1 (NVIDIA#9566)

Signed-off-by: Yanchao Lu <yanchaol@nvidia.com>

[None][ci] Minor change for Slurm scripts (NVIDIA#9561)

Signed-off-by: Yanchao Lu <yanchaol@nvidia.com>

[TRTLLM-6768][infra] Fix params for not updating github status (NVIDIA#6747)

Signed-off-by: Yiqing Yan <yiqingy@nvidia.com>

[None][infra] Update the pytest options after MI (NVIDIA#9579)

Signed-off-by: qqiao <qqiao@nvidia.com>

[TRTLLM-6756][feat] Add Beam Search to TorchSampler (NVIDIA#8509)

Signed-off-by: Stefan Niebler <82932102+stnie@users.noreply.github.com>

[None][chore] Defer exposing context parallel configs (NVIDIA#9552)

Signed-off-by: Balaram Buddharaju <169953907+brb-nv@users.noreply.github.com>

[TRTC-1943][feat] Env vars override support in LLM API (NVIDIA#9104)

Signed-off-by: Venky Ganesh <23023424+venkywonka@users.noreply.github.com>

[None][feat] AutoDeploy: Use the router gemm op for nemotron MOE (NVIDIA#9500)

Signed-off-by: Chenghao Zhang <211069071+nvchenghaoz@users.noreply.github.com>

[NVIDIA#9198][feat] Refactor dist ops in AutoDeploy (NVIDIA#9301)

Signed-off-by: Eran Geva <19514940+MrGeva@users.noreply.github.com>

[None][fix] Prevent YAML partial kv_cache_config from incorrectly overriding the complete kv_cache_config (NVIDIA#9262)

Signed-off-by: Yuening Li <62227368+Yuening-wa@users.noreply.github.com>

[TRTLLM-9085][doc] fix math formula rendering issues in github (NVIDIA#9605)

Signed-off-by: junq <22017000+QiJune@users.noreply.github.com>

[None][feat] Unify nvfp4 gemm backend (NVIDIA#8963)

Signed-off-by: Shijie Wang <jaywan@nvidia.com>
Signed-off-by: Yukun He <23156053+hyukn@users.noreply.github.com>
Signed-off-by: Shijie <jaywan@nvidia.com>
Co-authored-by: Yukun He <23156053+hyukn@users.noreply.github.com>

[None][feat] Add support for KVCache reuse for DSv32 (NVIDIA#9383)

Signed-off-by: Iman Tabrizian <10105175+tabrizian@users.noreply.github.com>

[None][infra] Check in most recent lock file from nightly pipeline

Signed-off-by: TensorRT LLM <90828364+tensorrt-cicd@users.noreply.github.com>

[None][chroe] Polish qwen3-next modeling code. (NVIDIA#8902)

Signed-off-by: nv-guomingz <137257613+nv-guomingz@users.noreply.github.com>

[https://nvbugs/5703953][fix] Use random port for disagg tests (NVIDIA#9582)

Signed-off-by: Junyi Xu <219237550+JunyiXu-nv@users.noreply.github.com>

[None][fix] Waive gb200 (NVIDIA#9580)

Signed-off-by: Xin He (SW-GPU) <200704525+xinhe-nv@users.noreply.github.com>

[FMDL-1328][feat] Add support for nano-v3 and super-v3 with pytorch backend (NVIDIA#9261)

Signed-off-by: Wanli Jiang <35160485+Wanli-Jiang@users.noreply.github.com>

[https://nvbugs/5582091][test] increase warmup times in testing for multi-gpu cases (NVIDIA#9578)

Signed-off-by: Ruodi Lu <ruodil@users.noreply.github.com>
Co-authored-by: Ruodi Lu <ruodil@users.noreply.github.com>

[None][chore] Add failed cases into waives.txt (NVIDIA#9588)

Signed-off-by: xinhe-nv <200704525+xinhe-nv@users.noreply.github.com>

[https://nvbugs/5702793][fix] Fix uncontiguous tensor view (NVIDIA#9576)

Signed-off-by: shuyix <219646547+shuyixiong@users.noreply.github.com>

[None][infra] Waive failed cases for main branch (NVIDIA#9615)

Signed-off-by: qqiao <qqiao@nvidia.com>

[TRTLLM-9488][feat] use FlashInfer.sampling by default (NVIDIA#9545)

Signed-off-by: ixlmar <206748156+ixlmar@users.noreply.github.com>

[None][infra] Update allowlist 2025/12/01 (NVIDIA#9616)

Signed-off-by: Yuanjing Xue <197832395+yuanjingx87@users.noreply.github.com>

[None][infra] Remove an invalid test name in waives.txt (NVIDIA#9620)

Signed-off-by: qqiao <qqiao@nvidia.com>

Lock the gpu clocks in L0 perf tests (NVIDIA#9585)

Signed-off-by: Eran Geva <19514940+MrGeva@users.noreply.github.com>

[TRTLLM-9466][test] Evaluate helix parallelism with DSV3 Lite (NVIDIA#9597)

Signed-off-by: Balaram Buddharaju <169953907+brb-nv@users.noreply.github.com>

[None][fix] Extract GPU count from single-node stage names (NVIDIA#9599)

Signed-off-by: Chang Liu (Enterprise Products) <9713593+chang-l@users.noreply.github.com>

[https://nvbugs/5667774][fix] Refine Piecewise Cuda Graph Condition for DP (NVIDIA#9393)

Signed-off-by: Jin Li <59594262+liji-nv@users.noreply.github.com>

[TRTLLM-9144][fix] enhance RPC robustness (NVIDIA#8711)

Signed-off-by: Superjomn <328693+Superjomn@users.noreply.github.com>
Signed-off-by: Erin Ho <14718778+hchings@users.noreply.github.com>
Signed-off-by: Yan Chunwei <328693+Superjomn@users.noreply.github.com>
Co-authored-by: Erin Ho <14718778+hchings@users.noreply.github.com>

[https://nvbugs/5627710][fix] Fix synchronization bugs in KvCacheTransferManager that can cause corrupted blocks (NVIDIA#9056)

Signed-off-by: thorjohnsen <41591019+thorjohnsen@users.noreply.github.com>
Signed-off-by: Thor Johnsen <41591019+thorjohnsen@users.noreply.github.com>
Co-authored-by: Iman Tabrizian <10105175+tabrizian@users.noreply.github.com>
Co-authored-by: Robin Kobus <19427718+Funatiq@users.noreply.github.com>

[TRTLLM-8980][test] Clean up spec dec tests in test_llm_api_pytorch (NVIDIA#8889)

Signed-off-by: Mike Iovine <6158008+mikeiovine@users.noreply.github.com>
Signed-off-by: Mike Iovine <miovine@nvidia.com>

[NVIDIA#9150][feat] Add code for nano v3 to custom implementation in AD (NVIDIA#9465)

* Why?

We would like to show an alternative to monkey-patching in AutoDeploy.

* What?

This commit builds on the existing custom model implementation for
NemotronH and adds the bits relevant for MoE layers.

Part of NVIDIA#9150.

Signed-off-by: William Zhang <133824995+2ez4bz@users.noreply.github.com>

[NVIDIA#9150][feat] AutoDeploy: reviewer comments for NVIDIA#9150 (NVIDIA#9527)

Signed-off-by: Lucas Liebenwein <11156568+lucaslie@users.noreply.github.com>

[https://nvbugs/5651854][fix] Fix dist-serving perf by clearing CPU affinity (NVIDIA#9549)

Signed-off-by: Shixiaowei02 <39303645+Shixiaowei02@users.noreply.github.com>

[NVIDIA#9550][feat] AutoDeploy: Add NVFP4 Cutlass MoE kernels  (NVIDIA#9551)

Signed-off-by: Neta Zmora <96238833+nzmora-nvidia@users.noreply.github.com>

[https://nvbugs/5688388][fix] fix: Reducing num request in disagg test to speed up (NVIDIA#9598)

Signed-off-by: Patrice Castonguay <55748270+pcastonguay@users.noreply.github.com>

[TRTLLM-8946][feat] Improved heuristics to detect shardable regions (NVIDIA#9200)

Signed-off-by: Lucas Liebenwein <11156568+lucaslie@users.noreply.github.com>
Signed-off-by: greg-kwasniewski1 <213329731+greg-kwasniewski1@users.noreply.github.com>
Co-authored-by: Lucas Liebenwein <11156568+lucaslie@users.noreply.github.com>

[NVIDIA#9632][feat] Support EXTRA_WHEEL_BUILD_ARGS during wheel build (NVIDIA#9633)

Signed-off-by: Yu Chi Li <yuchil@nvidia.com>

[None][chore] Waive test failing on pre-merge (NVIDIA#9638)

Signed-off-by: Balaram Buddharaju <169953907+brb-nv@users.noreply.github.com>

[None][chore] Remove traceback dump for multimodal input processor (NVIDIA#9634)

Signed-off-by: Chang Liu (Enterprise Products) <9713593+chang-l@users.noreply.github.com>

[None][chore] Fix trtllm-eval and move GroupedGemmInputsHelper (NVIDIA#9612)

Signed-off-by: Enwei Zhu <21126786+syuoni@users.noreply.github.com>

[https://nvbugs/5698434][fix] Use separate weight mapper for draft (NVIDIA#9607)

Signed-off-by: Anurag Mukkara <134339030+amukkara@users.noreply.github.com>

[TRTLLM-7101][infra] Reuse passed tests (NVIDIA#6894)

Signed-off-by: Yiqing Yan <yiqingy@nvidia.com>
Co-authored-by: Yanchao Lu <yanchaol@nvidia.com>

[None][test] Remove duplicate test cases (NVIDIA#9623)

Signed-off-by: yufeiwu <230315618+yufeiwu-nv@users.noreply.github.com>

[None][infra] Check in most recent lock file from nightly pipeline

Signed-off-by: TensorRT LLM <90828364+tensorrt-cicd@users.noreply.github.com>

[None][feat] Add RocketKV usage doc and e2e accuracy test on LongBenchV2 (NVIDIA#9572)

Signed-off-by: yuhangh <58161490+heyuhhh@users.noreply.github.com>

[TRTLLM-9242][doc] Add examples showcasing openai compatible APIs (NVIDIA#9520)

Signed-off-by: Junyi Xu <219237550+JunyiXu-nv@users.noreply.github.com>

[None][chore] AutoDeploy update cuda stream manager for multi-device (NVIDIA#9575)

Signed-off-by: Suyog Gupta <41447211+suyoggupta@users.noreply.github.com>

[TRTLLM-9391][chore] Automatically estimate required workspace. (NVIDIA#9535)

Signed-off-by: Bo Li <22713281+bobboli@users.noreply.github.com>

[https://nvbugs/5708475][fix] Fix e2e eval accuracy for helix parallelism (NVIDIA#9647)

Signed-off-by: Balaram Buddharaju <169953907+brb-nv@users.noreply.github.com>

[https://nvbugs/5561153][test] Fix log error for perf test (NVIDIA#9622)

Signed-off-by: FredricZ-2007 <226039983+fredricz-20070104@users.noreply.github.com>

[TRTLLM-8241][feat] Aliasing to comply to LlmArgs (NVIDIA#9586)

Signed-off-by: Pengyun Lin <81065165+LinPoly@users.noreply.github.com>

[None][chore] Add failed cases into waives.txt (NVIDIA#9593)

Signed-off-by: Jie Li <lijie@nvidia.com>
Co-authored-by: Jie Li <lijie@nvidia.com>

[TRTLLM-6842][feat] Support Response API for general purpose (NVIDIA#9392)

Signed-off-by: Junyi Xu <219237550+JunyiXu-nv@users.noreply.github.com>

[None][test] Update Qwen3-next accuracy testing by setting the cuda … (NVIDIA#9613)

Signed-off-by: nv-guomingz <137257613+nv-guomingz@users.noreply.github.com>

[None][feat] update trtllm-gen nvfp4 kernels with better performance (NVIDIA#9510)

Signed-off-by: Perkz Zheng <67892460+PerkzZheng@users.noreply.github.com>

[None][doc] Replace the tensorrt icon with torch icon on overview.md (NVIDIA#9644)

Signed-off-by: nv-guomingz <137257613+nv-guomingz@users.noreply.github.com>

[https://nvbugs/5705197][chore] Unwaive timeout disagg tests (NVIDIA#9637)

Signed-off-by: Patrice Castonguay <55748270+pcastonguay@users.noreply.github.com>

[https://nvbugs/5552132][fix] Enable LoRa for GPT OSS Torch (NVIDIA#8253)

Signed-off-by: Michal Guzek <mguzek@nvidia.com>

[None][fix] Fix wide ep MoE error (NVIDIA#9642)

Signed-off-by: Iman Tabrizian <10105175+tabrizian@users.noreply.github.com>

[https://nvbugs/5702795][fix] Remove the warning message for aten.log. (NVIDIA#9665)

Signed-off-by: nv-guomingz <137257613+nv-guomingz@users.noreply.github.com>

[https://nvbugs/5693853][fix] Fix error handling when querying machin… (NVIDIA#9483)

Signed-off-by: Gal Hubara Agam <96368689+galagam@users.noreply.github.com>

[OMNIML-2932] [feat] nvfp4 awq support (NVIDIA#8698)

Signed-off-by: weimingc <17592131+meenchen@users.noreply.github.com>

[NVIDIA#9643][fix] AutoDeploy: fix nano sharding config (NVIDIA#9668)

Signed-off-by: Lucas Liebenwein <11156568+lucaslie@users.noreply.github.com>

[NVIDIA#9147][feat] AutoDeploy: Draft Target Speculative Decoding (NVIDIA#9275)

Signed-off-by: Govind Ramnarayan <105831528+govind-ramnarayan@users.noreply.github.com>

[None][feat] Update Qwen3CodeToolParser to align tool-calling parameters (NVIDIA#9540)

Signed-off-by: Wanli Jiang <35160485+Wanli-Jiang@users.noreply.github.com>

[TRTLLM-7181][infra] Generate test results when pytest timeout happens (NVIDIA#9396)

Signed-off-by: Yiqing Yan <yiqingy@nvidia.com>

[None][infra] Check in most recent lock file from nightly pipeline

Signed-off-by: TensorRT LLM <90828364+tensorrt-cicd@users.noreply.github.com>

[TRTLLM-9522][fix] restore `trtllm-serve mm_embedding_serve` (NVIDIA#9669)

[TRTLLM-5093][infra] Write env variables to a file in the interactive debug session (NVIDIA#6792)

Signed-off-by: Yiqing Yan <yiqingy@nvidia.com>

[None][fix] fix error when processing batches containing both text and mm data (NVIDIA#8381)

Signed-off-by: Nekofish-L <liuxiangyang@mail.ustc.edu.cn>

[TRTLLM-7073][feat] Support torch compile for PP for Llama and DeepSeekV3 (NVIDIA#7838)

Signed-off-by: Jin Li <59594262+liji-nv@users.noreply.github.com>

[None][feat] Add weights initialization and context phase parser to layer-wise benchmarks (NVIDIA#9667)

Signed-off-by: Tailing Yuan <yuantailing@gmail.com>

[TRTLLM-8274][feat] Check if executor is shutdown in /health entrypoint (NVIDIA#9057)

Signed-off-by: Junyi Xu <219237550+JunyiXu-nv@users.noreply.github.com>

[NVIDIA#8733][feat] Add Llama4 MoE handling to AutoDeploy (NVIDIA#9556)

Signed-off-by: Tal Cherckez <127761168+tcherckez-nvidia@users.noreply.github.com>
Signed-off-by: tcherckez-nvidia <127761168+tcherckez-nvidia@users.noreply.github.com>
Co-authored-by: Neta Zmora <nzmora@nvidia.com>

[None][ci] unwaive tests (NVIDIA#9651)

Signed-off-by: Yan Chunwei <328693+Superjomn@users.noreply.github.com>

[None][feat] Add NIXL-LIBFABRIC support (NVIDIA#9225)

Signed-off-by: Yoray Zack <62789610+zackyoray@users.noreply.github.com>
Signed-off-by: zackyoray <yorayz@nvidia.com>

[None][test] rename wide ep and disagg metric name in perf test (NVIDIA#9704)

Signed-off-by: Ruodi Lu <ruodil@users.noreply.github.com>
Co-authored-by: Ruodi Lu <ruodil@users.noreply.github.com>

[https://nvbugs/5467531][fix] Unwaive fused_moe all to all test with … (NVIDIA#9617)

Signed-off-by: Jin Li <59594262+liji-nv@users.noreply.github.com>

[None][fix] Recover TRTLLM MoE Perf for DEP (NVIDIA#9562)

Signed-off-by: Anthony Chang <27950904+rosenrodt@users.noreply.github.com>

[None][chore] Add failed cases into waives.txt (NVIDIA#9662)

Signed-off-by: Xin He (SW-GPU) <200704525+xinhe-nv@users.noreply.github.com>
Signed-off-by: xinhe-nv <200704525+xinhe-nv@users.noreply.github.com>
Signed-off-by: Yanchao Lu <yanchaol@nvidia.com>
Co-authored-by: Yanchao Lu <yanchaol@nvidia.com>

[None][fix] Fix TLLM_SPEC_DECODE_FORCE_NUM_ACCEPTED_TOKENS for MTP/EAGLE (NVIDIA#9608)

Signed-off-by: Aurelien Chartier <2567591+achartier@users.noreply.github.com>

[None][infra] Add container notices and documentation (NVIDIA#9185)

Signed-off-by: Parker Drake <pdrake@nvidia.com>

[TRTLLM-5312][infra] Add triton trigger rules (NVIDIA#6440)

Signed-off-by: Yiqing Yan <yiqingy@nvidia.com>

[None][doc] Add feature docs for helix parallelism (NVIDIA#9684)

Signed-off-by: Balaram Buddharaju <169953907+brb-nv@users.noreply.github.com>

[TRTLLM-9579][infra] Set mergeWaiveList stage UNSTABLE when there is any issue (NVIDIA#9692)

Signed-off-by: Yiqing Yan <yiqingy@nvidia.com>

[None][doc] Added line about partial reuse (NVIDIA#7846)

Signed-off-by: thorjohnsen <41591019+thorjohnsen@users.noreply.github.com>

[TRTLLM-8920][feat] decouple disagg service from fastapi (NVIDIA#8714)

Signed-off-by: Lizhi Zhou <1432185+reasonsolo@users.noreply.github.com>

[https://nvbugs/5633340][fix] start disagg workers and servers on free ports (NVIDIA#9694)

Signed-off-by: Lizhi Zhou <1432185+reasonsolo@users.noreply.github.com>

[TRTLLM-9562] [doc] Add Deployment Guide for Kimi K2 Thinking on TensorRT LLM - Blackwell (NVIDIA#9711)

Signed-off-by: Kaiyu Xie <26294424+kaiyux@users.noreply.github.com>

[NVIDIA#9602][feat] AutoDeploy: Support TRTLLM Sampler (NVIDIA#9641)

Signed-off-by: Govind Ramnarayan <105831528+govind-ramnarayan@users.noreply.github.com>

[None][infra] Check in most recent lock file from nightly pipeline

Signed-off-by: TensorRT LLM <90828364+tensorrt-cicd@users.noreply.github.com>

[None] [tests] Unwaive EPLB tests (NVIDIA#9625)

Signed-off-by: Kaiyu Xie <26294424+kaiyux@users.noreply.github.com>

[https://nvbugs/5518713][test] Refactor core test lists by merging with llm_perf_cluster.yml (NVIDIA#9714)

Signed-off-by: yufeiwu <230315618+yufeiwu-nv@users.noreply.github.com>

[TRTLLM-7136][feat] Update load_weights method to include mapping parameter in checkpoint loaders (NVIDIA#9583)

Signed-off-by: Robin Kobus <19427718+Funatiq@users.noreply.github.com>

[None][refactor] Improve request processing function in sampler (NVIDIA#9671)

Signed-off-by: Robin Kobus <19427718+Funatiq@users.noreply.github.com>

[https://nvbugs/5670672][fix] Fix flaky KV connector tests (NVIDIA#9676)

Signed-off-by: jthomson04 <jwillthomson19@gmail.com>

[None][infra] Update allowed list 20251204 (NVIDIA#9718)

Signed-off-by: Yuanjing Xue <197832395+yuanjingx87@users.noreply.github.com>

[None][feat] AutoDeploy: Perf optimization for Attention and rmsnorm (NVIDIA#9719)

Signed-off-by: Chenghao Zhang <211069071+nvchenghaoz@users.noreply.github.com>

[None][chore] Waive flakey disagg tests (NVIDIA#9749)

Signed-off-by: Mike Iovine <miovine@nvidia.com>

[https://nvbugs/5601682][fix] Fix cacheTransceiver hang (NVIDIA#9311)

Signed-off-by: Iman Tabrizian <10105175+tabrizian@users.noreply.github.com>
Signed-off-by: Mike Iovine <6158008+mikeiovine@users.noreply.github.com>
Signed-off-by: Mike Iovine <miovine@nvidia.com>

[TRTLLM-9199][docs] KV Connector Docs (NVIDIA#9325)

Signed-off-by: jthomson04 <jwillthomson19@gmail.com>
Co-authored-by: coderabbitai[bot] <136622811+coderabbitai[bot]@users.noreply.github.com>
Signed-off-by: Mike Iovine <6158008+mikeiovine@users.noreply.github.com>
Signed-off-by: Mike Iovine <miovine@nvidia.com>

[TRTLLM-9160][doc] add doc to llm_runtime.py (NVIDIA#9482)

Signed-off-by: Yan Chunwei <328693+Superjomn@users.noreply.github.com>
Signed-off-by: Mike Iovine <6158008+mikeiovine@users.noreply.github.com>
Signed-off-by: Mike Iovine <miovine@nvidia.com>

[None][doc] VDR 1.0 trtllm-serve doc enhancement (NVIDIA#9443)

Signed-off-by: Pengyun Lin <81065165+LinPoly@users.noreply.github.com>
Signed-off-by: Mike Iovine <6158008+mikeiovine@users.noreply.github.com>
Signed-off-by: Mike Iovine <miovine@nvidia.com>

[TRTLLM-9086][doc] Clean up TODOs in documentation (NVIDIA#9292)

Signed-off-by: junq <22017000+QiJune@users.noreply.github.com>
Signed-off-by: Mike Iovine <6158008+mikeiovine@users.noreply.github.com>
Signed-off-by: Mike Iovine <miovine@nvidia.com>

[TRTLLM-9157][doc] Guided decoding doc improvement (NVIDIA#9359)

Signed-off-by: Enwei Zhu <21126786+syuoni@users.noreply.github.com>
Signed-off-by: Mike Iovine <6158008+mikeiovine@users.noreply.github.com>
Signed-off-by: Mike Iovine <miovine@nvidia.com>

[None][infra] Updated Linux installation guide (NVIDIA#9485)

Signed-off-by: Yiqing Yan <yiqingy@nvidia.com>
Co-authored-by: Yanchao Lu <yanchaol@nvidia.com>
Signed-off-by: Mike Iovine <6158008+mikeiovine@users.noreply.github.com>
Signed-off-by: Mike Iovine <miovine@nvidia.com>

[TRTLLM-9075][doc] refine the slurm examples (NVIDIA#9548)

Signed-off-by: Yan Chunwei <328693+Superjomn@users.noreply.github.com>
Signed-off-by: Mike Iovine <6158008+mikeiovine@users.noreply.github.com>
Signed-off-by: Mike Iovine <miovine@nvidia.com>

[TRTLLM-9093][doc] update hyper links in overview (NVIDIA#9568)

Signed-off-by: junq <22017000+QiJune@users.noreply.github.com>
Signed-off-by: Mike Iovine <6158008+mikeiovine@users.noreply.github.com>
Signed-off-by: Mike Iovine <miovine@nvidia.com>

[TRTLLM-9092][doc] link to modelopt checkpoints in quick start guide (NVIDIA#9571)

Signed-off-by: junq <22017000+QiJune@users.noreply.github.com>
Signed-off-by: Mike Iovine <6158008+mikeiovine@users.noreply.github.com>
Signed-off-by: Mike Iovine <miovine@nvidia.com>

[None][infra] Check in most recent lock file from nightly pipeline

Signed-off-by: TensorRT LLM <90828364+tensorrt-cicd@users.noreply.github.com>

[None][fix] Fix triton moe load_weight (NVIDIA#9649)

Signed-off-by: shuyix <219646547+shuyixiong@users.noreply.github.com>

[None][fix] fix a bug: deepseek_fp8_block_scales in TRTLLMGEN-MoE use 2D x_sf instead of 1D (NVIDIA#9658)

Signed-off-by: xxi <xxi@nvidia.com>

[TRTLLM-9372][feat] Enable CuteDSL MoE with Large EP (NVIDIA#9592)

Signed-off-by: Enwei Zhu <21126786+syuoni@users.noreply.github.com>

[TRTLLM-9522][chore] implement default `attach_multimodal_embeddings` (NVIDIA#9664)

Signed-off-by: ixlmar <206748156+ixlmar@users.noreply.github.com>

[TRTLLM-9660][feat] Convert cuteDSL GEMM to opt-in feature (NVIDIA#9682)

Signed-off-by: Jonas Li <6110159+longlee0622@users.noreply.github.com>
Co-authored-by: Kaiyu Xie <26294424+kaiyux@users.noreply.github.com>

[None][fix] enable hmac in RPC (NVIDIA#9745)

Signed-off-by: Superjomn <328693+Superjomn@users.noreply.github.com>

[None][infra] Check in most recent lock file from nightly pipeline

Signed-off-by: TensorRT LLM <90828364+tensorrt-cicd@users.noreply.github.com>

[https://nvbugs/5703953][fix] Preserving ip:port for trtllm-serve before initializing llm (NVIDIA#9646)

Signed-off-by: Junyi Xu <219237550+JunyiXu-nv@users.noreply.github.com>

[None][infra] Waive failed cases for main branch on 12/07 (NVIDIA#9769)

Signed-off-by: qqiao <qqiao@nvidia.com>

[None][fix] Several minor fixes to CI setting (NVIDIA#9765)

Signed-off-by: Yanchao Lu <yanchaol@nvidia.com>

[OMNIML-3036][doc] Re-branding TensorRT-Model-Optimizer as Nvidia Model-Optimizer (NVIDIA#9679)

Signed-off-by: Chenjie Luo <chenjiel@nvidia.com>

[None][feat] Enable NCCL_SYMMETRIC as default fallback for AllReduce (NVIDIA#9314)

Signed-off-by: Ludwig Schneider <lschneider@nvidia.com>

[TRTLLM-9000][feat] Add multi-node Perf Tests into CI (NVIDIA#8800)

Signed-off-by: Chenfei Zhang <chenfeiz@nvidia.com>

[None][test] add ntp tolerance in time metrics verification (NVIDIA#9741)

Signed-off-by: zhengd-nv <200704041+zhengd-nv@users.noreply.github.com>

[TRTLLM-9603][feat] Enable ConfigurableMoE test in the CI (NVIDIA#9645)

[https://nvbugs/5422621][test] Add GB 200 WIDEEP test case for RCCA 5422621 (NVIDIA#9506)

Signed-off-by: FredricZ-2007 <226039983+fredricz-20070104@users.noreply.github.com>

[None][fix] Fix two tuning cache miss issues. (NVIDIA#9743)

Signed-off-by: Yukun He <23156053+hyukn@users.noreply.github.com>

[None][infra] Check in most recent lock file from nightly pipeline

Signed-off-by: TensorRT LLM <90828364+tensorrt-cicd@users.noreply.github.com>

[TRTLLM-9706] [doc] Update wide EP documents (NVIDIA#9724)

Signed-off-by: Kaiyu Xie <26294424+kaiyux@users.noreply.github.com>

[https://nvbugs/5666804][test] only adding sampler config for limited models (NVIDIA#9512)

Signed-off-by: Ruodi Lu <ruodil@users.noreply.github.com>
Co-authored-by: Ruodi Lu <ruodil@users.noreply.github.com>
Co-authored-by: yufeiwu-nv <230315618+yufeiwu-nv@users.noreply.github.com>
Co-authored-by: Larry Xu <197874197+LarryXFly@users.noreply.github.com>

[None][infra] Waive failed cases for main on 12/08 (NVIDIA#9773)

Signed-off-by: qqiao <qqiao@nvidia.com>

[None][chore] Move the rocketkv e2e test to post-merge (NVIDIA#9768)

Signed-off-by: Fanrong Li <23290157+lfr-0531@users.noreply.github.com>

[None][chore] Enable tvm_ffi for cute dsl nvfp4_gemm to reduce host overhead. (NVIDIA#9690)

Signed-off-by: Mindy Li <11663212+limin2021@users.noreply.github.com>

[TRTLLM-9431][perf] Enable multistream for Linear Attention in Qwen3-… (NVIDIA#9696)

Signed-off-by: nv-guomingz <137257613+nv-guomingz@users.noreply.github.com>

[None][chore] Remove closed bugs (NVIDIA#9770)

Signed-off-by: xinhe-nv <200704525+xinhe-nv@users.noreply.github.com>

[None][infra] update mooncake in docker images (NVIDIA#9584)

Signed-off-by: zhengd-nv <200704041+zhengd-nv@users.noreply.github.com>
Signed-off-by: Zheng Duan <200704041+zhengd-nv@users.noreply.github.com>

[None][test] Add Kimi k2 WIDEEP perf and accuracy cases (NVIDIA#9686)

Signed-off-by: FredricZ-2007 <226039983+fredricz-20070104@users.noreply.github.com>
Signed-off-by: Kaiyu Xie <26294424+kaiyux@users.noreply.github.com>
Co-authored-by: Kaiyu Xie <26294424+kaiyux@users.noreply.github.com>

[https://nvbugs/5527655][test] Add test case for RCCA 5527655 (NVIDIA#9511)

Signed-off-by: FredricZ-2007 <226039983+fredricz-20070104@users.noreply.github.com>

[http://nvbugs/5649010][fix] fix test_auto_scaling.py::test_worker_restart timeout (NVIDIA#9775)

Signed-off-by: Lizhi Zhou <1432185+reasonsolo@users.noreply.github.com>

[None][fix] Switch AutoDeploy's default allreduce strategy to NCCL (NVIDIA#9666)

Signed-off-by: Eran Geva <19514940+MrGeva@users.noreply.github.com>

[TRTLLM-9506][fix] Fix AR for DeepSeek-R1 2 model path (NVIDIA#9661)

Signed-off-by: qgai <qgai@nvidia.com>

ray + updatew works

trtllm works in async env

trtllm works in sync and async env

ray + updatew works

rebase to the updated verl

server mode

still cherry pick

still cherry pick

still cherry pick

integrated http interface

hang at RyExecutor create workers ray.remote

clean code

use tensorrt_llm.rlhf_utils

Signed-off-by: Liwei Ma <liweim@nvidia.com>

placement, asyncllm, and basic tests
Signed-off-by: Erin Ho <14718778+hchings@users.noreply.github.com>

connect sleep and wakeup; Add support to pass None to update_weights
Signed-off-by: Erin Ho <14718778+hchings@users.noreply.github.com>

Batching ctx for IFB scheduler

Signed-off-by: Yuan Tong <13075180+tongyuantongyu@users.noreply.github.com>

accuracy WAR for TP>1: always use AllReduceStrategy.NCCL, refactored
Signed-off-by: Erin Ho <14718778+hchings@users.noreply.github.com>

fix e2e integration

Signed-off-by: Superjomn <328693+Superjomn@users.noreply.github.com>

update asyncllm, other nits
Signed-off-by: Erin Ho <14718778+hchings@users.noreply.github.com>

fix init setup

Signed-off-by: Erin Ho <14718778+hchings@users.noreply.github.com>

Fix TRTLLMSampler logprobs perf

Signed-off-by: Yuan Tong <13075180+tongyuantongyu@users.noreply.github.com>

fix and cleanup
Signed-off-by: Erin Ho <14718778+hchings@users.noreply.github.com>

fix server

Signed-off-by: Erin Ho <14718778+hchings@users.noreply.github.com>

Revert "Batching ctx for IFB scheduler"

This reverts commit b51aac0

Signed-off-by: Yuan Tong <13075180+tongyuantongyu@users.noreply.github.com>

update & address comments

Signed-off-by: Erin Ho <14718778+hchings@users.noreply.github.com>
codego7250 pushed a commit to codego7250/TensorRT-LLM that referenced this pull request Dec 11, 2025
Signed-off-by: yuhangh <58161490+heyuhhh@users.noreply.github.com>
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment

Labels

None yet

Projects

None yet

Development

Successfully merging this pull request may close these issues.

4 participants