Skip to content

Conversation

@MrGeva
Copy link
Collaborator

@MrGeva MrGeva commented Nov 19, 2025

  • split custom ops to trtllm and torch ops (also split to different files)
  • templatize patterns using dist ops for rms+allreduce
  • transforms add the correct op trtllm/torch based on new transform config arg trtllm/torch/auto (auto decides based on checking if MPI is available)
  • removed unused ops: linear + all reduce

Summary by CodeRabbit

  • New Features
    • Added new fused distributed operations for all-reduce with residual addition and normalization.
    • Introduced backend-specific variants of fused linear and FP8 linear operations with all-reduce.
    • Enhanced distributed operation selection with improved backend detection and routing.
    • Expanded collective operation pattern matching to support multiple execution paths.

Description

Test Coverage

PR Checklist

Please review the following before submitting your PR:

  • PR description clearly explains what and why. If using CodeRabbit's summary, please make sure it makes sense.

  • PR Follows TRT-LLM CODING GUIDELINES to the best of your knowledge.

  • Test cases are provided for new code paths (see test instructions)

  • Any new dependencies have been scanned for license and vulnerabilities

  • CODEOWNERS updated if ownership changes

  • Documentation updated as needed

  • Update tava architecture diagram if there is a significant design change in PR.

  • The reviewers assigned automatically/manually are appropriate for the PR.

  • Please check this after reviewing the above items as appropriate for this PR.

GitHub Bot Help

/bot [-h] ['run', 'kill', 'skip', 'reuse-pipeline'] ...

Provide a user friendly way for developers to interact with a Jenkins server.

Run /bot [-h|--help] to print this help message.

See details below for each supported subcommand.

Details

run [--reuse-test (optional)pipeline-id --disable-fail-fast --skip-test --stage-list "A10-PyTorch-1, xxx" --gpu-type "A30, H100_PCIe" --test-backend "pytorch, cpp" --add-multi-gpu-test --only-multi-gpu-test --disable-multi-gpu-test --post-merge --extra-stage "H100_PCIe-TensorRT-Post-Merge-1, xxx" --detailed-log --debug(experimental)]

Launch build/test pipelines. All previously running jobs will be killed.

--reuse-test (optional)pipeline-id (OPTIONAL) : Allow the new pipeline to reuse build artifacts and skip successful test stages from a specified pipeline or the last pipeline if no pipeline-id is indicated. If the Git commit ID has changed, this option will be always ignored. The DEFAULT behavior of the bot is to reuse build artifacts and successful test results from the last pipeline.

--disable-reuse-test (OPTIONAL) : Explicitly prevent the pipeline from reusing build artifacts and skipping successful test stages from a previous pipeline. Ensure that all builds and tests are run regardless of previous successes.

--disable-fail-fast (OPTIONAL) : Disable fail fast on build/tests/infra failures.

--skip-test (OPTIONAL) : Skip all test stages, but still run build stages, package stages and sanity check stages. Note: Does NOT update GitHub check status.

--stage-list "A10-PyTorch-1, xxx" (OPTIONAL) : Only run the specified test stages. Examples: "A10-PyTorch-1, xxx". Note: Does NOT update GitHub check status.

--gpu-type "A30, H100_PCIe" (OPTIONAL) : Only run the test stages on the specified GPU types. Examples: "A30, H100_PCIe". Note: Does NOT update GitHub check status.

--test-backend "pytorch, cpp" (OPTIONAL) : Skip test stages which don't match the specified backends. Only support [pytorch, cpp, tensorrt, triton]. Examples: "pytorch, cpp" (does not run test stages with tensorrt or triton backend). Note: Does NOT update GitHub pipeline status.

--only-multi-gpu-test (OPTIONAL) : Only run the multi-GPU tests. Note: Does NOT update GitHub check status.

--disable-multi-gpu-test (OPTIONAL) : Disable the multi-GPU tests. Note: Does NOT update GitHub check status.

--add-multi-gpu-test (OPTIONAL) : Force run the multi-GPU tests in addition to running L0 pre-merge pipeline.

--post-merge (OPTIONAL) : Run the L0 post-merge pipeline instead of the ordinary L0 pre-merge pipeline.

--extra-stage "H100_PCIe-TensorRT-Post-Merge-1, xxx" (OPTIONAL) : Run the ordinary L0 pre-merge pipeline and specified test stages. Examples: --extra-stage "H100_PCIe-TensorRT-Post-Merge-1, xxx".

--detailed-log (OPTIONAL) : Enable flushing out all logs to the Jenkins console. This will significantly increase the log volume and may slow down the job.

--debug (OPTIONAL) : Experimental feature. Enable access to the CI container for debugging purpose. Note: Specify exactly one stage in the stage-list parameter to access the appropriate container environment. Note: Does NOT update GitHub check status.

For guidance on mapping tests to stage names, see docs/source/reference/ci-overview.md
and the scripts/test_to_stage_mapping.py helper.

kill

kill

Kill all running builds associated with pull request.

skip

skip --comment COMMENT

Skip testing for latest commit on pull request. --comment "Reason for skipping build/test" is required. IMPORTANT NOTE: This is dangerous since lack of user care and validation can cause top of tree to break.

reuse-pipeline

reuse-pipeline

Reuse a previous pipeline to validate current commit. This action will also kill all currently running builds associated with the pull request. IMPORTANT NOTE: This is dangerous since lack of user care and validation can cause top of tree to break.

@MrGeva
Copy link
Collaborator Author

MrGeva commented Nov 19, 2025

/bot run

@coderabbitai
Copy link
Contributor

coderabbitai bot commented Nov 19, 2025

📝 Walkthrough

Walkthrough

Refactoring renames distributed and fusion operations to explicitly support both PyTorch and TRT-LLM backends. Public operations are split into backend-specific variants with distinct function names and registrations. Backend selection logic is centralized, enabling pattern-based transformations to select appropriate backend ops.

Changes

Cohort / File(s) Change Summary
Backend-specific distributed ops
tensorrt_llm/_torch/auto_deploy/custom_ops/dist.py, tensorrt_llm/_torch/auto_deploy/utils/node_utils.py
Renamed public ops (all_gather, all_reduce) to torch_dist_* variants; introduced trtllm_dist_* counterparts with fake registrations; expanded dist_ops set in node_utils to include TRT-LLM ops.
Backend-specific fused linear ops
tensorrt_llm/_torch/auto_deploy/custom_ops/linear.py
Renamed trtllm_dist_fused_linear_all_reduce to torch_fused_linear_all_reduce; introduced trtllm_fused_linear_all_reduce for TRT-LLM backend; added legacy alias trtllm_dist_fused_linear_all_reduce with fake registrations.
Backend-specific FP8 fused ops
tensorrt_llm/_torch/auto_deploy/custom_ops/quant.py
Added torch_fused_fp8_linear_all_reduce and trtllm_fused_fp8_linear_all_reduce; renamed fused_fp8_linear_all_reduce to torch_quant_fused_fp8_linear_all_reduce as legacy alias; updated fake registrations.
Backend-specific allreduce-residual-rmsnorm fused ops
tensorrt_llm/_torch/auto_deploy/distributed/trtllm.py, tensorrt_llm/_torch/auto_deploy/transform/library/collectives.py
Added torch_fused_allreduce_residual_rmsnorm (PyTorch fallback); renamed fused_allreduce_residual_rmsnorm to trtllm_fused_allreduce_residual_rmsnorm; replaced single hard-coded pattern with factory-based pattern generation supporting multiple backends and add orders; updated transform to register multiple backend-specific patterns.
Backend selection helper
tensorrt_llm/_torch/auto_deploy/utils/sharding_utils.py
Introduced _get_dist_ops helper to centralize backend-aware selection logic; updated sharding transformations to use backend-specific ops via helper instead of hard-coded references.

Sequence Diagram(s)

sequenceDiagram
    participant User
    participant ShardingUtils as sharding_utils<br/>(_get_dist_ops)
    participant DistOps as auto_deploy.dist
    participant TRTLLMDistOps as trtllm.dist
    
    User->>ShardingUtils: Need dist ops
    ShardingUtils->>TRTLLMDistOps: Check is_trtllm_op_available()
    alt TRT-LLM available
        TRTLLMDistOps-->>ShardingUtils: True
        ShardingUtils-->>User: (trtllm_dist_all_gather,<br/>trtllm_dist_all_reduce)
    else TRT-LLM unavailable
        TRTLLMDistOps-->>ShardingUtils: False
        ShardingUtils->>DistOps: Use PyTorch ops
        DistOps-->>ShardingUtils: (torch_dist_all_gather,<br/>torch_dist_all_reduce)
        ShardingUtils-->>User: PyTorch dist ops
    end
    
    Note over ShardingUtils,TRTLLMDistOps: Backend selection centralized<br/>in _get_dist_ops
Loading
sequenceDiagram
    participant Matcher as Pattern Matcher<br/>(collectives.py)
    participant Factory as _make_allreduce_...<br/>_pattern factories
    participant GraphOps as Graph Operations
    
    Matcher->>Factory: Generate patterns for Torch<br/>(residual_first + x_first)
    Factory-->>Matcher: torch_patterns[]
    
    Matcher->>Factory: Generate patterns for TRT-LLM<br/>(residual_first + x_first)
    Factory-->>Matcher: trtllm_patterns[]
    
    Matcher->>GraphOps: Register all 4 patterns
    GraphOps->>GraphOps: Match graph against patterns
    alt Pattern matches x_first Torch
        GraphOps-->>Matcher: Use torch replacement
    else Pattern matches residual_first TRT-LLM
        GraphOps-->>Matcher: Use trtllm replacement
    end
    
    Note over Factory: Factory generates<br/>backend-specific patterns<br/>from templates
Loading

Estimated code review effort

🎯 3 (Moderate) | ⏱️ ~20 minutes

  • Key areas requiring attention:
    • Verify backend selection logic in sharding_utils._get_dist_ops correctly prioritizes TRT-LLM when available
    • Confirm all fake registrations are properly paired with their public ops across dist.py, linear.py, quant.py, and trtllm.py
    • Review factory pattern logic in collectives.py, particularly the generation of residual_first vs. x_first pattern variants and their corresponding replacements
    • Validate consistency of backend-specific op naming conventions (torch_* vs trtllm_*) and backward compatibility aliases across all files
    • Check that legacy alias ops (e.g., trtllm_dist_fused_linear_all_reduce) maintain expected behavior for existing code

Pre-merge checks and finishing touches

❌ Failed checks (1 warning, 1 inconclusive)
Check name Status Explanation Resolution
Docstring Coverage ⚠️ Warning Docstring coverage is 57.14% which is insufficient. The required threshold is 80.00%. You can run @coderabbitai generate docstrings to improve docstring coverage.
Description check ❓ Inconclusive The PR description provides high-level objectives but lacks detailed explanation of the architectural changes, migration strategy, and rationale. Expand the Description section to explain why the ops are being split, what problems this solves, and how the backend selection mechanism works (trtllm/torch/auto). Add specifics about breaking changes, deprecation timeline, and migration guidance for consumers of these APIs.
✅ Passed checks (1 passed)
Check name Status Explanation
Title check ✅ Passed The PR title accurately describes the main refactoring work: splitting distributed ops for both PyTorch and TRT-LLM backends in the AutoDeploy module.
✨ Finishing touches
  • 📝 Generate docstrings
🧪 Generate unit tests (beta)
  • Create PR with unit tests
  • Post copyable unit tests in a comment

Tip

📝 Customizable high-level summaries are now available in beta!

You can now customize how CodeRabbit generates the high-level summary in your pull requests — including its content, structure, tone, and formatting.

  • Provide your own instructions using the high_level_summary_instructions setting.
  • Format the summary however you like (bullet lists, tables, multi-section layouts, contributor stats, etc.).
  • Use high_level_summary_in_walkthrough to move the summary from the description to the walkthrough section.

Example instruction:

"Divide the high-level summary into five sections:

  1. 📝 Description — Summarize the main change in 50–60 words, explaining what was done.
  2. 📓 References — List relevant issues, discussions, documentation, or related PRs.
  3. 📦 Dependencies & Requirements — Mention any new/updated dependencies, environment variable changes, or configuration updates.
  4. 📊 Contributor Summary — Include a Markdown table showing contributions:
    | Contributor | Lines Added | Lines Removed | Files Changed |
  5. ✔️ Additional Notes — Add any extra reviewer context.
    Keep each section concise (under 200 words) and use bullet or numbered lists for clarity."

Note: This feature is currently in beta for Pro-tier users, and pricing will be announced later.


Thanks for using CodeRabbit! It's free for OSS, and your support helps us grow. If you like it, consider giving us a shout-out.

❤️ Share

Comment @coderabbitai help to get the list of available commands and usage tips.

Copy link
Contributor

@coderabbitai coderabbitai bot left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Actionable comments posted: 1

🧹 Nitpick comments (5)
tensorrt_llm/_torch/auto_deploy/transform/library/collectives.py (1)

1-5: Multi-backend allreduce+residual+RMSNorm patterns and registrations look solid; consider a small guard.

The pattern factory + replacement helpers correctly abstract the backend choice and addition order, and the transform cleanly registers four variants sharing dummy_args, op_ignore_types, and scalar_workaround. This is a nice cleanup and should keep future backend additions local.

One low-impact suggestion: in _make_allreduce_residual_rmsnorm_pattern, consider asserting the add_order value (e.g., {"residual_first", "x_first"}) so any accidental typos fail fast during tracing rather than silently taking the else branch.

Also applies to: 25-41, 43-71, 74-89, 91-115, 125-129, 149-193

tensorrt_llm/_torch/auto_deploy/utils/sharding_utils.py (1)

32-51: Backend-aware _get_dist_ops wiring looks correct; only minor polish possible.

The new _get_dist_ops() helper and its use sites are consistent:

  • Returning the .default overloads is appropriate for gm.graph.call_function.
  • _shard_parameter_node correctly maps dim=0 → all_gather(..., dim=-1) and dim=1 → all_reduce(...), matching the intended COLUMN/ROW semantics.
  • BMM and EP/MoE sharding now automatically pick TRT-LLM vs PyTorch dist ops based on is_trtllm_op_available(), which aligns with the PR goals.

Two optional cleanups you might consider:

  1. Cache _get_dist_ops() at module scope or the first time it’s called if you expect many sharding transforms per graph; currently each call re-imports and re-checks availability.
  2. Update the comment in BMMShardingInfo.validate that refers specifically to torch_dist_all_gather so it describes the limitation in backend-agnostic terms (since we now dispatch via _get_dist_ops).

Neither affects correctness; the current implementation is fine as-is.

Also applies to: 509-515, 949-953, 1038-1041, 1109-1112

tensorrt_llm/_torch/auto_deploy/custom_ops/linear.py (1)

30-53: Fused linear+all-reduce backend split is consistent; consider de-duplicating the legacy alias.

The new torch_fused_linear_all_reduce and trtllm_fused_linear_all_reduce ops have clear, symmetric semantics and keep mutation confined to a locally created output tensor, which matches the mutates_args=() contract. The fake implementations are also appropriate for meta/tracing use.

To reduce duplication and keep the legacy alias in sync, you could implement trtllm_dist_fused_linear_all_reduce as a thin wrapper:

@torch.library.custom_op(
     "auto_deploy::trtllm_dist_fused_linear_all_reduce", mutates_args=(), device_types="cuda"
 )
 def trtllm_dist_fused_linear_all_reduce(
     input: torch.Tensor, weight: torch.Tensor, bias: Optional[torch.Tensor]
 ) -> torch.Tensor:
-    """Legacy name for trtllm_fused_linear_all_reduce.
-
-    Kept for backward compatibility with existing code.
-    This is an alias that directly implements the same logic.
-    """
-    output = torch.ops.aten.linear(input, weight, bias)
-    return trtllm_dist.trtllm_allreduce(output, op=dist.ReduceOp.SUM)
+    """Legacy name for trtllm_fused_linear_all_reduce.
+
+    Kept for backward compatibility with existing code.
+    """
+    return trtllm_fused_linear_all_reduce(input, weight, bias)

This ensures any future change to the TRT-LLM fused implementation automatically applies to the alias.

Also applies to: 55-72, 74-96

tensorrt_llm/_torch/auto_deploy/custom_ops/quant.py (1)

314-325: Legacy alias behavior is consistent; optional deduplication with torch fused op

The updated torch_quant_fused_fp8_linear_all_reduce docstring now matches the implementation: it’s purely a legacy alias that always takes the torch backend path, which aligns with the new design and avoids any hidden TRT‑LLM optimization behind the old name. The fake implementation staying as a pure FP8 linear op is consistent with the new fakes above.

If you want to reduce duplication, you could delegate the legacy alias to the torch‑specific fused op (e.g., via torch.ops.auto_deploy.torch_fused_fp8_linear_all_reduce) instead of inlining the same linear+all‑reduce sequence again, but that’s purely stylistic and not required.

Also applies to: 333-343

tensorrt_llm/_torch/auto_deploy/distributed/trtllm.py (1)

75-76: Stub trtllm_allreduce matches signature but triggers Ruff ARG001/TRY003

The ImportError stub keeps the same signature as the real trtllm_allreduce, which is important for call‑site compatibility. Ruff correctly flags the unused arguments and the explicit message, but changing this is optional.

If you want to satisfy Ruff without affecting behavior, you could do something like:

-    def trtllm_allreduce(tensor, op, all_reduce_params=None):
-        raise ImportError("TRT-LLM is not available.")
+    def trtllm_allreduce(tensor, op, all_reduce_params=None):
+        _ = tensor, op, all_reduce_params  # silence ARG001
+        raise ImportError("TRT-LLM is not available.")

or add an appropriate # noqa in line with your lint policy.

Please confirm what the project‑preferred way of handling Ruff ARG001/TRY003 is in stubs like this (e.g., # noqa, dummy assignments, or leaving as‑is).

📜 Review details

Configuration used: Path: .coderabbit.yaml

Review profile: CHILL

Plan: Pro

📥 Commits

Reviewing files that changed from the base of the PR and between 46dd988 and 00aa611.

📒 Files selected for processing (7)
  • tensorrt_llm/_torch/auto_deploy/custom_ops/dist.py (2 hunks)
  • tensorrt_llm/_torch/auto_deploy/custom_ops/linear.py (1 hunks)
  • tensorrt_llm/_torch/auto_deploy/custom_ops/quant.py (1 hunks)
  • tensorrt_llm/_torch/auto_deploy/distributed/trtllm.py (4 hunks)
  • tensorrt_llm/_torch/auto_deploy/transform/library/collectives.py (3 hunks)
  • tensorrt_llm/_torch/auto_deploy/utils/node_utils.py (1 hunks)
  • tensorrt_llm/_torch/auto_deploy/utils/sharding_utils.py (5 hunks)
🧰 Additional context used
🧠 Learnings (11)
📓 Common learnings
Learnt from: nv-lschneider
Repo: NVIDIA/TensorRT-LLM PR: 7910
File: cpp/tensorrt_llm/thop/allreduceOp.cpp:352-446
Timestamp: 2025-09-23T15:12:38.312Z
Learning: In TensorRT-LLM NCCL device allreduce implementation (cpp/tensorrt_llm/thop/allreduceOp.cpp), the goto pattern in runNCCLAllReduceDeviceFusion is intentionally used for future extensibility, allowing multiple switch cases to fallback to the default handler. While not aesthetically ideal, this pattern supports adding more fusion cases later that can reuse the same fallback logic.
Learnt from: nzmora-nvidia
Repo: NVIDIA/TensorRT-LLM PR: 9163
File: tensorrt_llm/_torch/auto_deploy/custom_ops/quant.py:107-113
Timestamp: 2025-11-14T11:22:03.729Z
Learning: In TensorRT-LLM AutoDeploy custom ops, when adding hardware capability checks to select between kernel implementations (e.g., cuBLAS vs. CUDA kernel), use descriptive variable names that identify the specific GPU architectures or families being targeted (e.g., `is_blackwell_geforce_or_ada`) rather than generic names like `enable_cuda_core`. This makes it clear that the code is selecting an implementation path based on hardware capabilities, not enabling/disabling hardware features.
Learnt from: tongyuantongyu
Repo: NVIDIA/TensorRT-LLM PR: 7520
File: tensorrt_llm/_torch/pyexecutor/resource_manager.py:605-613
Timestamp: 2025-09-24T03:31:28.908Z
Learning: In TensorRT-LLM Ray orchestrator mode, ProcessGroups are initialized with both Gloo and NCCL backends (e.g., "cuda:nccl,cpu:gloo"), allowing PyTorch distributed to automatically route CPU tensors through Gloo and GPU tensors through NCCL. This eliminates the need for manual device placement when performing allreduce operations on base types.
Learnt from: Fridah-nv
Repo: NVIDIA/TensorRT-LLM PR: 7227
File: tensorrt_llm/_torch/auto_deploy/utils/quantization_utils.py:94-100
Timestamp: 2025-08-27T16:22:10.695Z
Learning: When there are inconsistent operator detection methods (like custom_op() vs target_op()), removing one method and standardizing on the other is often cleaner than supporting both methods simultaneously.
Learnt from: amitz-nv
Repo: NVIDIA/TensorRT-LLM PR: 7033
File: tensorrt_llm/_torch/pyexecutor/model_engine.py:0-0
Timestamp: 2025-08-19T12:45:11.997Z
Learning: In tensorrt_llm/_torch/pyexecutor/model_engine.py, DoRA (Delta Orthogonal Rank Adaptation) functionality was removed from the PyTorch flow to eliminate issues with inverted DoRA detection logic. The original is_dora condition was checking if scaling_vec_pointer == 0, which was potentially incorrect.
Learnt from: nv-lschneider
Repo: NVIDIA/TensorRT-LLM PR: 7910
File: cpp/tensorrt_llm/thop/allreduceOp.cpp:352-446
Timestamp: 2025-09-23T15:12:38.312Z
Learning: In TensorRT-LLM NCCL device implementation, NCCL version 2.28+ requirements are handled at runtime in the nccl_device/config layer rather than with compile-time guards. This allows the allreduceOp to remain version-agnostic and delegates version compatibility validation to the appropriate lower-level components that can gracefully handle unsupported configurations.
Learnt from: moraxu
Repo: NVIDIA/TensorRT-LLM PR: 6303
File: tests/integration/test_lists/qa/examples_test_list.txt:494-494
Timestamp: 2025-07-28T17:06:08.621Z
Learning: In TensorRT-LLM testing, it's common to have both CLI flow tests (test_cli_flow.py) and PyTorch API tests (test_llm_api_pytorch.py) for the same model. These serve different purposes: CLI flow tests validate the traditional command-line workflow, while PyTorch API tests validate the newer LLM API backend. Both are legitimate and should coexist.
📚 Learning: 2025-11-14T11:22:03.729Z
Learnt from: nzmora-nvidia
Repo: NVIDIA/TensorRT-LLM PR: 9163
File: tensorrt_llm/_torch/auto_deploy/custom_ops/quant.py:107-113
Timestamp: 2025-11-14T11:22:03.729Z
Learning: In TensorRT-LLM AutoDeploy custom ops, when adding hardware capability checks to select between kernel implementations (e.g., cuBLAS vs. CUDA kernel), use descriptive variable names that identify the specific GPU architectures or families being targeted (e.g., `is_blackwell_geforce_or_ada`) rather than generic names like `enable_cuda_core`. This makes it clear that the code is selecting an implementation path based on hardware capabilities, not enabling/disabling hardware features.

Applied to files:

  • tensorrt_llm/_torch/auto_deploy/utils/node_utils.py
  • tensorrt_llm/_torch/auto_deploy/custom_ops/quant.py
  • tensorrt_llm/_torch/auto_deploy/utils/sharding_utils.py
  • tensorrt_llm/_torch/auto_deploy/custom_ops/linear.py
  • tensorrt_llm/_torch/auto_deploy/custom_ops/dist.py
  • tensorrt_llm/_torch/auto_deploy/distributed/trtllm.py
📚 Learning: 2025-10-20T16:54:09.824Z
Learnt from: nvchenghaoz
Repo: NVIDIA/TensorRT-LLM PR: 8469
File: tensorrt_llm/_torch/auto_deploy/custom_ops/rms_norm.py:6-6
Timestamp: 2025-10-20T16:54:09.824Z
Learning: In tensorrt_llm/_torch/auto_deploy/custom_ops/rms_norm.py, the import `from ...modules.mamba.layernorm_gated import _layer_norm_fwd` is correct and should not be changed to modules.fla.layernorm_gated. The _layer_norm_fwd function exists in both modules/mamba/layernorm_gated.py and modules/fla/layernorm_gated.py, but the mamba version is the intended implementation for this use case.

Applied to files:

  • tensorrt_llm/_torch/auto_deploy/utils/node_utils.py
  • tensorrt_llm/_torch/auto_deploy/custom_ops/quant.py
  • tensorrt_llm/_torch/auto_deploy/utils/sharding_utils.py
  • tensorrt_llm/_torch/auto_deploy/custom_ops/linear.py
  • tensorrt_llm/_torch/auto_deploy/custom_ops/dist.py
  • tensorrt_llm/_torch/auto_deploy/distributed/trtllm.py
📚 Learning: 2025-09-23T15:12:38.312Z
Learnt from: nv-lschneider
Repo: NVIDIA/TensorRT-LLM PR: 7910
File: cpp/tensorrt_llm/thop/allreduceOp.cpp:352-446
Timestamp: 2025-09-23T15:12:38.312Z
Learning: In TensorRT-LLM NCCL device allreduce implementation (cpp/tensorrt_llm/thop/allreduceOp.cpp), the goto pattern in runNCCLAllReduceDeviceFusion is intentionally used for future extensibility, allowing multiple switch cases to fallback to the default handler. While not aesthetically ideal, this pattern supports adding more fusion cases later that can reuse the same fallback logic.

Applied to files:

  • tensorrt_llm/_torch/auto_deploy/custom_ops/quant.py
  • tensorrt_llm/_torch/auto_deploy/transform/library/collectives.py
  • tensorrt_llm/_torch/auto_deploy/custom_ops/linear.py
  • tensorrt_llm/_torch/auto_deploy/distributed/trtllm.py
📚 Learning: 2025-09-23T15:13:48.819Z
Learnt from: nv-lschneider
Repo: NVIDIA/TensorRT-LLM PR: 7910
File: cpp/tensorrt_llm/kernels/nccl_device/multimem.h:20-30
Timestamp: 2025-09-23T15:13:48.819Z
Learning: TRT-LLM targets modern CUDA toolkits that support FP8 datatypes, so cuda_fp8.h can be included unconditionally without version guards in TRT-LLM code.

Applied to files:

  • tensorrt_llm/_torch/auto_deploy/custom_ops/quant.py
📚 Learning: 2025-10-20T17:09:21.560Z
Learnt from: nvchenghaoz
Repo: NVIDIA/TensorRT-LLM PR: 8469
File: tensorrt_llm/_torch/auto_deploy/transform/library/rms_norm.py:180-182
Timestamp: 2025-10-20T17:09:21.560Z
Learning: In tensorrt_llm/_torch/auto_deploy/transform/library/rms_norm.py, the _gated_rmsnorm_replacement function does not need to cast the output of torch.ops.auto_deploy.torch_rmsnorm_gated back to the input dtype, even though the custom op returns fp32. The dtype handling is managed elsewhere or the fp32 output is acceptable for downstream consumers.

Applied to files:

  • tensorrt_llm/_torch/auto_deploy/custom_ops/quant.py
  • tensorrt_llm/_torch/auto_deploy/transform/library/collectives.py
  • tensorrt_llm/_torch/auto_deploy/custom_ops/linear.py
  • tensorrt_llm/_torch/auto_deploy/distributed/trtllm.py
📚 Learning: 2025-09-23T15:12:38.312Z
Learnt from: nv-lschneider
Repo: NVIDIA/TensorRT-LLM PR: 7910
File: cpp/tensorrt_llm/thop/allreduceOp.cpp:352-446
Timestamp: 2025-09-23T15:12:38.312Z
Learning: In TensorRT-LLM NCCL device implementation, NCCL version 2.28+ requirements are handled at runtime in the nccl_device/config layer rather than with compile-time guards. This allows the allreduceOp to remain version-agnostic and delegates version compatibility validation to the appropriate lower-level components that can gracefully handle unsupported configurations.

Applied to files:

  • tensorrt_llm/_torch/auto_deploy/transform/library/collectives.py
  • tensorrt_llm/_torch/auto_deploy/distributed/trtllm.py
📚 Learning: 2025-10-13T19:45:03.518Z
Learnt from: nv-lschneider
Repo: NVIDIA/TensorRT-LLM PR: 7910
File: tests/unittest/_torch/multi_gpu/test_nccl_device.py:138-149
Timestamp: 2025-10-13T19:45:03.518Z
Learning: In test_nccl_device.py, the NCCL device AllReduce implementation compares the entire residual tensor on each rank, unlike the UB implementation which compares per-rank chunks. The residual chunking calculations in the test are intentionally overridden to reflect this design difference.

Applied to files:

  • tensorrt_llm/_torch/auto_deploy/transform/library/collectives.py
  • tensorrt_llm/_torch/auto_deploy/distributed/trtllm.py
📚 Learning: 2025-08-14T06:36:40.701Z
Learnt from: timlee0212
Repo: NVIDIA/TensorRT-LLM PR: 6886
File: tensorrt_llm/_torch/models/modeling_deepseekv3.py:0-0
Timestamp: 2025-08-14T06:36:40.701Z
Learning: In DeepSeek V3 model (tensorrt_llm/_torch/models/modeling_deepseekv3.py), the disagreement between AllReduce.__init__ guard and _compute_mlp_tp_size logic for MNNVL usage is expected by design. The AllReduce component and MLP TP-size computation intentionally use different criteria for MNNVL availability decisions.

Applied to files:

  • tensorrt_llm/_torch/auto_deploy/transform/library/collectives.py
  • tensorrt_llm/_torch/auto_deploy/utils/sharding_utils.py
  • tensorrt_llm/_torch/auto_deploy/custom_ops/linear.py
  • tensorrt_llm/_torch/auto_deploy/distributed/trtllm.py
📚 Learning: 2025-09-24T03:31:28.908Z
Learnt from: tongyuantongyu
Repo: NVIDIA/TensorRT-LLM PR: 7520
File: tensorrt_llm/_torch/pyexecutor/resource_manager.py:605-613
Timestamp: 2025-09-24T03:31:28.908Z
Learning: In TensorRT-LLM Ray orchestrator mode, ProcessGroups are initialized with both Gloo and NCCL backends (e.g., "cuda:nccl,cpu:gloo"), allowing PyTorch distributed to automatically route CPU tensors through Gloo and GPU tensors through NCCL. This eliminates the need for manual device placement when performing allreduce operations on base types.

Applied to files:

  • tensorrt_llm/_torch/auto_deploy/custom_ops/dist.py
📚 Learning: 2025-08-21T00:16:56.457Z
Learnt from: farshadghodsian
Repo: NVIDIA/TensorRT-LLM PR: 7101
File: docs/source/blogs/tech_blog/blog9_Deploying_GPT_OSS_on_TRTLLM.md:36-36
Timestamp: 2025-08-21T00:16:56.457Z
Learning: TensorRT-LLM container release tags in documentation should only reference published NGC container images. The README badge version may be ahead of the actual published container versions.

Applied to files:

  • tensorrt_llm/_torch/auto_deploy/distributed/trtllm.py
🧬 Code graph analysis (7)
tensorrt_llm/_torch/auto_deploy/utils/node_utils.py (1)
tensorrt_llm/_torch/auto_deploy/custom_ops/dist.py (4)
  • torch_dist_all_gather (20-29)
  • torch_dist_all_reduce (38-48)
  • trtllm_dist_all_gather (64-71)
  • trtllm_dist_all_reduce (82-87)
tensorrt_llm/_torch/auto_deploy/custom_ops/quant.py (2)
tensorrt_llm/_torch/auto_deploy/distributed/common.py (1)
  • all_reduce (44-48)
tensorrt_llm/_torch/auto_deploy/distributed/trtllm.py (2)
  • trtllm_allreduce (27-41)
  • trtllm_allreduce (75-76)
tensorrt_llm/_torch/auto_deploy/transform/library/collectives.py (4)
tensorrt_llm/_torch/auto_deploy/custom_ops/dist.py (2)
  • torch_dist_all_reduce (38-48)
  • trtllm_dist_all_reduce (82-87)
tensorrt_llm/_torch/auto_deploy/distributed/trtllm.py (2)
  • torch_fused_allreduce_residual_rmsnorm (86-110)
  • trtllm_fused_allreduce_residual_rmsnorm (47-61)
tensorrt_llm/_torch/auto_deploy/utils/pattern_matcher.py (1)
  • register_ad_pattern (99-182)
tensorrt_llm/_torch/auto_deploy/transform/library/rms_norm.py (1)
  • dummy_args (153-158)
tensorrt_llm/_torch/auto_deploy/utils/sharding_utils.py (2)
tensorrt_llm/_torch/auto_deploy/distributed/trtllm.py (1)
  • is_trtllm_op_available (120-122)
tensorrt_llm/_torch/auto_deploy/custom_ops/dist.py (4)
  • trtllm_dist_all_gather (64-71)
  • trtllm_dist_all_reduce (82-87)
  • torch_dist_all_gather (20-29)
  • torch_dist_all_reduce (38-48)
tensorrt_llm/_torch/auto_deploy/custom_ops/linear.py (2)
tensorrt_llm/_torch/auto_deploy/distributed/common.py (1)
  • all_reduce (44-48)
tensorrt_llm/_torch/auto_deploy/distributed/trtllm.py (2)
  • trtllm_allreduce (27-41)
  • trtllm_allreduce (75-76)
tensorrt_llm/_torch/auto_deploy/custom_ops/dist.py (2)
tensorrt_llm/_torch/auto_deploy/distributed/common.py (3)
  • get_world_size (76-77)
  • all_gather (37-41)
  • all_reduce (44-48)
tensorrt_llm/_torch/auto_deploy/distributed/trtllm.py (4)
  • trtllm_allgather (22-25)
  • trtllm_allgather (72-73)
  • trtllm_allreduce (27-41)
  • trtllm_allreduce (75-76)
tensorrt_llm/_torch/auto_deploy/distributed/trtllm.py (1)
tensorrt_llm/_torch/auto_deploy/distributed/common.py (1)
  • all_reduce (44-48)
🪛 Ruff (0.14.5)
tensorrt_llm/_torch/auto_deploy/custom_ops/dist.py

21-21: Unused function argument: sizes

(ARG001)


33-33: Unused function argument: sizes

(ARG001)


75-75: Unused function argument: sizes

(ARG001)

tensorrt_llm/_torch/auto_deploy/distributed/trtllm.py

75-75: Unused function argument: tensor

(ARG001)


75-75: Unused function argument: op

(ARG001)


75-75: Unused function argument: all_reduce_params

(ARG001)


76-76: Avoid specifying long messages outside the exception class

(TRY003)


115-115: Unused function argument: residual

(ARG001)


115-115: Unused function argument: norm_weight

(ARG001)


115-115: Unused function argument: eps

(ARG001)

🔇 Additional comments (5)
tensorrt_llm/_torch/auto_deploy/utils/node_utils.py (1)

308-316: is_dist_op correctly expanded to cover TRT-LLM dist ops.

The updated docstring and dist_ops set are consistent with the new torch vs TRT-LLM split, and using the OpOverloadPackets here keeps matching robust across .default overloads. No further changes needed.

tensorrt_llm/_torch/auto_deploy/custom_ops/dist.py (1)

1-5: Clean up unused sizes parameters in all_gather variants to satisfy Ruff ARG001 warnings.

Verification confirms the analysis is correct:

  • sizes is unused in torch_dist_all_gather (line 20), torch_dist_all_gather_fake (line 33), and trtllm_dist_all_gather_fake (line 75)
  • sizes is correctly used in trtllm_dist_all_gather (line 64) where it's passed through to trtllm_dist.trtllm_allgather()

The suggested approach of adding del sizes is valid for maintaining API compatibility while silencing Ruff's unused argument warnings. Apply the diff to the three functions identified in the original review comment.

⛔ Skipped due to learnings
Learnt from: tshmilnvidia
Repo: NVIDIA/TensorRT-LLM PR: 5488
File: cpp/tensorrt_llm/executor/cache_transmission/nixl_utils/transferAgent.cpp:507-517
Timestamp: 2025-08-25T08:48:39.694Z
Learning: When reviewing potential compilation errors related to function parameter types, always check for type aliases using `using` declarations that might make seemingly incompatible types equivalent. RegisterDescs = MemoryDescs in TensorRT-LLM's transfer agent code.
tensorrt_llm/_torch/auto_deploy/distributed/trtllm.py (2)

43-68: Renamed TRT‑LLM fused residual RMSNorm op wiring looks correct

The new dist::trtllm_fused_allreduce_residual_rmsnorm op is still driven through trtllm_allreduce with AllReduceParams(fusion_op=AllReduceFusionOp.RESIDUAL_RMS_NORM, ...), so the fused behavior should be identical to the old name while making the backend explicit. The fake implementation returning two empty_like(tensor) tensors is sufficient for meta/device tracing and keeps the signature aligned.

No issues from a correctness or API‑surface perspective.


120-122: Availability helper correctly ties TRT‑LLM ops to both import success and MPI

is_trtllm_op_available() now explicitly documents and enforces that TRT‑LLM ops are only considered available when the imports succeeded (TRTLLM_OP_AVAILABLE) and the runtime is under MPI (is_ompi()). That aligns well with the intent to reserve TRT‑LLM fused paths for MPI mode and use the torch fallback otherwise.

You may want to confirm that the higher‑level AutoDeploy transforms are exclusively checking is_trtllm_op_available() (and not just TRTLLM_OP_AVAILABLE) when deciding between the TRT‑LLM vs torch fused ops.

tensorrt_llm/_torch/auto_deploy/custom_ops/quant.py (1)

237-305: Now let me check where this quant.py module is imported and whether there's any conditional loading:

Let me search for where this quant module is imported and check for availability patterns:

Now let me search the codebase for where quant.py is imported and check for guards:

Based on the verification, I can now provide the final rewritten review comment:

Backend‑specific fused FP8 linear+all‑reduce ops are correctly structured

The separation into torch_fused_fp8_linear_all_reduce (PyTorch dist) and trtllm_fused_fp8_linear_all_reduce (TRT‑LLM allreduce) is sound. Both consistently reuse torch_quant_fp8_linear, keeping shapes/dtypes aligned across backends. The fake registrations correctly delegate only to the FP8 linear op, avoiding dist/TRT‑LLM calls during tracing, which is correct.

Two minor polish suggestions (not blockers):

  • For consistency: the torch path calls dist.all_reduce() directly on the imported module, while the TRT‑LLM path goes through a helper. Consider standardizing on a wrapper import for uniformity across files.
  • The module imports trtllm_dist unconditionally at the top level, so if TRT‑LLM is unavailable, quant.py fails to load entirely (early failure is safer than late call-time errors). No additional guards needed—the current design prevents accidental calls when unavailable.

@MrGeva MrGeva force-pushed the egeva/template_dist_patterns branch from 36f7a59 to 81bb39d Compare November 19, 2025 13:43
@MrGeva
Copy link
Collaborator Author

MrGeva commented Nov 19, 2025

/bot run

@tensorrt-cicd
Copy link
Collaborator

PR_Github #25054 [ run ] triggered by Bot. Commit: 81bb39d

@MrGeva
Copy link
Collaborator Author

MrGeva commented Nov 19, 2025

/bot run

@tensorrt-cicd
Copy link
Collaborator

PR_Github #25061 [ run ] triggered by Bot. Commit: 168b656

@tensorrt-cicd
Copy link
Collaborator

PR_Github #25054 [ run ] completed with state ABORTED. Commit: 81bb39d
LLM/main/L0_MergeRequest_PR #18935 (Blue Ocean) completed with status: ABORTED

@tensorrt-cicd
Copy link
Collaborator

PR_Github #25061 [ run ] completed with state SUCCESS. Commit: 168b656
/LLM/main/L0_MergeRequest_PR pipeline #18941 completed with status: 'FAILURE'

@MrGeva MrGeva requested a review from lucaslie November 20, 2025 06:24
@MrGeva
Copy link
Collaborator Author

MrGeva commented Nov 20, 2025

/bot run

@tensorrt-cicd
Copy link
Collaborator

PR_Github #25159 [ run ] triggered by Bot. Commit: 596c643

@tensorrt-cicd
Copy link
Collaborator

PR_Github #25159 [ run ] completed with state SUCCESS. Commit: 596c643
/LLM/main/L0_MergeRequest_PR pipeline #19019 completed with status: 'FAILURE'

@MrGeva
Copy link
Collaborator Author

MrGeva commented Nov 20, 2025

/bot run

@tensorrt-cicd
Copy link
Collaborator

PR_Github #25194 [ run ] triggered by Bot. Commit: 596c643

@tensorrt-cicd
Copy link
Collaborator

PR_Github #25194 [ run ] completed with state SUCCESS. Commit: 596c643
/LLM/main/L0_MergeRequest_PR pipeline #19050 completed with status: 'FAILURE'

@MrGeva
Copy link
Collaborator Author

MrGeva commented Nov 22, 2025

/bot run

@tensorrt-cicd
Copy link
Collaborator

PR_Github #25413 [ run ] triggered by Bot. Commit: 596c643

@tensorrt-cicd
Copy link
Collaborator

PR_Github #25413 [ run ] completed with state SUCCESS. Commit: 596c643
/LLM/main/L0_MergeRequest_PR pipeline #19229 completed with status: 'FAILURE'

@MrGeva
Copy link
Collaborator Author

MrGeva commented Nov 22, 2025

/bot run

@tensorrt-cicd
Copy link
Collaborator

PR_Github #25432 [ run ] triggered by Bot. Commit: 596c643

@tensorrt-cicd
Copy link
Collaborator

PR_Github #25432 [ run ] completed with state SUCCESS. Commit: 596c643
/LLM/main/L0_MergeRequest_PR pipeline #19246 completed with status: 'SUCCESS'
Pipeline passed with automatic retried tests. Check the rerun report for details.

@MrGeva
Copy link
Collaborator Author

MrGeva commented Nov 24, 2025

/bot run

@tensorrt-cicd
Copy link
Collaborator

PR_Github #25574 [ run ] triggered by Bot. Commit: 572a89c

@MrGeva
Copy link
Collaborator Author

MrGeva commented Nov 30, 2025

/bot run

@tensorrt-cicd
Copy link
Collaborator

PR_Github #26289 [ run ] triggered by Bot. Commit: a7867e6

@tensorrt-cicd
Copy link
Collaborator

PR_Github #26289 [ run ] completed with state DISABLED
L0 testing is limited to prioritized users. User MrGeva is not in the prioritized list. L0 testing cannot be triggered.

@MrGeva
Copy link
Collaborator Author

MrGeva commented Nov 30, 2025

/bot run

@tensorrt-cicd
Copy link
Collaborator

PR_Github #26299 [ run ] triggered by Bot. Commit: eaa6b56

@tensorrt-cicd
Copy link
Collaborator

PR_Github #26299 [ run ] completed with state DISABLED
L0 testing is limited to prioritized users. User MrGeva is not in the prioritized list. L0 testing cannot be triggered.

@github-project-automation github-project-automation bot moved this from Backlog to In review in AutoDeploy Board Nov 30, 2025
@MrGeva
Copy link
Collaborator Author

MrGeva commented Nov 30, 2025

/bot run

@tensorrt-cicd
Copy link
Collaborator

PR_Github #26315 [ run ] triggered by Bot. Commit: eaa6b56

@tensorrt-cicd
Copy link
Collaborator

PR_Github #26315 [ run ] completed with state SUCCESS. Commit: eaa6b56
/LLM/main/L0_MergeRequest_PR pipeline #19981 completed with status: 'FAILURE'

@MrGeva
Copy link
Collaborator Author

MrGeva commented Dec 1, 2025

/bot run

Signed-off-by: Eran Geva <19514940+MrGeva@users.noreply.github.com>

fixed tests, readme, removed rms torch pattern

Signed-off-by: Eran Geva <19514940+MrGeva@users.noreply.github.com>

removed legacy names

Signed-off-by: Eran Geva <19514940+MrGeva@users.noreply.github.com>

simplified collectives.py

Signed-off-by: Eran Geva <19514940+MrGeva@users.noreply.github.com>

removed torch rms alred op

Signed-off-by: Eran Geva <19514940+MrGeva@users.noreply.github.com>

Fixed CR comments

Signed-off-by: Eran Geva <19514940+MrGeva@users.noreply.github.com>

added dist_backend arg

Signed-off-by: Eran Geva <19514940+MrGeva@users.noreply.github.com>

removed try/catch in trtllm)dist.py

Signed-off-by: Eran Geva <19514940+MrGeva@users.noreply.github.com>
…nced rms test to check strategy

Signed-off-by: Eran Geva <19514940+MrGeva@users.noreply.github.com>
Signed-off-by: Eran Geva <19514940+MrGeva@users.noreply.github.com>
Signed-off-by: Eran Geva <19514940+MrGeva@users.noreply.github.com>
Signed-off-by: Eran Geva <19514940+MrGeva@users.noreply.github.com>
Signed-off-by: Eran Geva <19514940+MrGeva@users.noreply.github.com>
Signed-off-by: Eran Geva <19514940+MrGeva@users.noreply.github.com>
Signed-off-by: Eran Geva <19514940+MrGeva@users.noreply.github.com>
@MrGeva MrGeva force-pushed the egeva/template_dist_patterns branch from 3d9c983 to 7fddd72 Compare December 1, 2025 09:24
@MrGeva
Copy link
Collaborator Author

MrGeva commented Dec 1, 2025

/bot run

@tensorrt-cicd
Copy link
Collaborator

PR_Github #26412 [ run ] triggered by Bot. Commit: 7fddd72

@tensorrt-cicd
Copy link
Collaborator

PR_Github #26412 [ run ] completed with state SUCCESS. Commit: 7fddd72
/LLM/main/L0_MergeRequest_PR pipeline #20068 completed with status: 'SUCCESS'
Pipeline passed with automatic retried tests. Check the rerun report for details.

@MrGeva MrGeva merged commit c9771eb into NVIDIA:main Dec 1, 2025
5 checks passed
@github-project-automation github-project-automation bot moved this from In review to Done in AutoDeploy Board Dec 1, 2025
lucaslie pushed a commit to nv-auto-deploy/TensorRT-LLM that referenced this pull request Dec 3, 2025
Signed-off-by: Eran Geva <19514940+MrGeva@users.noreply.github.com>
MinaHuai pushed a commit to davidmlw/TensorRT-LLM that referenced this pull request Dec 10, 2025
…VIDIA#8779)

The performance results of some kernels could be easily affected by the warm/cold L2 cache status. To achieve more precise profiling results, the L2 cache is cleared for every execution by the circular buffer method for better benchmarking during autotuning.

Signed-off-by: Yukun He <23156053+hyukn@users.noreply.github.com>

[None][infra] Waive failed cases for main branch on 11/25 (NVIDIA#9429)

Signed-off-by: qqiao <qqiao@nvidia.com>

[NVIDIA#8391][chore] test_perf.py to lock clocks read from gpu_configs.yml instead of max freq (NVIDIA#9409)

Signed-off-by: Eran Geva <19514940+MrGeva@users.noreply.github.com>

[None][ci] Move more test stages to use OCI machines (NVIDIA#9395)

Signed-off-by: Yanchao Lu <yanchaol@nvidia.com>
Co-authored-by: Matt Lefebvre <matthewelefebvre@gmail.com>

[None][feat] Improve TRTLLM MoE in small hidden size throughput cases (NVIDIA#9377)

Signed-off-by: Anthony Chang <27950904+rosenrodt@users.noreply.github.com>

[https://nvbugs/5537996][fix] Let KV cache manager block initialization be aware whether it is doing a dry run or not (NVIDIA#9093)

Before this commit, the kv cache manager does the same regardless, which causes a mis-calculation in free memory available to allocate for the KV cache manager, hence causing a crash.

This commit fixes this by letting KV cache manager initialization be aware whether it is doing the dry run or not. If it is a dry run, use the max_tokens setting that is already pre-calculated and filled into kv_cache_config.max_tokens.

Signed-off-by: eopXD <yuehtingc@nvidia.com>

[https://nvbugs/5667922][fix] Update long context evaluation config (NVIDIA#9426)

Signed-off-by: mni <125171826+baize97@users.noreply.github.com>

[None][fix] Mitigate test timeout issues (NVIDIA#9445)

Signed-off-by: Shixiaowei02 <39303645+Shixiaowei02@users.noreply.github.com>

[None][chore] Fix trtllm-eval for PyTorchLLM (NVIDIA#9427)

Signed-off-by: Fanrong Li <23290157+lfr-0531@users.noreply.github.com>

[None][feat] Add a parser to layer-wise benchmarks (NVIDIA#9440)

Signed-off-by: Tailing Yuan <yuantailing@gmail.com>

[None][feat] Support custom chat template for tool calling (NVIDIA#9297)

Signed-off-by: Pengyun Lin <81065165+LinPoly@users.noreply.github.com>

[TRTLLM-8160][feat] Add draft token tree runtime on CDL (NVIDIA#8586)

Signed-off-by: Yue Weng <25103990+yweng0828@users.noreply.github.com>

[None][ci] waive a test (NVIDIA#9458)

Signed-off-by: Yan Chunwei <328693+Superjomn@users.noreply.github.com>

[https://nvbugs/5680905][fix] Relax the MMLU accuracy requirement for DS-v3.2 (NVIDIA#9439)

Signed-off-by: Fanrong Li <23290157+lfr-0531@users.noreply.github.com>

[TRTLLM-8376][feat] top-p optimization (removes redundant softmax) (NVIDIA#9411)

Signed-off-by: ixlmar <206748156+ixlmar@users.noreply.github.com>

[TRTLLM-9490][feat] use FlashInfer's top_k_sampling_from_probs (NVIDIA#9457)

Signed-off-by: ixlmar <206748156+ixlmar@users.noreply.github.com>

[https://nvbugs/5647400] [fix] Enlarged the AllReduce workspace size to 64MB. Added AllReduce strategy to AD config. (NVIDIA#9145)

Signed-off-by: Eran Geva <19514940+MrGeva@users.noreply.github.com>

[TRTLLM-909][feat] Overlap context chunks in pipeline parallel mode (NVIDIA#9308)

Signed-off-by: Robin Kobus <19427718+Funatiq@users.noreply.github.com>

[None][chore] AutoDeploy add multi stream moe pass to default.yaml (NVIDIA#9430)

Signed-off-by: Suyog Gupta <41447211+suyoggupta@users.noreply.github.com>

[https://nvbugs/5685143][fix] avoid cudaFree overlap with cuda graph (NVIDIA#9438)

Signed-off-by: Chuang Zhu <111838961+chuangz0@users.noreply.github.com>

[None][chore] Bump version to 1.2.0rc5 (NVIDIA#9455)

Signed-off-by: Yiqing Yan <yiqingy@nvidia.com>

[TRTLLM-8936][test] Add disagg and wideep multi-node multi-gpu test cases (NVIDIA#9356)

Signed-off-by: FredricZ-2007 <226039983+fredricz-20070104@users.noreply.github.com>

[None][ci] move some slow test cases of DGX-B200 to post merge (NVIDIA#9467)

Signed-off-by: junq <22017000+QiJune@users.noreply.github.com>

[TRTLLM-9293][feat] Enable partial weight loading to support streaming update weights (NVIDIA#9224)

Signed-off-by: shuyix <219646547+shuyixiong@users.noreply.github.com>

[None][infra] Check in most recent lock file from nightly pipeline

Signed-off-by: TensorRT LLM <90828364+tensorrt-cicd@users.noreply.github.com>

[TRTLLM-9264][fix] Add accuracy/unit tests/doc for phi4mm (NVIDIA#9246)

Signed-off-by: Wanli Jiang <35160485+Wanli-Jiang@users.noreply.github.com>

[https://nvbugs/5580099][fix] Cherry pick IMA issue fix from release/1.1 (NVIDIA#9032)

Signed-off-by: Junyi Xu <219237550+JunyiXu-nv@users.noreply.github.com>

[None][chore] Upgrade CuteDSL to 4.3.0 (NVIDIA#9444)

Signed-off-by: Enwei Zhu <21126786+syuoni@users.noreply.github.com>

[None][feat] Support MLA chunked prefill for DeepSeek V3.2 model (NVIDIA#9376)

Signed-off-by: Chang Liu (Enterprise Products) <9713593+chang-l@users.noreply.github.com>

[None][feat] Add environment variable to force spec-dec number of accepted tokens (NVIDIA#9371)

Signed-off-by: Aurelien Chartier <2567591+achartier@users.noreply.github.com>

[None][infra] Update allowed list 2025.11.25 (NVIDIA#9468)

Signed-off-by: Yuanjing Xue <197832395+yuanjingx87@users.noreply.github.com>

[None][infra] Fail the pipeline when slurm ssh dropped (NVIDIA#9157)

Signed-off-by: Yuanjing Xue <197832395+yuanjingx87@users.noreply.github.com>

[None][feat] AutoDeploy: Remove redundant copies in mamba layers (NVIDIA#9461)

Signed-off-by: Chenghao Zhang <211069071+nvchenghaoz@users.noreply.github.com>
Co-authored-by: Suyog Gupta <41447211+suyoggupta@users.noreply.github.com>

[None][feat] AutoDeploy: Add A_log fusion for Mamba layers (NVIDIA#9422)

Signed-off-by: Chenghao Zhang <211069071+nvchenghaoz@users.noreply.github.com>

[None][ci] Waive blackwell test on spec gate. (NVIDIA#9502)

Signed-off-by: Zheyu Fu <zheyuf@NVIDIA.com>

[https://nvbugs/5608930][fix] Fix a typo (NVIDIA#9487)

Signed-off-by: Shixiaowei02 <39303645+Shixiaowei02@users.noreply.github.com>

[NVIDIA#9463][feat] Add revision option to trtllm commands (NVIDIA#9498)

Signed-off-by: Aurelien Chartier <2567591+achartier@users.noreply.github.com>

[TRTLLM-9085][doc] fix math formula rendering issues (NVIDIA#9481)

Signed-off-by: junq <22017000+QiJune@users.noreply.github.com>

[None][chore] update comments in llm_args.py (NVIDIA#9472)

Signed-off-by: junq <22017000+QiJune@users.noreply.github.com>

[None][infra] Check in most recent lock file from nightly pipeline

Signed-off-by: TensorRT LLM <90828364+tensorrt-cicd@users.noreply.github.com>

[https://nvbugs/5680310][fix] Fix ctx only timed out test (NVIDIA#9410)

Signed-off-by: Patrice Castonguay <55748270+pcastonguay@users.noreply.github.com>

[https://nvbugs/5547414][fix] enable case after using local cache model (NVIDIA#9473)

Signed-off-by: Hui Gao <huig@nvidia.com>

[None][fix] Replace PYTORCH_CUDA_ALLOC_CONF with PYTORCH_ALLOC_CONF to fix deprecation warning (NVIDIA#9294)

Signed-off-by: Jiagan Cheng <jiaganc@nvidia.com>

[https://nvbugs/5698581][fix] Init draft tokens for CUDA graph dummy request (NVIDIA#9505)

Signed-off-by: ziyixiong-nv <219238287+ziyixiong-nv@users.noreply.github.com>

[None][infra] Waive failed case in pre-merge on 11/27 (NVIDIA#9507)

Signed-off-by: qqiao <qqiao@nvidia.com>

[TRTLLM-9513][docs] Qwen3 deployment guide (NVIDIA#9488)

Signed-off-by: Lanyu Liao <laliao@laliao-mlt.client.nvidia.com>
Co-authored-by: Lanyu Liao <laliao@laliao-mlt.client.nvidia.com>

[None][chore] revert batch_size=1 to prevent timeout and lower accuracy reference by 0.12% as a WAR (NVIDIA#9447)

Signed-off-by: Lizhi Zhou <1432185+reasonsolo@users.noreply.github.com>
Co-authored-by: Shi Xiaowei <39303645+Shixiaowei02@users.noreply.github.com>

[TRTLLM-9279][infra] Use flexcache for gh200 nodes since they locate in Austin (NVIDIA#9405)

Signed-off-by: qqiao <qqiao@nvidia.com>
Signed-off-by: Emma Qiao <qqiao@nvidia.com>
Co-authored-by: Yanchao Lu <yanchaol@nvidia.com>

[cherry-pick][https://nvbugs/5670793][fix] Solve trtllm-serve launch_disaggregated issue (NVIDIA#9346)

Signed-off-by: xxi <xxi@nvidia.com>

[None][infra] Fix Slurm job script (NVIDIA#9508)

Signed-off-by: Yuanjing Xue <197832395+yuanjingx87@users.noreply.github.com>

[None][fix] change allreduce workspace dtype to torch.int64 to avoid overflow (NVIDIA#9479)

Signed-off-by: Zhenhuan Chen <zhenhuanc@nvidia.com>

[None][feat] add qwen3-next CI test of accuracy on BF16 and NVFP4 (NVIDIA#9330)

Signed-off-by: jiant <107457950+JadoTu@users.noreply.github.com>

[None][fix] fix TP support for DeepSeek-V3.2 on hopper (NVIDIA#9484)

Signed-off-by: Fanrong Li <23290157+lfr-0531@users.noreply.github.com>

[TRTLLM-9389][chore] Refactor AlltoallMethodType. (NVIDIA#9388)

Signed-off-by: Bo Li <22713281+bobboli@users.noreply.github.com>

[https://nvbugs/5674665][chore] Add test coverage for https://nvbugspro.nvidia.com/bug/5674665 (NVIDIA#9518)

Signed-off-by: eopXD <yuehtingc@nvidia.com>

[TRTLLM-7288][infra] Download merged waive list in slurm script (NVIDIA#8999)

Signed-off-by: Yiqing Yan <yiqingy@nvidia.com>
Signed-off-by: Yanchao Lu <yanchaol@nvidia.com>
Co-authored-by: Yanchao Lu <yanchaol@nvidia.com>

[https://nvbugs/5687820][fix] Remove self.abort() in DetokenizedGenerationResult (NVIDIA#9449)

Signed-off-by: Enwei Zhu <21126786+syuoni@users.noreply.github.com>

[NVIDIA#9150][feat] AutoDeploy Nemotron-Flash support (NVIDIA#9504)

Signed-off-by: Lucas Liebenwein <11156568+lucaslie@users.noreply.github.com>

[None] [chore] Update to cutlass 4.3 (NVIDIA#8637)

Signed-off-by: Kaiyu Xie <26294424+kaiyux@users.noreply.github.com>

[https://nvbugs/5637037][chore] Update waive lists. (NVIDIA#9386)

Signed-off-by: Bo Li <22713281+bobboli@users.noreply.github.com>
Signed-off-by: Enwei Zhu <21126786+syuoni@users.noreply.github.com>
Co-authored-by: Enwei Zhu <21126786+syuoni@users.noreply.github.com>

[None][infra] Check in most recent lock file from nightly pipeline

Signed-off-by: TensorRT LLM <90828364+tensorrt-cicd@users.noreply.github.com>

[TRTLLM-8970][infra] Fix generate report when has isolation test result (NVIDIA#8861)

Signed-off-by: qqiao <qqiao@nvidia.com>
Signed-off-by: Emma Qiao <qqiao@nvidia.com>

[https://nvbugs/5685015][fix] Update invalid max_token test (NVIDIA#9435)

Signed-off-by: Junyi Xu <219237550+JunyiXu-nv@users.noreply.github.com>

[None][fix] Fix on-disk cache and revise logger/statistics for AutoTuner. (NVIDIA#9211)

Signed-off-by: Yukun He <23156053+hyukn@users.noreply.github.com>

[https://nvbugs/5689658][test] Fix gpu lock issue running on cluster (NVIDIA#9441)

Signed-off-by: yufeiwu <230315618+yufeiwu-nv@users.noreply.github.com>

[None][chore] add spec_decoding configs in perf benchmark scripts and fix typos (NVIDIA#9533)

Signed-off-by: Lanyu Liao <lancelly@users.noreply.github.com>
Co-authored-by: Lanyu Liao <lancelly@users.noreply.github.com>

[None][fix] Remove FP8 K/V buffer from TRTLLM sparse MLA attention kernel (NVIDIA#9529)

Signed-off-by: Chang Liu (Enterprise Products) <9713593+chang-l@users.noreply.github.com>

[None] [chore] Enhancements and clean up to slurm scripts (NVIDIA#9493)

Signed-off-by: Kaiyu Xie <26294424+kaiyux@users.noreply.github.com>

[None][chore] Revert "[None][fix] change allreduce workspace dtype to torch.int64 t… (NVIDIA#9538)

Signed-off-by: Zhenhuan Chen <zhenhuanc@nvidia.com>

[None][infra] Waive failed cases for main branch on 11/28 (NVIDIA#9539)

Signed-off-by: qqiao <qqiao@nvidia.com>

[None][fix] Pass checkpoint_format to create_input_processor (NVIDIA#9521)

Signed-off-by: Robin Kobus <19427718+Funatiq@users.noreply.github.com>

[TRTLLM-9541][infra] Use artifactory mirror for download.pytorch.org (NVIDIA#9477)

Signed-off-by: ZhanruiSunCh <184402041+ZhanruiSunCh@users.noreply.github.com>
Signed-off-by: Zhanrui Sun <184402041+ZhanruiSunCh@users.noreply.github.com>
Co-authored-by: Yanchao Lu <yanchaol@nvidia.com>

[TRTLLM-9488][feat] add 'disable_flashinfer_sampling' config option (NVIDIA#9454)

Signed-off-by: ixlmar <206748156+ixlmar@users.noreply.github.com>

[None][infra] Waive failed case in pre-merge on 11/28 (NVIDIA#9537)

Signed-off-by: Wangshanshan <30051912+dominicshanshan@users.noreply.github.com>

[None][perf] Helix: improve all-to-all perf for large CP size (NVIDIA#9494)

Signed-off-by: Matthias Jouanneaux <mjoux@nvidia.com>
Signed-off-by: Zheyu Fu <zheyuf@NVIDIA.com>
Co-authored-by: Zheyu Fu <zheyuf@nvidia.com>

[None][feat] support for more accurate AR calculation (NVIDIA#9323)

Signed-off-by: binghanc <176802681+binghanc@users.noreply.github.com>

[TRTLLM-9488][fix] llmapi references (NVIDIA#9547)

Signed-off-by: ixlmar <206748156+ixlmar@users.noreply.github.com>

[NVIDIA#8948][feat] Support custom sharding config (NVIDIA#9143)

Signed-off-by: greg-kwasniewski1 <213329731+greg-kwasniewski1@users.noreply.github.com>

[None][infra] Check in most recent lock file from nightly pipeline

Signed-off-by: TensorRT LLM <90828364+tensorrt-cicd@users.noreply.github.com>

[None][chore] Weekly mass integration of release/1.1 -- rebase (NVIDIA#9522)

Signed-off-by: yunruis <205571022+yunruis@users.noreply.github.com>
Signed-off-by: Mike Iovine <6158008+mikeiovine@users.noreply.github.com>
Signed-off-by: Mike Iovine <miovine@nvidia.com>
Signed-off-by: Wangshanshan <30051912+dominicshanshan@users.noreply.github.com>
Signed-off-by: qgai <qgai@nvidia.com>
Signed-off-by: Balaram Buddharaju <169953907+brb-nv@users.noreply.github.com>
Signed-off-by: Yan Chunwei <328693+Superjomn@users.noreply.github.com>
Signed-off-by: Junyi Xu <219237550+JunyiXu-nv@users.noreply.github.com>
Signed-off-by: Simeng Liu <simengl@nvidia.com>
Signed-off-by: nv-guomingz <137257613+nv-guomingz@users.noreply.github.com>
Signed-off-by: Jin Li <59594262+liji-nv@users.noreply.github.com>
Signed-off-by: Ivy Zhang <25222398+crazydemo@users.noreply.github.com>
Signed-off-by: Vincent Zhang <vinczhang@nvidia.com>
Signed-off-by: peaceh <103117813+peaceh-nv@users.noreply.github.com>
Signed-off-by: Michal Guzek <mguzek@nvidia.com>
Signed-off-by: Michal Guzek <moraxu@users.noreply.github.com>
Signed-off-by: Chang Liu (Enterprise Products) <9713593+chang-l@users.noreply.github.com>
Signed-off-by: leslie-fang25 <leslief@nvidia.com>
Signed-off-by: Shunkang <182541032+Shunkangz@users.noreply.github.co>
Signed-off-by: junq <22017000+QiJune@users.noreply.github.com>
Co-authored-by: yunruis <205571022+yunruis@users.noreply.github.com>
Co-authored-by: sunnyqgg <159101675+sunnyqgg@users.noreply.github.com>
Co-authored-by: brb-nv <169953907+brb-nv@users.noreply.github.com>
Co-authored-by: Yan Chunwei <328693+Superjomn@users.noreply.github.com>
Co-authored-by: JunyiXu-nv <219237550+JunyiXu-nv@users.noreply.github.com>
Co-authored-by: Simeng Liu <109828133+SimengLiu-nv@users.noreply.github.com>
Co-authored-by: Guoming Zhang <137257613+nv-guomingz@users.noreply.github.com>
Co-authored-by: Jin Li <59594262+liji-nv@users.noreply.github.com>
Co-authored-by: Ivy Zhang <25222398+crazydemo@users.noreply.github.com>
Co-authored-by: Vincent Zhang <vcheungyi@163.com>
Co-authored-by: peaceh-nv <103117813+peaceh-nv@users.noreply.github.com>
Co-authored-by: Michal Guzek <moraxu@users.noreply.github.com>
Co-authored-by: Chang Liu <9713593+chang-l@users.noreply.github.com>
Co-authored-by: Leslie Fang <leslief@nvidia.com>
Co-authored-by: Shunkangz <182541032+Shunkangz@users.noreply.github.com>
Co-authored-by: Shunkang <182541032+Shunkangz@users.noreply.github.co>
Co-authored-by: QI JUN <22017000+QiJune@users.noreply.github.com>

[TRTLLM-5971][feat] Integrate helix parallelism (NVIDIA#9342)

Signed-off-by: Balaram Buddharaju <169953907+brb-nv@users.noreply.github.com>

[None][infra] Check in most recent lock file from nightly pipeline

Signed-off-by: TensorRT LLM <90828364+tensorrt-cicd@users.noreply.github.com>

[None][infra] - Request idle time exemption for OCI jobs (NVIDIA#9528)

Signed-off-by: Yanchao Lu <yanchaol@nvidia.com>

[None][infra] Wiave failed tests for main branch on 11/30 (NVIDIA#9555)

Signed-off-by: qqiao <qqiao@nvidia.com>

[None][fix] Fix port conflict in disagg tests (NVIDIA#9474)

Signed-off-by: Junyi Xu <219237550+JunyiXu-nv@users.noreply.github.com>

[None][ci] Split H100_PCIe-PyTorch-Post-Merge test stage (NVIDIA#9558)

Signed-off-by: Yanchao Lu <yanchaol@nvidia.com>

[None][ci] Split H100_PCIe-PyTorch-Post-Merge test stage (NVIDIA#9559)

Signed-off-by: Yanchao Lu <yanchaol@nvidia.com>

[TRTLLM-8958][feat] and [TRTLLM-8960]: create ConfigurableMoE and support TRTLLMGenFusedMoE as backend (NVIDIA#9486)

[None] [feat] Optimize the algorithm part of RocketKV (NVIDIA#9333)

Signed-off-by: yuhangh <58161490+heyuhhh@users.noreply.github.com>

[https://nvbugs/5690172][fix] Fix Qwen3-235B ATP accuracy issue with PDL (NVIDIA#9530)

Signed-off-by: Enwei Zhu <21126786+syuoni@users.noreply.github.com>

[TRTLLM-6222][feat] Extend cute_dsl_nvfp4_gemm to sm103. (NVIDIA#9543)

Signed-off-by: Mindy Li <11663212+limin2021@users.noreply.github.com>

[None][fix] Correct virtual memory allocation alignment (NVIDIA#9491)

Signed-off-by: Yuan Tong <13075180+tongyuantongyu@users.noreply.github.com>

[None][infra] Check in most recent lock file from nightly pipeline

Signed-off-by: TensorRT LLM <90828364+tensorrt-cicd@users.noreply.github.com>

[https://nvbugs/5684703][fix] Unwaive disagg guided decoding test (NVIDIA#9466)

Signed-off-by: Enwei Zhu <21126786+syuoni@users.noreply.github.com>

[https://nvbugs/5503479][fix] Temporarily lower reference accuracy to stabilize CI (NVIDIA#9398)

Signed-off-by: Pengbo Wang <221450789+pengbowang-nv@users.noreply.github.com>

[None][chore] remove qwen3-next accuracy tests (NVIDIA#9534)

Signed-off-by: jiant <107457950+JadoTu@users.noreply.github.com>

[None][doc] fix mtp.py typo (NVIDIA#9307)

Signed-off-by: liugaoji <757394026@qq.com>

[None][feat] add chat template kwargs support to longbench-v2 (NVIDIA#9544)

Signed-off-by: Fanrong Li <23290157+lfr-0531@users.noreply.github.com>

[NVIDIA#9496][fix] AutoDeploy: remove auto-tuner from nvfp4_gemm forward (NVIDIA#9497)

Signed-off-by: Neta Zmora <96238833+nzmora-nvidia@users.noreply.github.com>

[None][fix] Replace hash method with unique_id for cutedsl MoE runners. (NVIDIA#9569)

Signed-off-by: Yukun He <23156053+hyukn@users.noreply.github.com>

[None][chore] refactor disaggregated scripts to use named arguments (NVIDIA#9581)

Signed-off-by: Zhenhuan Chen <zhenhuanc@nvidia.com>

[TRTLLM-6222][feat] Several perf opt for cuteDSL nvf4 gemm (NVIDIA#9428)

Signed-off-by: Yuhan Li <51736452+liyuhannnnn@users.noreply.github.com>

[None][chore] reduce the layers of the `devel` docker image (NVIDIA#9077)

Signed-off-by: Martin Marciniszyn Mehringer <11665257+MartinMarciniszyn@users.noreply.github.com>

[https://nvbugs/5651854][infra] Enable perf metrics during accuracy testing (NVIDIA#9140)

[None][fix] Skip Allreduce init for Attention DP (NVIDIA#9542)

Signed-off-by: Enwei Zhu <21126786+syuoni@users.noreply.github.com>

[None][test] [None][test] Waive main branch test failures 12/1 (NVIDIA#9566)

Signed-off-by: Yanchao Lu <yanchaol@nvidia.com>

[None][ci] Minor change for Slurm scripts (NVIDIA#9561)

Signed-off-by: Yanchao Lu <yanchaol@nvidia.com>

[TRTLLM-6768][infra] Fix params for not updating github status (NVIDIA#6747)

Signed-off-by: Yiqing Yan <yiqingy@nvidia.com>

[None][infra] Update the pytest options after MI (NVIDIA#9579)

Signed-off-by: qqiao <qqiao@nvidia.com>

[TRTLLM-6756][feat] Add Beam Search to TorchSampler (NVIDIA#8509)

Signed-off-by: Stefan Niebler <82932102+stnie@users.noreply.github.com>

[None][chore] Defer exposing context parallel configs (NVIDIA#9552)

Signed-off-by: Balaram Buddharaju <169953907+brb-nv@users.noreply.github.com>

[TRTC-1943][feat] Env vars override support in LLM API (NVIDIA#9104)

Signed-off-by: Venky Ganesh <23023424+venkywonka@users.noreply.github.com>

[None][feat] AutoDeploy: Use the router gemm op for nemotron MOE (NVIDIA#9500)

Signed-off-by: Chenghao Zhang <211069071+nvchenghaoz@users.noreply.github.com>

[NVIDIA#9198][feat] Refactor dist ops in AutoDeploy (NVIDIA#9301)

Signed-off-by: Eran Geva <19514940+MrGeva@users.noreply.github.com>

[None][fix] Prevent YAML partial kv_cache_config from incorrectly overriding the complete kv_cache_config (NVIDIA#9262)

Signed-off-by: Yuening Li <62227368+Yuening-wa@users.noreply.github.com>

[TRTLLM-9085][doc] fix math formula rendering issues in github (NVIDIA#9605)

Signed-off-by: junq <22017000+QiJune@users.noreply.github.com>

[None][feat] Unify nvfp4 gemm backend (NVIDIA#8963)

Signed-off-by: Shijie Wang <jaywan@nvidia.com>
Signed-off-by: Yukun He <23156053+hyukn@users.noreply.github.com>
Signed-off-by: Shijie <jaywan@nvidia.com>
Co-authored-by: Yukun He <23156053+hyukn@users.noreply.github.com>

[None][feat] Add support for KVCache reuse for DSv32 (NVIDIA#9383)

Signed-off-by: Iman Tabrizian <10105175+tabrizian@users.noreply.github.com>

[None][infra] Check in most recent lock file from nightly pipeline

Signed-off-by: TensorRT LLM <90828364+tensorrt-cicd@users.noreply.github.com>

[None][chroe] Polish qwen3-next modeling code. (NVIDIA#8902)

Signed-off-by: nv-guomingz <137257613+nv-guomingz@users.noreply.github.com>

[https://nvbugs/5703953][fix] Use random port for disagg tests (NVIDIA#9582)

Signed-off-by: Junyi Xu <219237550+JunyiXu-nv@users.noreply.github.com>

[None][fix] Waive gb200 (NVIDIA#9580)

Signed-off-by: Xin He (SW-GPU) <200704525+xinhe-nv@users.noreply.github.com>

[FMDL-1328][feat] Add support for nano-v3 and super-v3 with pytorch backend (NVIDIA#9261)

Signed-off-by: Wanli Jiang <35160485+Wanli-Jiang@users.noreply.github.com>

[https://nvbugs/5582091][test] increase warmup times in testing for multi-gpu cases (NVIDIA#9578)

Signed-off-by: Ruodi Lu <ruodil@users.noreply.github.com>
Co-authored-by: Ruodi Lu <ruodil@users.noreply.github.com>

[None][chore] Add failed cases into waives.txt (NVIDIA#9588)

Signed-off-by: xinhe-nv <200704525+xinhe-nv@users.noreply.github.com>

[https://nvbugs/5702793][fix] Fix uncontiguous tensor view (NVIDIA#9576)

Signed-off-by: shuyix <219646547+shuyixiong@users.noreply.github.com>

[None][infra] Waive failed cases for main branch (NVIDIA#9615)

Signed-off-by: qqiao <qqiao@nvidia.com>

[TRTLLM-9488][feat] use FlashInfer.sampling by default (NVIDIA#9545)

Signed-off-by: ixlmar <206748156+ixlmar@users.noreply.github.com>

[None][infra] Update allowlist 2025/12/01 (NVIDIA#9616)

Signed-off-by: Yuanjing Xue <197832395+yuanjingx87@users.noreply.github.com>

[None][infra] Remove an invalid test name in waives.txt (NVIDIA#9620)

Signed-off-by: qqiao <qqiao@nvidia.com>

Lock the gpu clocks in L0 perf tests (NVIDIA#9585)

Signed-off-by: Eran Geva <19514940+MrGeva@users.noreply.github.com>

[TRTLLM-9466][test] Evaluate helix parallelism with DSV3 Lite (NVIDIA#9597)

Signed-off-by: Balaram Buddharaju <169953907+brb-nv@users.noreply.github.com>

[None][fix] Extract GPU count from single-node stage names (NVIDIA#9599)

Signed-off-by: Chang Liu (Enterprise Products) <9713593+chang-l@users.noreply.github.com>

[https://nvbugs/5667774][fix] Refine Piecewise Cuda Graph Condition for DP (NVIDIA#9393)

Signed-off-by: Jin Li <59594262+liji-nv@users.noreply.github.com>

[TRTLLM-9144][fix] enhance RPC robustness (NVIDIA#8711)

Signed-off-by: Superjomn <328693+Superjomn@users.noreply.github.com>
Signed-off-by: Erin Ho <14718778+hchings@users.noreply.github.com>
Signed-off-by: Yan Chunwei <328693+Superjomn@users.noreply.github.com>
Co-authored-by: Erin Ho <14718778+hchings@users.noreply.github.com>

[https://nvbugs/5627710][fix] Fix synchronization bugs in KvCacheTransferManager that can cause corrupted blocks (NVIDIA#9056)

Signed-off-by: thorjohnsen <41591019+thorjohnsen@users.noreply.github.com>
Signed-off-by: Thor Johnsen <41591019+thorjohnsen@users.noreply.github.com>
Co-authored-by: Iman Tabrizian <10105175+tabrizian@users.noreply.github.com>
Co-authored-by: Robin Kobus <19427718+Funatiq@users.noreply.github.com>

[TRTLLM-8980][test] Clean up spec dec tests in test_llm_api_pytorch (NVIDIA#8889)

Signed-off-by: Mike Iovine <6158008+mikeiovine@users.noreply.github.com>
Signed-off-by: Mike Iovine <miovine@nvidia.com>

[NVIDIA#9150][feat] Add code for nano v3 to custom implementation in AD (NVIDIA#9465)

* Why?

We would like to show an alternative to monkey-patching in AutoDeploy.

* What?

This commit builds on the existing custom model implementation for
NemotronH and adds the bits relevant for MoE layers.

Part of NVIDIA#9150.

Signed-off-by: William Zhang <133824995+2ez4bz@users.noreply.github.com>

[NVIDIA#9150][feat] AutoDeploy: reviewer comments for NVIDIA#9150 (NVIDIA#9527)

Signed-off-by: Lucas Liebenwein <11156568+lucaslie@users.noreply.github.com>

[https://nvbugs/5651854][fix] Fix dist-serving perf by clearing CPU affinity (NVIDIA#9549)

Signed-off-by: Shixiaowei02 <39303645+Shixiaowei02@users.noreply.github.com>

[NVIDIA#9550][feat] AutoDeploy: Add NVFP4 Cutlass MoE kernels  (NVIDIA#9551)

Signed-off-by: Neta Zmora <96238833+nzmora-nvidia@users.noreply.github.com>

[https://nvbugs/5688388][fix] fix: Reducing num request in disagg test to speed up (NVIDIA#9598)

Signed-off-by: Patrice Castonguay <55748270+pcastonguay@users.noreply.github.com>

[TRTLLM-8946][feat] Improved heuristics to detect shardable regions (NVIDIA#9200)

Signed-off-by: Lucas Liebenwein <11156568+lucaslie@users.noreply.github.com>
Signed-off-by: greg-kwasniewski1 <213329731+greg-kwasniewski1@users.noreply.github.com>
Co-authored-by: Lucas Liebenwein <11156568+lucaslie@users.noreply.github.com>

[NVIDIA#9632][feat] Support EXTRA_WHEEL_BUILD_ARGS during wheel build (NVIDIA#9633)

Signed-off-by: Yu Chi Li <yuchil@nvidia.com>

[None][chore] Waive test failing on pre-merge (NVIDIA#9638)

Signed-off-by: Balaram Buddharaju <169953907+brb-nv@users.noreply.github.com>

[None][chore] Remove traceback dump for multimodal input processor (NVIDIA#9634)

Signed-off-by: Chang Liu (Enterprise Products) <9713593+chang-l@users.noreply.github.com>

[None][chore] Fix trtllm-eval and move GroupedGemmInputsHelper (NVIDIA#9612)

Signed-off-by: Enwei Zhu <21126786+syuoni@users.noreply.github.com>

[https://nvbugs/5698434][fix] Use separate weight mapper for draft (NVIDIA#9607)

Signed-off-by: Anurag Mukkara <134339030+amukkara@users.noreply.github.com>

[TRTLLM-7101][infra] Reuse passed tests (NVIDIA#6894)

Signed-off-by: Yiqing Yan <yiqingy@nvidia.com>
Co-authored-by: Yanchao Lu <yanchaol@nvidia.com>

[None][test] Remove duplicate test cases (NVIDIA#9623)

Signed-off-by: yufeiwu <230315618+yufeiwu-nv@users.noreply.github.com>

[None][infra] Check in most recent lock file from nightly pipeline

Signed-off-by: TensorRT LLM <90828364+tensorrt-cicd@users.noreply.github.com>

[None][feat] Add RocketKV usage doc and e2e accuracy test on LongBenchV2 (NVIDIA#9572)

Signed-off-by: yuhangh <58161490+heyuhhh@users.noreply.github.com>

[TRTLLM-9242][doc] Add examples showcasing openai compatible APIs (NVIDIA#9520)

Signed-off-by: Junyi Xu <219237550+JunyiXu-nv@users.noreply.github.com>

[None][chore] AutoDeploy update cuda stream manager for multi-device (NVIDIA#9575)

Signed-off-by: Suyog Gupta <41447211+suyoggupta@users.noreply.github.com>

[TRTLLM-9391][chore] Automatically estimate required workspace. (NVIDIA#9535)

Signed-off-by: Bo Li <22713281+bobboli@users.noreply.github.com>

[https://nvbugs/5708475][fix] Fix e2e eval accuracy for helix parallelism (NVIDIA#9647)

Signed-off-by: Balaram Buddharaju <169953907+brb-nv@users.noreply.github.com>

[https://nvbugs/5561153][test] Fix log error for perf test (NVIDIA#9622)

Signed-off-by: FredricZ-2007 <226039983+fredricz-20070104@users.noreply.github.com>

[TRTLLM-8241][feat] Aliasing to comply to LlmArgs (NVIDIA#9586)

Signed-off-by: Pengyun Lin <81065165+LinPoly@users.noreply.github.com>

[None][chore] Add failed cases into waives.txt (NVIDIA#9593)

Signed-off-by: Jie Li <lijie@nvidia.com>
Co-authored-by: Jie Li <lijie@nvidia.com>

[TRTLLM-6842][feat] Support Response API for general purpose (NVIDIA#9392)

Signed-off-by: Junyi Xu <219237550+JunyiXu-nv@users.noreply.github.com>

[None][test] Update Qwen3-next accuracy testing by setting the cuda … (NVIDIA#9613)

Signed-off-by: nv-guomingz <137257613+nv-guomingz@users.noreply.github.com>

[None][feat] update trtllm-gen nvfp4 kernels with better performance (NVIDIA#9510)

Signed-off-by: Perkz Zheng <67892460+PerkzZheng@users.noreply.github.com>

[None][doc] Replace the tensorrt icon with torch icon on overview.md (NVIDIA#9644)

Signed-off-by: nv-guomingz <137257613+nv-guomingz@users.noreply.github.com>

[https://nvbugs/5705197][chore] Unwaive timeout disagg tests (NVIDIA#9637)

Signed-off-by: Patrice Castonguay <55748270+pcastonguay@users.noreply.github.com>

[https://nvbugs/5552132][fix] Enable LoRa for GPT OSS Torch (NVIDIA#8253)

Signed-off-by: Michal Guzek <mguzek@nvidia.com>

[None][fix] Fix wide ep MoE error (NVIDIA#9642)

Signed-off-by: Iman Tabrizian <10105175+tabrizian@users.noreply.github.com>

[https://nvbugs/5702795][fix] Remove the warning message for aten.log. (NVIDIA#9665)

Signed-off-by: nv-guomingz <137257613+nv-guomingz@users.noreply.github.com>

[https://nvbugs/5693853][fix] Fix error handling when querying machin… (NVIDIA#9483)

Signed-off-by: Gal Hubara Agam <96368689+galagam@users.noreply.github.com>

[OMNIML-2932] [feat] nvfp4 awq support (NVIDIA#8698)

Signed-off-by: weimingc <17592131+meenchen@users.noreply.github.com>

[NVIDIA#9643][fix] AutoDeploy: fix nano sharding config (NVIDIA#9668)

Signed-off-by: Lucas Liebenwein <11156568+lucaslie@users.noreply.github.com>

[NVIDIA#9147][feat] AutoDeploy: Draft Target Speculative Decoding (NVIDIA#9275)

Signed-off-by: Govind Ramnarayan <105831528+govind-ramnarayan@users.noreply.github.com>

[None][feat] Update Qwen3CodeToolParser to align tool-calling parameters (NVIDIA#9540)

Signed-off-by: Wanli Jiang <35160485+Wanli-Jiang@users.noreply.github.com>

[TRTLLM-7181][infra] Generate test results when pytest timeout happens (NVIDIA#9396)

Signed-off-by: Yiqing Yan <yiqingy@nvidia.com>

[None][infra] Check in most recent lock file from nightly pipeline

Signed-off-by: TensorRT LLM <90828364+tensorrt-cicd@users.noreply.github.com>

[TRTLLM-9522][fix] restore `trtllm-serve mm_embedding_serve` (NVIDIA#9669)

[TRTLLM-5093][infra] Write env variables to a file in the interactive debug session (NVIDIA#6792)

Signed-off-by: Yiqing Yan <yiqingy@nvidia.com>

[None][fix] fix error when processing batches containing both text and mm data (NVIDIA#8381)

Signed-off-by: Nekofish-L <liuxiangyang@mail.ustc.edu.cn>

[TRTLLM-7073][feat] Support torch compile for PP for Llama and DeepSeekV3 (NVIDIA#7838)

Signed-off-by: Jin Li <59594262+liji-nv@users.noreply.github.com>

[None][feat] Add weights initialization and context phase parser to layer-wise benchmarks (NVIDIA#9667)

Signed-off-by: Tailing Yuan <yuantailing@gmail.com>

[TRTLLM-8274][feat] Check if executor is shutdown in /health entrypoint (NVIDIA#9057)

Signed-off-by: Junyi Xu <219237550+JunyiXu-nv@users.noreply.github.com>

[NVIDIA#8733][feat] Add Llama4 MoE handling to AutoDeploy (NVIDIA#9556)

Signed-off-by: Tal Cherckez <127761168+tcherckez-nvidia@users.noreply.github.com>
Signed-off-by: tcherckez-nvidia <127761168+tcherckez-nvidia@users.noreply.github.com>
Co-authored-by: Neta Zmora <nzmora@nvidia.com>

[None][ci] unwaive tests (NVIDIA#9651)

Signed-off-by: Yan Chunwei <328693+Superjomn@users.noreply.github.com>

[None][feat] Add NIXL-LIBFABRIC support (NVIDIA#9225)

Signed-off-by: Yoray Zack <62789610+zackyoray@users.noreply.github.com>
Signed-off-by: zackyoray <yorayz@nvidia.com>

[None][test] rename wide ep and disagg metric name in perf test (NVIDIA#9704)

Signed-off-by: Ruodi Lu <ruodil@users.noreply.github.com>
Co-authored-by: Ruodi Lu <ruodil@users.noreply.github.com>

[https://nvbugs/5467531][fix] Unwaive fused_moe all to all test with … (NVIDIA#9617)

Signed-off-by: Jin Li <59594262+liji-nv@users.noreply.github.com>

[None][fix] Recover TRTLLM MoE Perf for DEP (NVIDIA#9562)

Signed-off-by: Anthony Chang <27950904+rosenrodt@users.noreply.github.com>

[None][chore] Add failed cases into waives.txt (NVIDIA#9662)

Signed-off-by: Xin He (SW-GPU) <200704525+xinhe-nv@users.noreply.github.com>
Signed-off-by: xinhe-nv <200704525+xinhe-nv@users.noreply.github.com>
Signed-off-by: Yanchao Lu <yanchaol@nvidia.com>
Co-authored-by: Yanchao Lu <yanchaol@nvidia.com>

[None][fix] Fix TLLM_SPEC_DECODE_FORCE_NUM_ACCEPTED_TOKENS for MTP/EAGLE (NVIDIA#9608)

Signed-off-by: Aurelien Chartier <2567591+achartier@users.noreply.github.com>

[None][infra] Add container notices and documentation (NVIDIA#9185)

Signed-off-by: Parker Drake <pdrake@nvidia.com>

[TRTLLM-5312][infra] Add triton trigger rules (NVIDIA#6440)

Signed-off-by: Yiqing Yan <yiqingy@nvidia.com>

[None][doc] Add feature docs for helix parallelism (NVIDIA#9684)

Signed-off-by: Balaram Buddharaju <169953907+brb-nv@users.noreply.github.com>

[TRTLLM-9579][infra] Set mergeWaiveList stage UNSTABLE when there is any issue (NVIDIA#9692)

Signed-off-by: Yiqing Yan <yiqingy@nvidia.com>

[None][doc] Added line about partial reuse (NVIDIA#7846)

Signed-off-by: thorjohnsen <41591019+thorjohnsen@users.noreply.github.com>

[TRTLLM-8920][feat] decouple disagg service from fastapi (NVIDIA#8714)

Signed-off-by: Lizhi Zhou <1432185+reasonsolo@users.noreply.github.com>

[https://nvbugs/5633340][fix] start disagg workers and servers on free ports (NVIDIA#9694)

Signed-off-by: Lizhi Zhou <1432185+reasonsolo@users.noreply.github.com>

[TRTLLM-9562] [doc] Add Deployment Guide for Kimi K2 Thinking on TensorRT LLM - Blackwell (NVIDIA#9711)

Signed-off-by: Kaiyu Xie <26294424+kaiyux@users.noreply.github.com>

[NVIDIA#9602][feat] AutoDeploy: Support TRTLLM Sampler (NVIDIA#9641)

Signed-off-by: Govind Ramnarayan <105831528+govind-ramnarayan@users.noreply.github.com>

[None][infra] Check in most recent lock file from nightly pipeline

Signed-off-by: TensorRT LLM <90828364+tensorrt-cicd@users.noreply.github.com>

[None] [tests] Unwaive EPLB tests (NVIDIA#9625)

Signed-off-by: Kaiyu Xie <26294424+kaiyux@users.noreply.github.com>

[https://nvbugs/5518713][test] Refactor core test lists by merging with llm_perf_cluster.yml (NVIDIA#9714)

Signed-off-by: yufeiwu <230315618+yufeiwu-nv@users.noreply.github.com>

[TRTLLM-7136][feat] Update load_weights method to include mapping parameter in checkpoint loaders (NVIDIA#9583)

Signed-off-by: Robin Kobus <19427718+Funatiq@users.noreply.github.com>

[None][refactor] Improve request processing function in sampler (NVIDIA#9671)

Signed-off-by: Robin Kobus <19427718+Funatiq@users.noreply.github.com>

[https://nvbugs/5670672][fix] Fix flaky KV connector tests (NVIDIA#9676)

Signed-off-by: jthomson04 <jwillthomson19@gmail.com>

[None][infra] Update allowed list 20251204 (NVIDIA#9718)

Signed-off-by: Yuanjing Xue <197832395+yuanjingx87@users.noreply.github.com>

[None][feat] AutoDeploy: Perf optimization for Attention and rmsnorm (NVIDIA#9719)

Signed-off-by: Chenghao Zhang <211069071+nvchenghaoz@users.noreply.github.com>

[None][chore] Waive flakey disagg tests (NVIDIA#9749)

Signed-off-by: Mike Iovine <miovine@nvidia.com>

[https://nvbugs/5601682][fix] Fix cacheTransceiver hang (NVIDIA#9311)

Signed-off-by: Iman Tabrizian <10105175+tabrizian@users.noreply.github.com>
Signed-off-by: Mike Iovine <6158008+mikeiovine@users.noreply.github.com>
Signed-off-by: Mike Iovine <miovine@nvidia.com>

[TRTLLM-9199][docs] KV Connector Docs (NVIDIA#9325)

Signed-off-by: jthomson04 <jwillthomson19@gmail.com>
Co-authored-by: coderabbitai[bot] <136622811+coderabbitai[bot]@users.noreply.github.com>
Signed-off-by: Mike Iovine <6158008+mikeiovine@users.noreply.github.com>
Signed-off-by: Mike Iovine <miovine@nvidia.com>

[TRTLLM-9160][doc] add doc to llm_runtime.py (NVIDIA#9482)

Signed-off-by: Yan Chunwei <328693+Superjomn@users.noreply.github.com>
Signed-off-by: Mike Iovine <6158008+mikeiovine@users.noreply.github.com>
Signed-off-by: Mike Iovine <miovine@nvidia.com>

[None][doc] VDR 1.0 trtllm-serve doc enhancement (NVIDIA#9443)

Signed-off-by: Pengyun Lin <81065165+LinPoly@users.noreply.github.com>
Signed-off-by: Mike Iovine <6158008+mikeiovine@users.noreply.github.com>
Signed-off-by: Mike Iovine <miovine@nvidia.com>

[TRTLLM-9086][doc] Clean up TODOs in documentation (NVIDIA#9292)

Signed-off-by: junq <22017000+QiJune@users.noreply.github.com>
Signed-off-by: Mike Iovine <6158008+mikeiovine@users.noreply.github.com>
Signed-off-by: Mike Iovine <miovine@nvidia.com>

[TRTLLM-9157][doc] Guided decoding doc improvement (NVIDIA#9359)

Signed-off-by: Enwei Zhu <21126786+syuoni@users.noreply.github.com>
Signed-off-by: Mike Iovine <6158008+mikeiovine@users.noreply.github.com>
Signed-off-by: Mike Iovine <miovine@nvidia.com>

[None][infra] Updated Linux installation guide (NVIDIA#9485)

Signed-off-by: Yiqing Yan <yiqingy@nvidia.com>
Co-authored-by: Yanchao Lu <yanchaol@nvidia.com>
Signed-off-by: Mike Iovine <6158008+mikeiovine@users.noreply.github.com>
Signed-off-by: Mike Iovine <miovine@nvidia.com>

[TRTLLM-9075][doc] refine the slurm examples (NVIDIA#9548)

Signed-off-by: Yan Chunwei <328693+Superjomn@users.noreply.github.com>
Signed-off-by: Mike Iovine <6158008+mikeiovine@users.noreply.github.com>
Signed-off-by: Mike Iovine <miovine@nvidia.com>

[TRTLLM-9093][doc] update hyper links in overview (NVIDIA#9568)

Signed-off-by: junq <22017000+QiJune@users.noreply.github.com>
Signed-off-by: Mike Iovine <6158008+mikeiovine@users.noreply.github.com>
Signed-off-by: Mike Iovine <miovine@nvidia.com>

[TRTLLM-9092][doc] link to modelopt checkpoints in quick start guide (NVIDIA#9571)

Signed-off-by: junq <22017000+QiJune@users.noreply.github.com>
Signed-off-by: Mike Iovine <6158008+mikeiovine@users.noreply.github.com>
Signed-off-by: Mike Iovine <miovine@nvidia.com>

[None][infra] Check in most recent lock file from nightly pipeline

Signed-off-by: TensorRT LLM <90828364+tensorrt-cicd@users.noreply.github.com>

[None][fix] Fix triton moe load_weight (NVIDIA#9649)

Signed-off-by: shuyix <219646547+shuyixiong@users.noreply.github.com>

[None][fix] fix a bug: deepseek_fp8_block_scales in TRTLLMGEN-MoE use 2D x_sf instead of 1D (NVIDIA#9658)

Signed-off-by: xxi <xxi@nvidia.com>

[TRTLLM-9372][feat] Enable CuteDSL MoE with Large EP (NVIDIA#9592)

Signed-off-by: Enwei Zhu <21126786+syuoni@users.noreply.github.com>

[TRTLLM-9522][chore] implement default `attach_multimodal_embeddings` (NVIDIA#9664)

Signed-off-by: ixlmar <206748156+ixlmar@users.noreply.github.com>

[TRTLLM-9660][feat] Convert cuteDSL GEMM to opt-in feature (NVIDIA#9682)

Signed-off-by: Jonas Li <6110159+longlee0622@users.noreply.github.com>
Co-authored-by: Kaiyu Xie <26294424+kaiyux@users.noreply.github.com>

[None][fix] enable hmac in RPC (NVIDIA#9745)

Signed-off-by: Superjomn <328693+Superjomn@users.noreply.github.com>

[None][infra] Check in most recent lock file from nightly pipeline

Signed-off-by: TensorRT LLM <90828364+tensorrt-cicd@users.noreply.github.com>

[https://nvbugs/5703953][fix] Preserving ip:port for trtllm-serve before initializing llm (NVIDIA#9646)

Signed-off-by: Junyi Xu <219237550+JunyiXu-nv@users.noreply.github.com>

[None][infra] Waive failed cases for main branch on 12/07 (NVIDIA#9769)

Signed-off-by: qqiao <qqiao@nvidia.com>

[None][fix] Several minor fixes to CI setting (NVIDIA#9765)

Signed-off-by: Yanchao Lu <yanchaol@nvidia.com>

[OMNIML-3036][doc] Re-branding TensorRT-Model-Optimizer as Nvidia Model-Optimizer (NVIDIA#9679)

Signed-off-by: Chenjie Luo <chenjiel@nvidia.com>

[None][feat] Enable NCCL_SYMMETRIC as default fallback for AllReduce (NVIDIA#9314)

Signed-off-by: Ludwig Schneider <lschneider@nvidia.com>

[TRTLLM-9000][feat] Add multi-node Perf Tests into CI (NVIDIA#8800)

Signed-off-by: Chenfei Zhang <chenfeiz@nvidia.com>

[None][test] add ntp tolerance in time metrics verification (NVIDIA#9741)

Signed-off-by: zhengd-nv <200704041+zhengd-nv@users.noreply.github.com>

[TRTLLM-9603][feat] Enable ConfigurableMoE test in the CI (NVIDIA#9645)

[https://nvbugs/5422621][test] Add GB 200 WIDEEP test case for RCCA 5422621 (NVIDIA#9506)

Signed-off-by: FredricZ-2007 <226039983+fredricz-20070104@users.noreply.github.com>

[None][fix] Fix two tuning cache miss issues. (NVIDIA#9743)

Signed-off-by: Yukun He <23156053+hyukn@users.noreply.github.com>

[None][infra] Check in most recent lock file from nightly pipeline

Signed-off-by: TensorRT LLM <90828364+tensorrt-cicd@users.noreply.github.com>

[TRTLLM-9706] [doc] Update wide EP documents (NVIDIA#9724)

Signed-off-by: Kaiyu Xie <26294424+kaiyux@users.noreply.github.com>

[https://nvbugs/5666804][test] only adding sampler config for limited models (NVIDIA#9512)

Signed-off-by: Ruodi Lu <ruodil@users.noreply.github.com>
Co-authored-by: Ruodi Lu <ruodil@users.noreply.github.com>
Co-authored-by: yufeiwu-nv <230315618+yufeiwu-nv@users.noreply.github.com>
Co-authored-by: Larry Xu <197874197+LarryXFly@users.noreply.github.com>

[None][infra] Waive failed cases for main on 12/08 (NVIDIA#9773)

Signed-off-by: qqiao <qqiao@nvidia.com>

[None][chore] Move the rocketkv e2e test to post-merge (NVIDIA#9768)

Signed-off-by: Fanrong Li <23290157+lfr-0531@users.noreply.github.com>

[None][chore] Enable tvm_ffi for cute dsl nvfp4_gemm to reduce host overhead. (NVIDIA#9690)

Signed-off-by: Mindy Li <11663212+limin2021@users.noreply.github.com>

[TRTLLM-9431][perf] Enable multistream for Linear Attention in Qwen3-… (NVIDIA#9696)

Signed-off-by: nv-guomingz <137257613+nv-guomingz@users.noreply.github.com>

[None][chore] Remove closed bugs (NVIDIA#9770)

Signed-off-by: xinhe-nv <200704525+xinhe-nv@users.noreply.github.com>

[None][infra] update mooncake in docker images (NVIDIA#9584)

Signed-off-by: zhengd-nv <200704041+zhengd-nv@users.noreply.github.com>
Signed-off-by: Zheng Duan <200704041+zhengd-nv@users.noreply.github.com>

[None][test] Add Kimi k2 WIDEEP perf and accuracy cases (NVIDIA#9686)

Signed-off-by: FredricZ-2007 <226039983+fredricz-20070104@users.noreply.github.com>
Signed-off-by: Kaiyu Xie <26294424+kaiyux@users.noreply.github.com>
Co-authored-by: Kaiyu Xie <26294424+kaiyux@users.noreply.github.com>

[https://nvbugs/5527655][test] Add test case for RCCA 5527655 (NVIDIA#9511)

Signed-off-by: FredricZ-2007 <226039983+fredricz-20070104@users.noreply.github.com>

[http://nvbugs/5649010][fix] fix test_auto_scaling.py::test_worker_restart timeout (NVIDIA#9775)

Signed-off-by: Lizhi Zhou <1432185+reasonsolo@users.noreply.github.com>

[None][fix] Switch AutoDeploy's default allreduce strategy to NCCL (NVIDIA#9666)

Signed-off-by: Eran Geva <19514940+MrGeva@users.noreply.github.com>

[TRTLLM-9506][fix] Fix AR for DeepSeek-R1 2 model path (NVIDIA#9661)

Signed-off-by: qgai <qgai@nvidia.com>

ray + updatew works

trtllm works in async env

trtllm works in sync and async env

ray + updatew works

rebase to the updated verl

server mode

still cherry pick

still cherry pick

still cherry pick

integrated http interface

hang at RyExecutor create workers ray.remote

clean code

use tensorrt_llm.rlhf_utils

Signed-off-by: Liwei Ma <liweim@nvidia.com>

placement, asyncllm, and basic tests
Signed-off-by: Erin Ho <14718778+hchings@users.noreply.github.com>

connect sleep and wakeup; Add support to pass None to update_weights
Signed-off-by: Erin Ho <14718778+hchings@users.noreply.github.com>

Batching ctx for IFB scheduler

Signed-off-by: Yuan Tong <13075180+tongyuantongyu@users.noreply.github.com>

accuracy WAR for TP>1: always use AllReduceStrategy.NCCL, refactored
Signed-off-by: Erin Ho <14718778+hchings@users.noreply.github.com>

fix e2e integration

Signed-off-by: Superjomn <328693+Superjomn@users.noreply.github.com>

update asyncllm, other nits
Signed-off-by: Erin Ho <14718778+hchings@users.noreply.github.com>

fix init setup

Signed-off-by: Erin Ho <14718778+hchings@users.noreply.github.com>

Fix TRTLLMSampler logprobs perf

Signed-off-by: Yuan Tong <13075180+tongyuantongyu@users.noreply.github.com>

fix and cleanup
Signed-off-by: Erin Ho <14718778+hchings@users.noreply.github.com>

fix server

Signed-off-by: Erin Ho <14718778+hchings@users.noreply.github.com>

Revert "Batching ctx for IFB scheduler"

This reverts commit b51aac0

Signed-off-by: Yuan Tong <13075180+tongyuantongyu@users.noreply.github.com>

update & address comments

Signed-off-by: Erin Ho <14718778+hchings@users.noreply.github.com>
codego7250 pushed a commit to codego7250/TensorRT-LLM that referenced this pull request Dec 11, 2025
Signed-off-by: Eran Geva <19514940+MrGeva@users.noreply.github.com>
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment

Labels

None yet

Projects

Archived in project

Development

Successfully merging this pull request may close these issues.

4 participants