Skip to content

Conversation

@syuoni
Copy link
Collaborator

@syuoni syuoni commented Nov 3, 2025

[TRTLLM-9286][feat] Integration of CuteDSL NVFP4 grouped GEMM

Description

This PR integrates CuteDSL NVFP4 grouped GEMM for CuteDSL MoE backend. It supports B200/GB200 NVFP4.

cat > extra_llm_api_options.yaml <<EOF
enable_attention_dp: true
cuda_graph_config:
  max_batch_size: 128
  enable_padding: true
moe_config:
  backend: CUTEDSL
  max_num_tokens: 8192
speculative_config:
  decoding_type: MTP
  num_nextn_predict_layers: 3
EOF

trtllm-eval --model nvidia/DeepSeek-R1-FP4 \
    --tp_size 8 \
    --ep_size 8 \
    --max_num_tokens 6144 \
    --max_seq_len 6144 \
    --kv_cache_free_gpu_memory_fraction 0.8 \
    --extra_llm_api_options extra_llm_api_options.yaml \
    gsm8k

The accuracy on GSM8K looks good:

|Tasks|Version|     Filter     |n-shot|  Metric   |   | Value |   |Stderr|
|-----|------:|----------------|-----:|-----------|---|------:|---|-----:|
|gsm8k|      3|flexible-extract|     5|exact_match|↑  |95.2995|±  |0.5830|
|     |       |strict-match    |     5|exact_match|↑  |95.3753|±  |0.5785|

Test Coverage

PR Checklist

Please review the following before submitting your PR:

  • PR description clearly explains what and why. If using CodeRabbit's summary, please make sure it makes sense.

  • PR Follows TRT-LLM CODING GUIDELINES to the best of your knowledge.

  • Test cases are provided for new code paths (see test instructions)

  • Any new dependencies have been scanned for license and vulnerabilities

  • CODEOWNERS updated if ownership changes

  • Documentation updated as needed

  • The reviewers assigned automatically/manually are appropriate for the PR.

  • Please check this after reviewing the above items as appropriate for this PR.

GitHub Bot Help

/bot [-h] ['run', 'kill', 'skip', 'reuse-pipeline'] ...

Provide a user friendly way for developers to interact with a Jenkins server.

Run /bot [-h|--help] to print this help message.

See details below for each supported subcommand.

Details

run [--reuse-test (optional)pipeline-id --disable-fail-fast --skip-test --stage-list "A10-PyTorch-1, xxx" --gpu-type "A30, H100_PCIe" --test-backend "pytorch, cpp" --add-multi-gpu-test --only-multi-gpu-test --disable-multi-gpu-test --post-merge --extra-stage "H100_PCIe-TensorRT-Post-Merge-1, xxx" --detailed-log --debug(experimental)]

Launch build/test pipelines. All previously running jobs will be killed.

--reuse-test (optional)pipeline-id (OPTIONAL) : Allow the new pipeline to reuse build artifacts and skip successful test stages from a specified pipeline or the last pipeline if no pipeline-id is indicated. If the Git commit ID has changed, this option will be always ignored. The DEFAULT behavior of the bot is to reuse build artifacts and successful test results from the last pipeline.

--disable-reuse-test (OPTIONAL) : Explicitly prevent the pipeline from reusing build artifacts and skipping successful test stages from a previous pipeline. Ensure that all builds and tests are run regardless of previous successes.

--disable-fail-fast (OPTIONAL) : Disable fail fast on build/tests/infra failures.

--skip-test (OPTIONAL) : Skip all test stages, but still run build stages, package stages and sanity check stages. Note: Does NOT update GitHub check status.

--stage-list "A10-PyTorch-1, xxx" (OPTIONAL) : Only run the specified test stages. Examples: "A10-PyTorch-1, xxx". Note: Does NOT update GitHub check status.

--gpu-type "A30, H100_PCIe" (OPTIONAL) : Only run the test stages on the specified GPU types. Examples: "A30, H100_PCIe". Note: Does NOT update GitHub check status.

--test-backend "pytorch, cpp" (OPTIONAL) : Skip test stages which don't match the specified backends. Only support [pytorch, cpp, tensorrt, triton]. Examples: "pytorch, cpp" (does not run test stages with tensorrt or triton backend). Note: Does NOT update GitHub pipeline status.

--only-multi-gpu-test (OPTIONAL) : Only run the multi-GPU tests. Note: Does NOT update GitHub check status.

--disable-multi-gpu-test (OPTIONAL) : Disable the multi-GPU tests. Note: Does NOT update GitHub check status.

--add-multi-gpu-test (OPTIONAL) : Force run the multi-GPU tests in addition to running L0 pre-merge pipeline.

--post-merge (OPTIONAL) : Run the L0 post-merge pipeline instead of the ordinary L0 pre-merge pipeline.

--extra-stage "H100_PCIe-TensorRT-Post-Merge-1, xxx" (OPTIONAL) : Run the ordinary L0 pre-merge pipeline and specified test stages. Examples: --extra-stage "H100_PCIe-TensorRT-Post-Merge-1, xxx".

--detailed-log (OPTIONAL) : Enable flushing out all logs to the Jenkins console. This will significantly increase the log volume and may slow down the job.

--debug (OPTIONAL) : Experimental feature. Enable access to the CI container for debugging purpose. Note: Specify exactly one stage in the stage-list parameter to access the appropriate container environment. Note: Does NOT update GitHub check status.

For guidance on mapping tests to stage names, see docs/source/reference/ci-overview.md
and the scripts/test_to_stage_mapping.py helper.

kill

kill

Kill all running builds associated with pull request.

skip

skip --comment COMMENT

Skip testing for latest commit on pull request. --comment "Reason for skipping build/test" is required. IMPORTANT NOTE: This is dangerous since lack of user care and validation can cause top of tree to break.

reuse-pipeline

reuse-pipeline

Reuse a previous pipeline to validate current commit. This action will also kill all currently running builds associated with the pull request. IMPORTANT NOTE: This is dangerous since lack of user care and validation can cause top of tree to break.

Summary by CodeRabbit

  • New Features

    • Added grouped GEMM kernel support for efficient MOE operations on Blackwell architecture
    • Introduced NVFP4 quantized MOE permutation, unpermutation, and activation operations
    • Added fused MOE implementation with NVFP4 quantization for improved performance
  • Refactor

    • Reorganized activation utilities for better code modularity
  • Chores

    • Updated CuTLASS DSL dependency to version 4.3.0.dev0

@syuoni syuoni force-pushed the cutedsl-moe-ref branch 2 times, most recently from e5376bd to a6716f0 Compare November 10, 2025 11:44
@kaiyux kaiyux changed the title [None][feat] Integration of CuteDSL NVFP4 grouped GEMM [TRTLLM-9286][feat] Integration of CuteDSL NVFP4 grouped GEMM Nov 12, 2025
kaiyux
kaiyux previously approved these changes Nov 12, 2025
@syuoni syuoni self-assigned this Nov 12, 2025
@syuoni syuoni marked this pull request as ready for review November 12, 2025 13:52
@syuoni syuoni requested review from a team as code owners November 12, 2025 13:52
@syuoni
Copy link
Collaborator Author

syuoni commented Nov 12, 2025

/bot run --disable-fail-fast

@tensorrt-cicd
Copy link
Collaborator

PR_Github #24307 [ run ] triggered by Bot. Commit: 4a9c0d8

@coderabbitai
Copy link
Contributor

coderabbitai bot commented Nov 12, 2025

📝 Walkthrough

Walkthrough

Integrates Cute DSL (CUTLASS DSL) into TensorRT-LLM to support efficient MOE operations with FP4 quantization on Blackwell GPUs. Adds new CUDA kernels for MOE permutation, unpermutation, and activation functions, extends routing kernels with bidirectional index mapping, and provides PyTorch custom ops for grouped GEMM and fused MOE workflows.

Changes

Cohort / File(s) Summary
Build System
cpp/tensorrt_llm/CMakeLists.txt, cpp/tensorrt_llm/kernels/CMakeLists.txt, cpp/tensorrt_llm/kernels/cuteDslKernels/CMakeLists.txt, cpp/tensorrt_llm/thop/CMakeLists.txt
Adds Cute DSL library to link dependencies; excludes cuteDslKernels from generic globbing and builds via add_subdirectory; introduces new CMake target cute_dsl_src with POSITION_INDEPENDENT_CODE and CUDA_RESOLVE_DEVICE_SYMBOLS; adds cuteDslMoeUtilsOp.cpp to th_common library.
MOE Utilities (CUDA Kernels)
cpp/tensorrt_llm/kernels/cuteDslKernels/moeUtils.h, cpp/tensorrt_llm/kernels/cuteDslKernels/moeUtils.cu
Introduces new header and implementation for moePermute, moeUnpermute, and moeActivation template functions supporting multiple input types (half, bf16, fp8, fp4) with optional FP4 quantization and SF (scale factor) handling; includes extensive compile-time checks and template instantiations.
Routing Kernel Infrastructure
cpp/tensorrt_llm/kernels/trtllmGenKernels/blockScaleMoe/RoutingKernel.h, cpp/tensorrt_llm/kernels/trtllmGenKernels/blockScaleMoe/RoutingKernel.cuh
Adds new pointer member mPtrPermutedIdxToExpandedIdx to both DataBase and KernelParamsBase; propagates through setBaseParams; updates routing logic in routingPermutation, routingIndicesOff, and routingIndicesHistogramKernel storeLoopBody with guarded writes to create bidirectional mapping.
Routing Implementations
cpp/tensorrt_llm/kernels/trtllmGenKernels/blockScaleMoe/RoutingDeepSeek.cu, cpp/tensorrt_llm/kernels/trtllmGenKernels/blockScaleMoe/RoutingLlama4.cu, cpp/tensorrt_llm/kernels/trtllmGenKernels/blockScaleMoe/RoutingRenormalize.cu, cpp/tensorrt_llm/kernels/trtllmGenKernels/blockScaleMoe/runner.cu
Updates routing implementations to populate mPtrPermutedIdxToExpandedIdx with guarded null checks and isLocalExpert conditions; adds corresponding pointer wiring in runner.cu across DeepSeekV3, Llama4, and Renormalize routing pathways.
Activation Support
cpp/tensorrt_llm/kernels/cutlass_kernels/include/moe_kernels.h, cpp/tensorrt_llm/kernels/cutlass_kernels/moe_gemm/moe_kernels.cu
Moves IdentityAdaptor, GLUAdaptor, and SwigluBiasAdaptor from .cu to .h with CUDA-only guards; adds cutlass/epilogue/thread/activation.h include in header; removes declarations and include from .cu; updates MoE rows comment.
PyTorch Custom Ops (C++)
cpp/tensorrt_llm/thop/cuteDslMoeUtilsOp.cpp
Introduces six new PyTorch custom ops for moe_topk_sort, moe_sort, moe_permute, moe_unpermute, moe_swiglu, and moe_swiglu_nvfp4_quantize with comprehensive dtype dispatch and tensor validation; registers operators via TORCH_LIBRARY_FRAGMENT.
PyTorch Formatting
cpp/tensorrt_llm/thop/fp4Quantize.cpp, cpp/tensorrt_llm/thop/moeUtilOp.cpp
Consolidates binding declarations to single-line format without functional changes.
Python Autotuner
tensorrt_llm/_torch/autotuner.py
Changes gen_tuning_buckets validation from inspect.isfunction(...) to callable(...); adds special handling for torch.float4_e2m1fn_x2 dtype by casting to uint8 then viewing as target dtype.
Python Custom Ops Integration
tensorrt_llm/_torch/custom_ops/cute_dsl_custom_ops.py
Adds GroupedGemmInputsHelper and Sm100BlockScaledPersistentGroupedGemmRunner for grouped GEMM; adds FusedMoEInputsHelper and Sm100BlockScaledFusedMoERunner for fused MOE; introduces two new custom ops cute_dsl_nvfp4_grouped_gemm_blackwell and cute_dsl_nvfp4_fused_moe_blackwell with fake registrations; updates import paths and error messaging.
Blackwell Kernel Impl
tensorrt_llm/_torch/cute_dsl_kernels/blackwell/grouped_blockscaled_gemm_persistent.py
Introduces extensive Sm100BlockScaledPersistentGroupedGemmKernel class supporting batched block-scaled grouped GEMM with persistent tile scheduling, warp specialization, multiple data types, and scale-factor handling via CUTLASS constructs; includes TMA descriptors, barrier setup, and complex memory partitioning.
Fused MOE Framework
tensorrt_llm/_torch/modules/fused_moe/fused_moe_cute_dsl.py
Adds cute_dsl_nvfp4_grouped_gemm_ref reference implementation; renames forward_chunk to forward_chunk_unquantized; adds forward_chunk_fp8_block_scales and forward_chunk_nvfp4; updates forward_chunk dispatch logic to route to NVFP4/FP8 paths; adds @torch.compile decorator to swiglu_fused_moe; imports allgather and ceil_div.
Redundant Assignment Cleanup
tensorrt_llm/_torch/modules/fused_moe/fused_moe_cutlass.py, tensorrt_llm/_torch/modules/fused_moe/fused_moe_deepgemm.py, tensorrt_llm/_torch/modules/fused_moe/fused_moe_wide_ep.py
Removes no-op output_dtype self-assignments in Fp4QuantizedTensor branches across three files.
Model Updates
tensorrt_llm/_torch/models/modeling_deepseekv3.py
Consolidates score normalization expression to single line (no behavioral change).
Integration Tests
tests/integration/defs/accuracy/test_llm_api_pytorch.py, tests/integration/test_lists/test-db/l0_b200.yml, tests/integration/test_lists/test-db/l0_dgx_b200.yml
Extends test parameterization to include CUTEDSL backend; adds SM100-only skip guard for CUTEDSL tests; adds new test entries for CUTEDSL in both single-GPU and multi-GPU configurations.
Unit Tests
tests/unittest/_torch/thop/parallel/test_cute_dsl_moe.py
Adds comprehensive test module for GroupedGemmInputsHelper, moe_sort, moe_permute/unpermute round-trips, moe_swiglu, and grouped GEMM across multiple dtypes with reference validation.
Dependencies
requirements.txt
Updates nvidia-cutlass-dsl from 4.2.1 to 4.3.0.dev0.

Sequence Diagram(s)

sequenceDiagram
    participant App as PyTorch App
    participant CustomOp as cute_dsl_nvfp4_fused_moe_blackwell
    participant Runner as Sm100BlockScaledFusedMoERunner
    participant Sort as moe_topk_sort
    participant Perm as moe_permute
    participant Gemm as grouped_gemm
    participant Swiglu as moe_swiglu_nvfp4_quantize
    participant Unperm as moe_unpermute
    
    App->>CustomOp: call with input, scales, experts
    activate CustomOp
    CustomOp->>Runner: forward(inputs, tactic)
    activate Runner
    
    rect rgb(200, 220, 255)
    Note over Runner: Routing & Permutation Phase
    Runner->>Sort: moe_topk_sort()
    Sort-->>Runner: permuted indices, tiles
    end
    
    rect rgb(200, 220, 255)
    Note over Runner: Input Preparation Phase
    Runner->>Perm: moe_permute(input)
    Perm-->>Runner: permuted_output
    end
    
    rect rgb(220, 200, 255)
    Note over Runner: GEMM Phase
    Runner->>Gemm: grouped_gemm(permuted)
    Gemm-->>Runner: gemm_output
    end
    
    rect rgb(220, 220, 200)
    Note over Runner: Quantization Phase
    Runner->>Swiglu: moe_swiglu_nvfp4_quantize(gemm)
    Swiglu-->>Runner: output, scales
    end
    
    rect rgb(200, 220, 255)
    Note over Runner: De-permutation Phase
    Runner->>Unperm: moe_unpermute(output)
    Unperm-->>Runner: final_output
    end
    
    deactivate Runner
    Runner-->>CustomOp: final_output
    deactivate CustomOp
    CustomOp-->>App: result
Loading

Estimated code review effort

🎯 4 (Complex) | ⏱️ ~60 minutes

Areas requiring extra attention:

  • cpp/tensorrt_llm/kernels/cuteDslKernels/moeUtils.cu: High-density CUDA kernel implementations with extensive template specializations, FP4 handling, and conditional compilation paths; requires careful validation of device-side logic, memory access patterns, and kernel synchronization.

  • tensorrt_llm/_torch/cute_dsl_kernels/blackwell/grouped_blockscaled_gemm_persistent.py: Highly complex CUTLASS DSL kernel with sophisticated tile scheduling, memory partitioning, TMA descriptor setup, and barrier management; demands deep understanding of CUTLASS abstractions and GPU execution model.

  • tensorrt_llm/_torch/custom_ops/cute_dsl_custom_ops.py: Introduces new runner/helper classes and two public custom ops with complex input preparation, caching, and kernel dispatch logic; requires validation of shape inference, dtype handling, and error propagation across multiple code paths.

  • tensorrt_llm/_torch/modules/fused_moe/fused_moe_cute_dsl.py: Significant architectural refactor of MOE forward pass with three distinct quantization paths (unquantized, FP8, NVFP4); verify correct dispatch routing, scale factor handling across paths, and allgather integration.

  • Routing kernel modifications (RoutingKernel.cuh, RoutingKernel.h, and implementations): Bidirectional index mapping requires careful review of null-check guards, local-expert conditions, and consistency across multiple routing variants (DeepSeek, Llama4, Renormalize).

Pre-merge checks and finishing touches

❌ Failed checks (1 warning)
Check name Status Explanation Resolution
Docstring Coverage ⚠️ Warning Docstring coverage is 26.53% which is insufficient. The required threshold is 80.00%. You can run @coderabbitai generate docstrings to improve docstring coverage.
✅ Passed checks (2 passed)
Check name Status Explanation
Title check ✅ Passed Title clearly summarizes the main change: integration of CuteDSL NVFP4 grouped GEMM, which aligns with the substantial changes across CMakeLists, kernels, and PyTorch modules in the PR.
Description check ✅ Passed The PR description provides a clear title with JIRA ticket and type, explains the feature (CuteDSL NVFP4 grouped GEMM integration), includes example configuration and command, and reports accuracy results.
✨ Finishing touches
  • 📝 Generate docstrings
🧪 Generate unit tests (beta)
  • Create PR with unit tests
  • Post copyable unit tests in a comment

Thanks for using CodeRabbit! It's free for OSS, and your support helps us grow. If you like it, consider giving us a shout-out.

❤️ Share

Comment @coderabbitai help to get the list of available commands and usage tips.

Copy link
Contributor

@coderabbitai coderabbitai bot left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Actionable comments posted: 5

Caution

Some comments are outside the diff and can’t be posted inline due to platform limitations.

⚠️ Outside diff range comments (1)
cpp/tensorrt_llm/thop/fp4Quantize.cpp (1)

2-2: Update copyright year to include current year (2025).

The copyright header shows "2020-2023" but should be updated to "2020-2025" per coding guidelines for modified files.

- * Copyright (c) 2020-2023, NVIDIA CORPORATION.  All rights reserved.
+ * Copyright (c) 2020-2025, NVIDIA CORPORATION.  All rights reserved.
🧹 Nitpick comments (3)
cpp/tensorrt_llm/kernels/cuteDslKernels/CMakeLists.txt (1)

18-23: Consider explicit CMake dependencies.

The object library configuration is functionally correct with appropriate properties for CUDA device code. However, consider these optional improvements:

  1. File globbing: While GLOB_RECURSE works, CMake best practices recommend explicit file lists so the build system can detect new/removed files automatically.
  2. Explicit dependencies: If this target requires specific include directories or compile options, consider making them explicit rather than relying on parent scope inheritance for better modularity.

These are minor maintainability suggestions; the current implementation should work correctly.

tensorrt_llm/_torch/autotuner.py (1)

935-937: Good improvement to use callable() over inspect.isfunction().

The change from inspect.isfunction() to callable() is more flexible and Pythonic, accepting lambdas, class instances with __call__, and other callable objects. This aligns well with the docstring description at line 29-30.

Optional refinement: Consider updating the assertion message on line 936 from "provide a opt value generation function" to "provide a callable that generates opt values" for consistency.

cpp/tensorrt_llm/kernels/cuteDslKernels/moeUtils.cu (1)

62-71: Consider declaring runtime-const variables as const.

Variables like kCopyPerToken (line 65) and num_tokens (line 71) are computed once and never modified. Declaring them as const improves code clarity and prevents accidental modification.

Apply this diff:

-    int64_t const kCopyPerToken = hidden_size / kElemPerCopy;
+    int64_t constexpr kElemPerCopy = elemPerCopy<InputType>();
+    int32_t constexpr kSFElemPerCopy = sfElemPerCopy<SFType>();
+    // Need int64_t to prevent overflow when computing pointer offsets.
+    int64_t const kCopyPerToken = hidden_size / kElemPerCopy;

And:

-    int32_t const num_tokens = num_non_exiting_tiles[0] * tile_size;
+    int32_t const num_tokens = num_non_exiting_tiles[0] * tile_size;

Note: Both variables are already marked const, so this is already correctly implemented. No changes needed.

As per coding guidelines.

📜 Review details

Configuration used: Path: .coderabbit.yaml

Review profile: CHILL

Plan: Pro

📥 Commits

Reviewing files that changed from the base of the PR and between b7a2574 and 4a9c0d8.

📒 Files selected for processing (30)
  • cpp/tensorrt_llm/CMakeLists.txt (1 hunks)
  • cpp/tensorrt_llm/kernels/CMakeLists.txt (2 hunks)
  • cpp/tensorrt_llm/kernels/cuteDslKernels/CMakeLists.txt (1 hunks)
  • cpp/tensorrt_llm/kernels/cuteDslKernels/moeUtils.cu (1 hunks)
  • cpp/tensorrt_llm/kernels/cuteDslKernels/moeUtils.h (1 hunks)
  • cpp/tensorrt_llm/kernels/cutlass_kernels/include/moe_kernels.h (2 hunks)
  • cpp/tensorrt_llm/kernels/cutlass_kernels/moe_gemm/moe_kernels.cu (1 hunks)
  • cpp/tensorrt_llm/kernels/trtllmGenKernels/blockScaleMoe/RoutingDeepSeek.cu (2 hunks)
  • cpp/tensorrt_llm/kernels/trtllmGenKernels/blockScaleMoe/RoutingKernel.cuh (2 hunks)
  • cpp/tensorrt_llm/kernels/trtllmGenKernels/blockScaleMoe/RoutingKernel.h (3 hunks)
  • cpp/tensorrt_llm/kernels/trtllmGenKernels/blockScaleMoe/RoutingLlama4.cu (1 hunks)
  • cpp/tensorrt_llm/kernels/trtllmGenKernels/blockScaleMoe/RoutingRenormalize.cu (1 hunks)
  • cpp/tensorrt_llm/kernels/trtllmGenKernels/blockScaleMoe/runner.cu (3 hunks)
  • cpp/tensorrt_llm/thop/CMakeLists.txt (1 hunks)
  • cpp/tensorrt_llm/thop/cuteDslMoeUtilsOp.cpp (1 hunks)
  • cpp/tensorrt_llm/thop/fp4Quantize.cpp (1 hunks)
  • cpp/tensorrt_llm/thop/moeUtilOp.cpp (1 hunks)
  • requirements.txt (1 hunks)
  • tensorrt_llm/_torch/autotuner.py (2 hunks)
  • tensorrt_llm/_torch/custom_ops/cute_dsl_custom_ops.py (4 hunks)
  • tensorrt_llm/_torch/cute_dsl_kernels/blackwell/grouped_blockscaled_gemm_persistent.py (1 hunks)
  • tensorrt_llm/_torch/models/modeling_deepseekv3.py (1 hunks)
  • tensorrt_llm/_torch/modules/fused_moe/fused_moe_cute_dsl.py (7 hunks)
  • tensorrt_llm/_torch/modules/fused_moe/fused_moe_cutlass.py (0 hunks)
  • tensorrt_llm/_torch/modules/fused_moe/fused_moe_deepgemm.py (0 hunks)
  • tensorrt_llm/_torch/modules/fused_moe/fused_moe_wide_ep.py (0 hunks)
  • tests/integration/defs/accuracy/test_llm_api_pytorch.py (3 hunks)
  • tests/integration/test_lists/test-db/l0_b200.yml (2 hunks)
  • tests/integration/test_lists/test-db/l0_dgx_b200.yml (2 hunks)
  • tests/unittest/_torch/thop/parallel/test_cute_dsl_moe.py (1 hunks)
💤 Files with no reviewable changes (3)
  • tensorrt_llm/_torch/modules/fused_moe/fused_moe_deepgemm.py
  • tensorrt_llm/_torch/modules/fused_moe/fused_moe_wide_ep.py
  • tensorrt_llm/_torch/modules/fused_moe/fused_moe_cutlass.py
🧰 Additional context used
📓 Path-based instructions (8)
**/*.{h,hpp,hh,hxx,cpp,cxx,cc,cu,cuh}

📄 CodeRabbit inference engine (CODING_GUIDELINES.md)

**/*.{h,hpp,hh,hxx,cpp,cxx,cc,cu,cuh}: Namespace closing braces must include a trailing comment with the namespace name (e.g., '} // namespace foo').
Prefer const or constexpr variables over #define for constants.
Declare variables that are not modified after initialization as const.
Avoid magic literals in code; except for 0, nullptr, true, false. Use named constants for comparisons and logic.
Use Allman brace style for formatting.
Place the semicolon of an empty for/while loop on a new line.
Bodies of switch/while/do-while/for must be compound statements (brace-delimited), and if/else must always be followed by brace-delimited statements.
Type names (e.g., classes) must be CamelCase starting with an uppercase letter (e.g., FooBar).
Local variables, methods, and namespaces use lowerCamelCase (e.g., localFooBar).
Non-magic-number global variables that are non-static and not in an anonymous namespace must be lowerCamelCase prefixed with 'g' (e.g., gDontUseGlobalFoos).
Non-magic-number globals that are static or in an anonymous namespace use lowerCamelCase prefixed with 's' (e.g., sMutableStaticGlobal).
Locally visible static variables use lowerCamelCase with 's' prefix (e.g., static std::once_flag sFlag).
Private/protected member variables use 'm' prefix with CamelCase (e.g., mNbFooValues). Public members may omit, but 'm' is encouraged for clarity.
Constants (enums, global constants, static constants, and function-scope magic/literal constants) use uppercase SNAKE_CASE with 'k' prefix (e.g., kDIGIT_NUM).
Function-scope constants that are not magic numbers or literals are named like non-constant variables (e.g., bool const pass = a && b).
If macros are necessary, name them in UPPER_SNAKE_CASE (e.g., FOO_VERSION) and prefer constants over #define.
Use LLVM clang-format; wrap lines at a maximum of 120 columns; use '// clang-format off/on' sparingly with justification.
Use smart pointers for heap allocations; prefer unique_ptr for sole ownership, shared_ptr for shared...

Files:

  • cpp/tensorrt_llm/kernels/trtllmGenKernels/blockScaleMoe/RoutingKernel.cuh
  • cpp/tensorrt_llm/kernels/cutlass_kernels/include/moe_kernels.h
  • cpp/tensorrt_llm/kernels/trtllmGenKernels/blockScaleMoe/RoutingDeepSeek.cu
  • cpp/tensorrt_llm/kernels/trtllmGenKernels/blockScaleMoe/runner.cu
  • cpp/tensorrt_llm/kernels/cuteDslKernels/moeUtils.h
  • cpp/tensorrt_llm/thop/cuteDslMoeUtilsOp.cpp
  • cpp/tensorrt_llm/kernels/trtllmGenKernels/blockScaleMoe/RoutingRenormalize.cu
  • cpp/tensorrt_llm/kernels/cutlass_kernels/moe_gemm/moe_kernels.cu
  • cpp/tensorrt_llm/kernels/trtllmGenKernels/blockScaleMoe/RoutingKernel.h
  • cpp/tensorrt_llm/thop/fp4Quantize.cpp
  • cpp/tensorrt_llm/kernels/cuteDslKernels/moeUtils.cu
  • cpp/tensorrt_llm/kernels/trtllmGenKernels/blockScaleMoe/RoutingLlama4.cu
  • cpp/tensorrt_llm/thop/moeUtilOp.cpp
**/*.{cpp,cxx,cc,cu,h,hpp,hh,hxx,cuh}

📄 CodeRabbit inference engine (CODING_GUIDELINES.md)

C++ filenames should be lowerCamelCase (first letter lowercase) and must be case-insensitive unique within a compilation target.

Files:

  • cpp/tensorrt_llm/kernels/trtllmGenKernels/blockScaleMoe/RoutingKernel.cuh
  • cpp/tensorrt_llm/kernels/cutlass_kernels/include/moe_kernels.h
  • cpp/tensorrt_llm/kernels/trtllmGenKernels/blockScaleMoe/RoutingDeepSeek.cu
  • cpp/tensorrt_llm/kernels/trtllmGenKernels/blockScaleMoe/runner.cu
  • cpp/tensorrt_llm/kernels/cuteDslKernels/moeUtils.h
  • cpp/tensorrt_llm/thop/cuteDslMoeUtilsOp.cpp
  • cpp/tensorrt_llm/kernels/trtllmGenKernels/blockScaleMoe/RoutingRenormalize.cu
  • cpp/tensorrt_llm/kernels/cutlass_kernels/moe_gemm/moe_kernels.cu
  • cpp/tensorrt_llm/kernels/trtllmGenKernels/blockScaleMoe/RoutingKernel.h
  • cpp/tensorrt_llm/thop/fp4Quantize.cpp
  • cpp/tensorrt_llm/kernels/cuteDslKernels/moeUtils.cu
  • cpp/tensorrt_llm/kernels/trtllmGenKernels/blockScaleMoe/RoutingLlama4.cu
  • cpp/tensorrt_llm/thop/moeUtilOp.cpp
**/*.{h,hpp,hh,hxx,cpp,cxx,cc,cu,cuh,py}

📄 CodeRabbit inference engine (CODING_GUIDELINES.md)

Use only spaces, no tabs; indent with 4 spaces.

Files:

  • cpp/tensorrt_llm/kernels/trtllmGenKernels/blockScaleMoe/RoutingKernel.cuh
  • cpp/tensorrt_llm/kernels/cutlass_kernels/include/moe_kernels.h
  • cpp/tensorrt_llm/kernels/trtllmGenKernels/blockScaleMoe/RoutingDeepSeek.cu
  • cpp/tensorrt_llm/kernels/trtllmGenKernels/blockScaleMoe/runner.cu
  • tensorrt_llm/_torch/models/modeling_deepseekv3.py
  • tensorrt_llm/_torch/autotuner.py
  • cpp/tensorrt_llm/kernels/cuteDslKernels/moeUtils.h
  • cpp/tensorrt_llm/thop/cuteDslMoeUtilsOp.cpp
  • tensorrt_llm/_torch/cute_dsl_kernels/blackwell/grouped_blockscaled_gemm_persistent.py
  • cpp/tensorrt_llm/kernels/trtllmGenKernels/blockScaleMoe/RoutingRenormalize.cu
  • tests/integration/defs/accuracy/test_llm_api_pytorch.py
  • cpp/tensorrt_llm/kernels/cutlass_kernels/moe_gemm/moe_kernels.cu
  • cpp/tensorrt_llm/kernels/trtllmGenKernels/blockScaleMoe/RoutingKernel.h
  • cpp/tensorrt_llm/thop/fp4Quantize.cpp
  • cpp/tensorrt_llm/kernels/cuteDslKernels/moeUtils.cu
  • cpp/tensorrt_llm/kernels/trtllmGenKernels/blockScaleMoe/RoutingLlama4.cu
  • tests/unittest/_torch/thop/parallel/test_cute_dsl_moe.py
  • cpp/tensorrt_llm/thop/moeUtilOp.cpp
  • tensorrt_llm/_torch/modules/fused_moe/fused_moe_cute_dsl.py
  • tensorrt_llm/_torch/custom_ops/cute_dsl_custom_ops.py
**/*.{h,hpp,hh,hxx,cuh}

📄 CodeRabbit inference engine (CODING_GUIDELINES.md)

Use include guards named 'TRTLLM_<FILE_NAME_IN_CAPS_WITH_UNDERSCORES>_H' (no leading or trailing underscore; directory names excluded).

Files:

  • cpp/tensorrt_llm/kernels/trtllmGenKernels/blockScaleMoe/RoutingKernel.cuh
  • cpp/tensorrt_llm/kernels/cutlass_kernels/include/moe_kernels.h
  • cpp/tensorrt_llm/kernels/cuteDslKernels/moeUtils.h
  • cpp/tensorrt_llm/kernels/trtllmGenKernels/blockScaleMoe/RoutingKernel.h
**/*.{cpp,cxx,cc,h,hpp,hh,hxx,cu,cuh,py}

📄 CodeRabbit inference engine (CODING_GUIDELINES.md)

Prepend the NVIDIA Apache-2.0 copyright header with current year to the top of all source files (e.g., .cpp, .h, .cu, .py).

Files:

  • cpp/tensorrt_llm/kernels/trtllmGenKernels/blockScaleMoe/RoutingKernel.cuh
  • cpp/tensorrt_llm/kernels/cutlass_kernels/include/moe_kernels.h
  • cpp/tensorrt_llm/kernels/trtllmGenKernels/blockScaleMoe/RoutingDeepSeek.cu
  • cpp/tensorrt_llm/kernels/trtllmGenKernels/blockScaleMoe/runner.cu
  • tensorrt_llm/_torch/models/modeling_deepseekv3.py
  • tensorrt_llm/_torch/autotuner.py
  • cpp/tensorrt_llm/kernels/cuteDslKernels/moeUtils.h
  • cpp/tensorrt_llm/thop/cuteDslMoeUtilsOp.cpp
  • tensorrt_llm/_torch/cute_dsl_kernels/blackwell/grouped_blockscaled_gemm_persistent.py
  • cpp/tensorrt_llm/kernels/trtllmGenKernels/blockScaleMoe/RoutingRenormalize.cu
  • tests/integration/defs/accuracy/test_llm_api_pytorch.py
  • cpp/tensorrt_llm/kernels/cutlass_kernels/moe_gemm/moe_kernels.cu
  • cpp/tensorrt_llm/kernels/trtllmGenKernels/blockScaleMoe/RoutingKernel.h
  • cpp/tensorrt_llm/thop/fp4Quantize.cpp
  • cpp/tensorrt_llm/kernels/cuteDslKernels/moeUtils.cu
  • cpp/tensorrt_llm/kernels/trtllmGenKernels/blockScaleMoe/RoutingLlama4.cu
  • tests/unittest/_torch/thop/parallel/test_cute_dsl_moe.py
  • cpp/tensorrt_llm/thop/moeUtilOp.cpp
  • tensorrt_llm/_torch/modules/fused_moe/fused_moe_cute_dsl.py
  • tensorrt_llm/_torch/custom_ops/cute_dsl_custom_ops.py
**/*.{h,hpp,hh,hxx}

📄 CodeRabbit inference engine (CODING_GUIDELINES.md)

Document new class interfaces and function prototypes with Doxygen; use //! for single-line and //!< for members.

Files:

  • cpp/tensorrt_llm/kernels/cutlass_kernels/include/moe_kernels.h
  • cpp/tensorrt_llm/kernels/cuteDslKernels/moeUtils.h
  • cpp/tensorrt_llm/kernels/trtllmGenKernels/blockScaleMoe/RoutingKernel.h
**/*.{h,hpp,hh,hxx,cpp,cxx,cc}

📄 CodeRabbit inference engine (CODING_GUIDELINES.md)

**/*.{h,hpp,hh,hxx,cpp,cxx,cc}: Prefer anonymous namespaces over 'static' for internal linkage of functions.
All templates (class/function/member/static) must be instantiated at least once; non-POD classes should have private data members.

Files:

  • cpp/tensorrt_llm/kernels/cutlass_kernels/include/moe_kernels.h
  • cpp/tensorrt_llm/kernels/cuteDslKernels/moeUtils.h
  • cpp/tensorrt_llm/thop/cuteDslMoeUtilsOp.cpp
  • cpp/tensorrt_llm/kernels/trtllmGenKernels/blockScaleMoe/RoutingKernel.h
  • cpp/tensorrt_llm/thop/fp4Quantize.cpp
  • cpp/tensorrt_llm/thop/moeUtilOp.cpp
**/*.py

📄 CodeRabbit inference engine (CODING_GUIDELINES.md)

**/*.py: Python code must target Python 3.8+.
Indent Python code with 4 spaces; do not use tabs.
Maintain module namespace when importing; prefer 'from package.subpackage import foo' then 'foo.SomeClass()' instead of importing the class directly.
Python filenames should be snake_case (e.g., some_file.py).
Python classes use PascalCase names.
Functions and methods use snake_case names.
Local variables use snake_case; prefix 'k' for variables that start with a number (e.g., k_99th_percentile).
Global variables use upper SNAKE_CASE prefixed with 'G' (e.g., G_MY_GLOBAL).
Constants use upper SNAKE_CASE (e.g., MY_CONSTANT).
Avoid shadowing variables from an outer scope.
Initialize all externally visible members of a class in the constructor.
Prefer docstrings for interfaces that may be used outside a file; comments for in-function or file-local interfaces.
Use Google-style docstrings for classes and functions (Sphinx-parsable).
Document attributes and variables inline so they render under the class/function docstring.
Avoid reflection when a simpler, explicit approach suffices (e.g., avoid dict(**locals()) patterns).
In try/except, catch the most specific exceptions possible.
For duck-typing try/except, keep the try body minimal and use else for the main logic.

Files:

  • tensorrt_llm/_torch/models/modeling_deepseekv3.py
  • tensorrt_llm/_torch/autotuner.py
  • tensorrt_llm/_torch/cute_dsl_kernels/blackwell/grouped_blockscaled_gemm_persistent.py
  • tests/integration/defs/accuracy/test_llm_api_pytorch.py
  • tests/unittest/_torch/thop/parallel/test_cute_dsl_moe.py
  • tensorrt_llm/_torch/modules/fused_moe/fused_moe_cute_dsl.py
  • tensorrt_llm/_torch/custom_ops/cute_dsl_custom_ops.py
🧠 Learnings (33)
📓 Common learnings
Learnt from: djns99
Repo: NVIDIA/TensorRT-LLM PR: 6915
File: cpp/tensorrt_llm/kernels/cutlass_kernels/moe_gemm/moe_kernels.cu:4010-4012
Timestamp: 2025-08-14T23:23:27.449Z
Learning: For MOE (Mixture of Experts) code reviews in TensorRT-LLM, avoid repeatedly suggesting finalize fusion validation checks and safety assertions. The user djns99 has indicated these suggestions are repetitive and unwanted across multiple MOE-related changes.
Learnt from: djns99
Repo: NVIDIA/TensorRT-LLM PR: 7104
File: cpp/tensorrt_llm/cutlass_extensions/include/cutlass_extensions/epilogue/fusion/sm90_visitor_scatter.hpp:399-417
Timestamp: 2025-08-21T21:48:35.135Z
Learning: CUTLASS extensions in TensorRT-LLM (located under cpp/tensorrt_llm/cutlass_extensions/) are designed to integrate with and extend functionality in the external CUTLASS repository. When analyzing these extensions, their consumers and functionality wiring may exist in the CUTLASS codebase rather than within TensorRT-LLM itself.
Learnt from: djns99
Repo: NVIDIA/TensorRT-LLM PR: 7104
File: cpp/tensorrt_llm/kernels/cutlass_kernels/moe_gemm/moe_kernels.cu:1475-1480
Timestamp: 2025-08-21T02:39:12.009Z
Learning: The min latency mode functionality in TensorRT-LLM MOE kernels (cpp/tensorrt_llm/kernels/cutlass_kernels/moe_gemm/moe_kernels.cu) is deprecated and no longer being maintained/updated, as confirmed by djns99. Bug reports and optimization suggestions for the computeStridesTmaWarpSpecializedLowLatencyKernel and related min latency code paths should be deprioritized.
Learnt from: ChristinaZ
Repo: NVIDIA/TensorRT-LLM PR: 7068
File: cpp/tensorrt_llm/kernels/moeTopKFuncs.cuh:169-172
Timestamp: 2025-08-20T07:43:36.447Z
Learning: In TensorRT-LLM MOE kernels, when processing up to 128 experts across 32 threads, each thread handles at most 4 experts (N < 5 constraint), where N represents candidates per thread rather than total system capacity.
Learnt from: jhaotingc
Repo: NVIDIA/TensorRT-LLM PR: 7856
File: cpp/tensorrt_llm/thop/fp8BlockScaleMoe.cpp:159-166
Timestamp: 2025-09-19T21:28:13.751Z
Learning: In TensorRT-LLM blockScaleMoe routing (cpp/tensorrt_llm/kernels/trtllmGenKernels/blockScaleMoe/runner.cu), the DeepSeek routing method performs reinterpret_cast<float*>(routingLogits) at line 89, which could cause issues if routing_logits are BF16. However, Qwen3-FP8 models use RenormalizeNaive routing method and are not affected by this dtype casting issue.
Learnt from: sklevtsov-nvidia
Repo: NVIDIA/TensorRT-LLM PR: 3294
File: cpp/tensorrt_llm/kernels/cutlass_kernels/moe_gemm/moe_kernels.cu:1198-1209
Timestamp: 2025-08-08T22:03:40.707Z
Learning: In the CUTLASS MoE kernels (cpp/tensorrt_llm/cutlass_extensions), when `layout_info.fusion` is set to `TmaWarpSpecializedGroupedGemmInput::EpilogueFusion::FINALIZE`, the `router_scales` parameter must be non-null by design. The fused finalize kernel epilogue does not perform nullptr checks and requires valid router scales to function correctly. This is an implicit contract that callers must satisfy when enabling the FINALIZE fusion mode.
Learnt from: djns99
Repo: NVIDIA/TensorRT-LLM PR: 6915
File: cpp/tensorrt_llm/kernels/cutlass_kernels/moe_gemm/moe_kernels.cu:4616-4626
Timestamp: 2025-08-19T03:35:20.866Z
Learning: In the MOE profiler TMA workspace preparation (cpp/tensorrt_llm/kernels/cutlass_kernels/moe_gemm/moe_kernels.cu), the overlapping of TMA WS regions for NONE and FINALIZE variants is deliberate design to save memory space, as confirmed by djns99. The comment "reuse the same pointers to save space" reflects this intentional behavior.
Learnt from: tongyuantongyu
Repo: NVIDIA/TensorRT-LLM PR: 7520
File: tensorrt_llm/_torch/pyexecutor/resource_manager.py:605-613
Timestamp: 2025-09-24T03:31:28.908Z
Learning: In TensorRT-LLM Ray orchestrator mode, ProcessGroups are initialized with both Gloo and NCCL backends (e.g., "cuda:nccl,cpu:gloo"), allowing PyTorch distributed to automatically route CPU tensors through Gloo and GPU tensors through NCCL. This eliminates the need for manual device placement when performing allreduce operations on base types.
Learnt from: sklevtsov-nvidia
Repo: NVIDIA/TensorRT-LLM PR: 3294
File: cpp/tensorrt_llm/kernels/cutlass_kernels/moe_gemm/moe_gemm_tma_warp_specialized_input.cu:118-127
Timestamp: 2025-08-09T20:57:04.084Z
Learning: In the CUTLASS MoE finalize fusion implementation (cpp/tensorrt_llm/kernels/cutlass_kernels/moe_gemm/moe_gemm_tma_warp_specialized_input.cu), when setting `fused_finalize_epilogue.stride_final_output` with shape `(hidden_size, num_output_tokens, 1)`, the `num_rows_in_final_output` should be set to `num_output_tokens` (not `hidden_size`) because of a swap+transpose operation that maps rows of the output tensor to `hidden_size` and columns to `num_output_tokens`.
Learnt from: djns99
Repo: NVIDIA/TensorRT-LLM PR: 7104
File: cpp/tensorrt_llm/kernels/cutlass_kernels/include/moe_kernels.h:999-1000
Timestamp: 2025-08-22T01:54:35.850Z
Learning: The `internal_cutlass_kernels` directory in TensorRT-LLM is a mirror of an internal NVIDIA repository and maintains its own implementation and API that may diverge from the public `cutlass_kernels` version. API inconsistencies between these two directories are intentional and by design, not bugs to be fixed.
Learnt from: nv-lschneider
Repo: NVIDIA/TensorRT-LLM PR: 7910
File: cpp/tensorrt_llm/thop/allreduceOp.cpp:352-446
Timestamp: 2025-09-23T15:12:38.312Z
Learning: In TensorRT-LLM NCCL device implementation, NCCL version 2.28+ requirements are handled at runtime in the nccl_device/config layer rather than with compile-time guards. This allows the allreduceOp to remain version-agnostic and delegates version compatibility validation to the appropriate lower-level components that can gracefully handle unsupported configurations.
📚 Learning: 2025-08-21T21:48:35.135Z
Learnt from: djns99
Repo: NVIDIA/TensorRT-LLM PR: 7104
File: cpp/tensorrt_llm/cutlass_extensions/include/cutlass_extensions/epilogue/fusion/sm90_visitor_scatter.hpp:399-417
Timestamp: 2025-08-21T21:48:35.135Z
Learning: CUTLASS extensions in TensorRT-LLM (located under cpp/tensorrt_llm/cutlass_extensions/) are designed to integrate with and extend functionality in the external CUTLASS repository. When analyzing these extensions, their consumers and functionality wiring may exist in the CUTLASS codebase rather than within TensorRT-LLM itself.

Applied to files:

  • cpp/tensorrt_llm/CMakeLists.txt
  • cpp/tensorrt_llm/kernels/cutlass_kernels/include/moe_kernels.h
  • cpp/tensorrt_llm/kernels/cuteDslKernels/moeUtils.h
  • cpp/tensorrt_llm/thop/cuteDslMoeUtilsOp.cpp
  • cpp/tensorrt_llm/kernels/CMakeLists.txt
  • tensorrt_llm/_torch/custom_ops/cute_dsl_custom_ops.py
📚 Learning: 2025-09-23T15:01:00.070Z
Learnt from: nv-lschneider
Repo: NVIDIA/TensorRT-LLM PR: 7910
File: cpp/tensorrt_llm/kernels/nccl_device/config.cu:15-17
Timestamp: 2025-09-23T15:01:00.070Z
Learning: In TensorRT-LLM NCCL device kernels, the <sstream> header is not needed as an explicit include in config.cu because it's provided transitively through other headers. Local compilation testing confirms this works without the explicit include.

Applied to files:

  • cpp/tensorrt_llm/CMakeLists.txt
  • cpp/tensorrt_llm/kernels/trtllmGenKernels/blockScaleMoe/RoutingKernel.cuh
  • cpp/tensorrt_llm/kernels/cutlass_kernels/include/moe_kernels.h
  • cpp/tensorrt_llm/kernels/trtllmGenKernels/blockScaleMoe/RoutingDeepSeek.cu
  • cpp/tensorrt_llm/thop/CMakeLists.txt
  • cpp/tensorrt_llm/kernels/cuteDslKernels/moeUtils.h
  • cpp/tensorrt_llm/kernels/cuteDslKernels/CMakeLists.txt
  • cpp/tensorrt_llm/kernels/trtllmGenKernels/blockScaleMoe/RoutingRenormalize.cu
  • cpp/tensorrt_llm/kernels/cutlass_kernels/moe_gemm/moe_kernels.cu
  • cpp/tensorrt_llm/kernels/CMakeLists.txt
  • cpp/tensorrt_llm/kernels/cuteDslKernels/moeUtils.cu
  • cpp/tensorrt_llm/kernels/trtllmGenKernels/blockScaleMoe/RoutingLlama4.cu
📚 Learning: 2025-08-18T09:08:07.687Z
Learnt from: tongyuantongyu
Repo: NVIDIA/TensorRT-LLM PR: 6984
File: cpp/tensorrt_llm/CMakeLists.txt:297-299
Timestamp: 2025-08-18T09:08:07.687Z
Learning: In the TensorRT-LLM project, artifacts are manually copied rather than installed via `cmake --install`, so INSTALL_RPATH properties are not needed - only BUILD_RPATH affects the final artifacts.

Applied to files:

  • cpp/tensorrt_llm/CMakeLists.txt
📚 Learning: 2025-08-08T05:06:31.596Z
Learnt from: sklevtsov-nvidia
Repo: NVIDIA/TensorRT-LLM PR: 3294
File: cpp/tensorrt_llm/cutlass_extensions/include/cutlass_extensions/epilogue/fusion/sm90_visitor_scatter.hpp:36-36
Timestamp: 2025-08-08T05:06:31.596Z
Learning: CUTLASS extension files (under cpp/tensorrt_llm/cutlass_extensions/) follow CUTLASS coding style conventions, including using #pragma once instead of TRTLLM_ prefixed header guards, even though they are .hpp files.

Applied to files:

  • cpp/tensorrt_llm/CMakeLists.txt
  • cpp/tensorrt_llm/kernels/cutlass_kernels/include/moe_kernels.h
  • cpp/tensorrt_llm/thop/CMakeLists.txt
  • cpp/tensorrt_llm/kernels/cuteDslKernels/moeUtils.h
  • cpp/tensorrt_llm/thop/cuteDslMoeUtilsOp.cpp
  • cpp/tensorrt_llm/kernels/cuteDslKernels/CMakeLists.txt
  • cpp/tensorrt_llm/kernels/CMakeLists.txt
📚 Learning: 2025-09-09T09:40:45.658Z
Learnt from: fredricz-20070104
Repo: NVIDIA/TensorRT-LLM PR: 7645
File: tests/integration/test_lists/qa/llm_function_core.txt:648-648
Timestamp: 2025-09-09T09:40:45.658Z
Learning: In TensorRT-LLM test lists, it's common and intentional for the same test to appear in multiple test list files when they serve different purposes (e.g., llm_function_core.txt for comprehensive core functionality testing and llm_function_core_sanity.txt for quick sanity checks). This duplication allows tests to be run in different testing contexts.

Applied to files:

  • cpp/tensorrt_llm/CMakeLists.txt
  • tests/integration/test_lists/test-db/l0_b200.yml
  • tests/integration/test_lists/test-db/l0_dgx_b200.yml
  • tensorrt_llm/_torch/custom_ops/cute_dsl_custom_ops.py
📚 Learning: 2025-09-23T15:01:00.070Z
Learnt from: nv-lschneider
Repo: NVIDIA/TensorRT-LLM PR: 7910
File: cpp/tensorrt_llm/kernels/nccl_device/config.cu:15-17
Timestamp: 2025-09-23T15:01:00.070Z
Learning: In TensorRT-LLM NCCL device kernels (cpp/tensorrt_llm/kernels/nccl_device/config.cu), std::ostringstream is used but <sstream> doesn't need to be explicitly included because it's provided transitively through other headers like tensorrt_llm/common/cudaUtils.h or config.h. Local compilation testing confirms this works without the explicit include.

Applied to files:

  • cpp/tensorrt_llm/CMakeLists.txt
  • cpp/tensorrt_llm/kernels/cutlass_kernels/include/moe_kernels.h
  • cpp/tensorrt_llm/thop/CMakeLists.txt
  • cpp/tensorrt_llm/kernels/cuteDslKernels/moeUtils.h
  • cpp/tensorrt_llm/kernels/CMakeLists.txt
📚 Learning: 2025-09-16T09:30:09.716Z
Learnt from: tongyuantongyu
Repo: NVIDIA/TensorRT-LLM PR: 7763
File: cpp/tensorrt_llm/CMakeLists.txt:297-301
Timestamp: 2025-09-16T09:30:09.716Z
Learning: In the TensorRT-LLM project, NCCL libraries are loaded earlier by PyTorch libraries or the bindings library, so the main shared library doesn't need NCCL paths in its RPATH - the libraries will already be available in the process address space when needed.

Applied to files:

  • cpp/tensorrt_llm/CMakeLists.txt
📚 Learning: 2025-08-06T13:58:07.506Z
Learnt from: galagam
Repo: NVIDIA/TensorRT-LLM PR: 6487
File: tests/unittest/_torch/auto_deploy/unit/singlegpu/test_ad_trtllm_bench.py:1-12
Timestamp: 2025-08-06T13:58:07.506Z
Learning: In TensorRT-LLM, test files (files under tests/ directories) do not require NVIDIA copyright headers, unlike production source code files. Test files typically start directly with imports, docstrings, or code.

Applied to files:

  • cpp/tensorrt_llm/CMakeLists.txt
  • tensorrt_llm/_torch/models/modeling_deepseekv3.py
  • tests/integration/test_lists/test-db/l0_dgx_b200.yml
📚 Learning: 2025-09-19T21:28:13.751Z
Learnt from: jhaotingc
Repo: NVIDIA/TensorRT-LLM PR: 7856
File: cpp/tensorrt_llm/thop/fp8BlockScaleMoe.cpp:159-166
Timestamp: 2025-09-19T21:28:13.751Z
Learning: In TensorRT-LLM blockScaleMoe routing (cpp/tensorrt_llm/kernels/trtllmGenKernels/blockScaleMoe/runner.cu), the DeepSeek routing method performs reinterpret_cast<float*>(routingLogits) at line 89, which could cause issues if routing_logits are BF16. However, Qwen3-FP8 models use RenormalizeNaive routing method and are not affected by this dtype casting issue.

Applied to files:

  • cpp/tensorrt_llm/kernels/trtllmGenKernels/blockScaleMoe/RoutingKernel.cuh
  • cpp/tensorrt_llm/kernels/trtllmGenKernels/blockScaleMoe/RoutingDeepSeek.cu
  • cpp/tensorrt_llm/kernels/trtllmGenKernels/blockScaleMoe/runner.cu
  • tensorrt_llm/_torch/models/modeling_deepseekv3.py
  • cpp/tensorrt_llm/thop/cuteDslMoeUtilsOp.cpp
  • cpp/tensorrt_llm/kernels/trtllmGenKernels/blockScaleMoe/RoutingRenormalize.cu
  • cpp/tensorrt_llm/kernels/trtllmGenKernels/blockScaleMoe/RoutingKernel.h
  • cpp/tensorrt_llm/kernels/trtllmGenKernels/blockScaleMoe/RoutingLlama4.cu
  • cpp/tensorrt_llm/thop/moeUtilOp.cpp
📚 Learning: 2025-08-08T22:03:40.707Z
Learnt from: sklevtsov-nvidia
Repo: NVIDIA/TensorRT-LLM PR: 3294
File: cpp/tensorrt_llm/kernels/cutlass_kernels/moe_gemm/moe_kernels.cu:1198-1209
Timestamp: 2025-08-08T22:03:40.707Z
Learning: In the CUTLASS MoE kernels (cpp/tensorrt_llm/cutlass_extensions), when `layout_info.fusion` is set to `TmaWarpSpecializedGroupedGemmInput::EpilogueFusion::FINALIZE`, the `router_scales` parameter must be non-null by design. The fused finalize kernel epilogue does not perform nullptr checks and requires valid router scales to function correctly. This is an implicit contract that callers must satisfy when enabling the FINALIZE fusion mode.

Applied to files:

  • cpp/tensorrt_llm/kernels/trtllmGenKernels/blockScaleMoe/RoutingKernel.cuh
  • cpp/tensorrt_llm/kernels/cutlass_kernels/include/moe_kernels.h
  • cpp/tensorrt_llm/kernels/trtllmGenKernels/blockScaleMoe/RoutingDeepSeek.cu
  • cpp/tensorrt_llm/kernels/trtllmGenKernels/blockScaleMoe/runner.cu
  • cpp/tensorrt_llm/kernels/cuteDslKernels/moeUtils.h
  • cpp/tensorrt_llm/kernels/trtllmGenKernels/blockScaleMoe/RoutingRenormalize.cu
  • cpp/tensorrt_llm/kernels/cutlass_kernels/moe_gemm/moe_kernels.cu
  • cpp/tensorrt_llm/kernels/trtllmGenKernels/blockScaleMoe/RoutingKernel.h
  • cpp/tensorrt_llm/kernels/cuteDslKernels/moeUtils.cu
  • cpp/tensorrt_llm/kernels/trtllmGenKernels/blockScaleMoe/RoutingLlama4.cu
  • cpp/tensorrt_llm/thop/moeUtilOp.cpp
📚 Learning: 2025-08-20T07:43:36.447Z
Learnt from: ChristinaZ
Repo: NVIDIA/TensorRT-LLM PR: 7068
File: cpp/tensorrt_llm/kernels/moeTopKFuncs.cuh:169-172
Timestamp: 2025-08-20T07:43:36.447Z
Learning: In TensorRT-LLM MOE kernels, when processing up to 128 experts across 32 threads, each thread handles at most 4 experts (N < 5 constraint), where N represents candidates per thread rather than total system capacity.

Applied to files:

  • cpp/tensorrt_llm/kernels/trtllmGenKernels/blockScaleMoe/RoutingKernel.cuh
  • cpp/tensorrt_llm/kernels/cutlass_kernels/include/moe_kernels.h
  • cpp/tensorrt_llm/kernels/trtllmGenKernels/blockScaleMoe/RoutingDeepSeek.cu
  • cpp/tensorrt_llm/thop/cuteDslMoeUtilsOp.cpp
  • cpp/tensorrt_llm/kernels/trtllmGenKernels/blockScaleMoe/RoutingRenormalize.cu
  • cpp/tensorrt_llm/kernels/trtllmGenKernels/blockScaleMoe/RoutingLlama4.cu
  • cpp/tensorrt_llm/thop/moeUtilOp.cpp
📚 Learning: 2025-09-23T14:58:05.372Z
Learnt from: nv-lschneider
Repo: NVIDIA/TensorRT-LLM PR: 7910
File: cpp/tensorrt_llm/kernels/nccl_device/config.cu:42-49
Timestamp: 2025-09-23T14:58:05.372Z
Learning: In TensorRT-LLM NCCL device kernels (cpp/tensorrt_llm/kernels/nccl_device/), the token partitioning intentionally uses ceil-like distribution (same token_per_rank for all ranks) to ensure all ranks launch the same number of blocks. This is required for optimal NCCL device API barrier performance, even though it may launch extra blocks for non-existent tokens on later ranks. Runtime bounds checking in the kernel (blockID validation) handles the overshoot cases.

Applied to files:

  • cpp/tensorrt_llm/kernels/trtllmGenKernels/blockScaleMoe/RoutingKernel.cuh
  • cpp/tensorrt_llm/kernels/cutlass_kernels/include/moe_kernels.h
  • cpp/tensorrt_llm/kernels/trtllmGenKernels/blockScaleMoe/RoutingDeepSeek.cu
  • cpp/tensorrt_llm/kernels/trtllmGenKernels/blockScaleMoe/runner.cu
  • cpp/tensorrt_llm/kernels/trtllmGenKernels/blockScaleMoe/RoutingRenormalize.cu
  • cpp/tensorrt_llm/kernels/trtllmGenKernels/blockScaleMoe/RoutingLlama4.cu
  • cpp/tensorrt_llm/thop/moeUtilOp.cpp
  • tensorrt_llm/_torch/custom_ops/cute_dsl_custom_ops.py
📚 Learning: 2025-08-14T21:04:50.248Z
Learnt from: thorjohnsen
Repo: NVIDIA/TensorRT-LLM PR: 6910
File: cpp/tensorrt_llm/batch_manager/kvCacheManager.cpp:0-0
Timestamp: 2025-08-14T21:04:50.248Z
Learning: In KV cache onboarding logic during prefill in cpp/tensorrt_llm/batch_manager/kvCacheManager.cpp, when calculating which blocks fall within the attention window, use getTokensPerBlock() to advance token indices rather than block->getUniqueTokens().size(), because the calculation needs to consider the post-prefill state where blocks will be filled to capacity, not their current token count.

Applied to files:

  • cpp/tensorrt_llm/kernels/trtllmGenKernels/blockScaleMoe/RoutingKernel.cuh
  • cpp/tensorrt_llm/kernels/trtllmGenKernels/blockScaleMoe/RoutingDeepSeek.cu
  • cpp/tensorrt_llm/kernels/trtllmGenKernels/blockScaleMoe/RoutingRenormalize.cu
  • cpp/tensorrt_llm/kernels/trtllmGenKernels/blockScaleMoe/RoutingLlama4.cu
📚 Learning: 2025-10-17T13:21:31.724Z
Learnt from: ixlmar
Repo: NVIDIA/TensorRT-LLM PR: 8398
File: tensorrt_llm/_torch/pyexecutor/sampling_utils.py:237-272
Timestamp: 2025-10-17T13:21:31.724Z
Learning: The setup.py file in TensorRT-LLM explicitly requires Python 3.10+ via `python_requires=">=3.10, <4"`, making match/case statements and other Python 3.10+ features appropriate throughout the codebase.

Applied to files:

  • requirements.txt
📚 Learning: 2025-09-17T02:48:52.732Z
Learnt from: tongyuantongyu
Repo: NVIDIA/TensorRT-LLM PR: 7781
File: tests/integration/test_lists/waives.txt:313-313
Timestamp: 2025-09-17T02:48:52.732Z
Learning: In TensorRT-LLM, `tests/integration/test_lists/waives.txt` is specifically for waiving/skipping tests, while other test list files like those in `test-db/` and `qa/` directories are for different test execution contexts (pre-merge, post-merge, QA tests). The same test appearing in both waives.txt and execution list files is intentional - the test is part of test suites but will be skipped due to the waiver.

Applied to files:

  • tests/integration/test_lists/test-db/l0_b200.yml
  • tests/integration/test_lists/test-db/l0_dgx_b200.yml
📚 Learning: 2025-07-28T17:06:08.621Z
Learnt from: moraxu
Repo: NVIDIA/TensorRT-LLM PR: 6303
File: tests/integration/test_lists/qa/examples_test_list.txt:494-494
Timestamp: 2025-07-28T17:06:08.621Z
Learning: In TensorRT-LLM testing, it's common to have both CLI flow tests (test_cli_flow.py) and PyTorch API tests (test_llm_api_pytorch.py) for the same model. These serve different purposes: CLI flow tests validate the traditional command-line workflow, while PyTorch API tests validate the newer LLM API backend. Both are legitimate and should coexist.

Applied to files:

  • tests/integration/test_lists/test-db/l0_b200.yml
  • tests/integration/test_lists/test-db/l0_dgx_b200.yml
  • tests/integration/defs/accuracy/test_llm_api_pytorch.py
📚 Learning: 2025-08-26T09:49:04.956Z
Learnt from: pengbowang-nv
Repo: NVIDIA/TensorRT-LLM PR: 7192
File: tests/integration/test_lists/test-db/l0_dgx_b200.yml:56-72
Timestamp: 2025-08-26T09:49:04.956Z
Learning: In TensorRT-LLM test configuration files, the test scheduling system handles wildcard matching with special rules that prevent duplicate test execution even when the same tests appear in multiple yaml files with overlapping GPU wildcards (e.g., "*b200*" and "*gb200*").

Applied to files:

  • tests/integration/test_lists/test-db/l0_b200.yml
  • tests/integration/test_lists/test-db/l0_dgx_b200.yml
📚 Learning: 2025-08-14T06:36:40.701Z
Learnt from: timlee0212
Repo: NVIDIA/TensorRT-LLM PR: 6886
File: tensorrt_llm/_torch/models/modeling_deepseekv3.py:0-0
Timestamp: 2025-08-14T06:36:40.701Z
Learning: In DeepSeek V3 model (tensorrt_llm/_torch/models/modeling_deepseekv3.py), the disagreement between AllReduce.__init__ guard and _compute_mlp_tp_size logic for MNNVL usage is expected by design. The AllReduce component and MLP TP-size computation intentionally use different criteria for MNNVL availability decisions.

Applied to files:

  • tests/integration/test_lists/test-db/l0_b200.yml
  • tensorrt_llm/_torch/models/modeling_deepseekv3.py
  • cpp/tensorrt_llm/thop/moeUtilOp.cpp
📚 Learning: 2025-08-21T02:39:12.009Z
Learnt from: djns99
Repo: NVIDIA/TensorRT-LLM PR: 7104
File: cpp/tensorrt_llm/kernels/cutlass_kernels/moe_gemm/moe_kernels.cu:1475-1480
Timestamp: 2025-08-21T02:39:12.009Z
Learning: The min latency mode functionality in TensorRT-LLM MOE kernels (cpp/tensorrt_llm/kernels/cutlass_kernels/moe_gemm/moe_kernels.cu) is deprecated and no longer being maintained/updated, as confirmed by djns99. Bug reports and optimization suggestions for the computeStridesTmaWarpSpecializedLowLatencyKernel and related min latency code paths should be deprioritized.

Applied to files:

  • cpp/tensorrt_llm/kernels/cutlass_kernels/include/moe_kernels.h
  • cpp/tensorrt_llm/kernels/trtllmGenKernels/blockScaleMoe/RoutingDeepSeek.cu
  • cpp/tensorrt_llm/kernels/trtllmGenKernels/blockScaleMoe/runner.cu
  • cpp/tensorrt_llm/kernels/cuteDslKernels/moeUtils.h
  • cpp/tensorrt_llm/thop/cuteDslMoeUtilsOp.cpp
  • cpp/tensorrt_llm/kernels/trtllmGenKernels/blockScaleMoe/RoutingRenormalize.cu
  • cpp/tensorrt_llm/kernels/cutlass_kernels/moe_gemm/moe_kernels.cu
  • cpp/tensorrt_llm/kernels/cuteDslKernels/moeUtils.cu
  • cpp/tensorrt_llm/kernels/trtllmGenKernels/blockScaleMoe/RoutingLlama4.cu
  • cpp/tensorrt_llm/thop/moeUtilOp.cpp
  • tensorrt_llm/_torch/custom_ops/cute_dsl_custom_ops.py
📚 Learning: 2025-09-23T15:13:48.819Z
Learnt from: nv-lschneider
Repo: NVIDIA/TensorRT-LLM PR: 7910
File: cpp/tensorrt_llm/kernels/nccl_device/multimem.h:20-30
Timestamp: 2025-09-23T15:13:48.819Z
Learning: TRT-LLM targets modern CUDA toolkits that support FP8 datatypes, so cuda_fp8.h can be included unconditionally without version guards in TRT-LLM code.

Applied to files:

  • cpp/tensorrt_llm/kernels/cutlass_kernels/include/moe_kernels.h
  • cpp/tensorrt_llm/thop/cuteDslMoeUtilsOp.cpp
  • cpp/tensorrt_llm/thop/fp4Quantize.cpp
📚 Learning: 2025-08-22T01:54:35.850Z
Learnt from: djns99
Repo: NVIDIA/TensorRT-LLM PR: 7104
File: cpp/tensorrt_llm/kernels/cutlass_kernels/include/moe_kernels.h:999-1000
Timestamp: 2025-08-22T01:54:35.850Z
Learning: The `internal_cutlass_kernels` directory in TensorRT-LLM is a mirror of an internal NVIDIA repository and maintains its own implementation and API that may diverge from the public `cutlass_kernels` version. API inconsistencies between these two directories are intentional and by design, not bugs to be fixed.

Applied to files:

  • cpp/tensorrt_llm/kernels/cutlass_kernels/include/moe_kernels.h
  • cpp/tensorrt_llm/kernels/cuteDslKernels/moeUtils.h
  • cpp/tensorrt_llm/kernels/CMakeLists.txt
  • tensorrt_llm/_torch/custom_ops/cute_dsl_custom_ops.py
📚 Learning: 2025-08-21T02:41:10.565Z
Learnt from: djns99
Repo: NVIDIA/TensorRT-LLM PR: 7104
File: cpp/tensorrt_llm/kernels/cutlass_kernels/include/moe_gemm_kernels.h:141-145
Timestamp: 2025-08-21T02:41:10.565Z
Learning: In TensorRT-LLM MOE GEMM kernels (cpp/tensorrt_llm/kernels/cutlass_kernels/include/moe_gemm_kernels.h), the stride_act and stride_weight pointers in TmaWarpSpecializedGroupedGemmInput are intentionally declared as void* rather than typed pointers because the actual stride type is determined at runtime based on factors like the swap_ab flag and layout decisions. This runtime type determination makes compile-time type safety impossible, so void* is the correct approach.

Applied to files:

  • cpp/tensorrt_llm/kernels/cutlass_kernels/include/moe_kernels.h
  • cpp/tensorrt_llm/kernels/cuteDslKernels/moeUtils.h
  • cpp/tensorrt_llm/kernels/cutlass_kernels/moe_gemm/moe_kernels.cu
📚 Learning: 2025-08-08T05:10:38.906Z
Learnt from: sklevtsov-nvidia
Repo: NVIDIA/TensorRT-LLM PR: 3294
File: cpp/tensorrt_llm/cutlass_extensions/include/cutlass_extensions/epilogue/fusion/sm90_visitor_scatter.hpp:0-0
Timestamp: 2025-08-08T05:10:38.906Z
Learning: The ScaledAccPerRowBiasPerColScaleScatter fusion in CUTLASS extensions (cpp/tensorrt_llm/cutlass_extensions/include/cutlass_extensions/epilogue/fusion/sm90_visitor_scatter.hpp) is specifically designed for per-column scaling factors only, so it uses a fixed Stride<_0,_1,int64_t> rather than conditional stride logic.

Applied to files:

  • cpp/tensorrt_llm/kernels/cutlass_kernels/include/moe_kernels.h
  • cpp/tensorrt_llm/kernels/cutlass_kernels/moe_gemm/moe_kernels.cu
📚 Learning: 2025-08-15T06:46:54.897Z
Learnt from: eopXD
Repo: NVIDIA/TensorRT-LLM PR: 6767
File: cpp/tensorrt_llm/batch_manager/kvCacheManager.cpp:0-0
Timestamp: 2025-08-15T06:46:54.897Z
Learning: In cpp/tensorrt_llm/batch_manager/kvCacheManager.cpp addToken function, newly allocated blocks are unshared by design. The beam search path in addToken (when sequence.getNumTokens() > windowSize) is currently broken/non-functional with SWA, so the block allocation doesn't follow a shared-then-unshared pattern.

Applied to files:

  • cpp/tensorrt_llm/kernels/trtllmGenKernels/blockScaleMoe/RoutingDeepSeek.cu
  • cpp/tensorrt_llm/kernels/trtllmGenKernels/blockScaleMoe/RoutingRenormalize.cu
  • cpp/tensorrt_llm/kernels/trtllmGenKernels/blockScaleMoe/RoutingLlama4.cu
📚 Learning: 2025-08-09T20:57:04.084Z
Learnt from: sklevtsov-nvidia
Repo: NVIDIA/TensorRT-LLM PR: 3294
File: cpp/tensorrt_llm/kernels/cutlass_kernels/moe_gemm/moe_gemm_tma_warp_specialized_input.cu:118-127
Timestamp: 2025-08-09T20:57:04.084Z
Learning: In the CUTLASS MoE finalize fusion implementation (cpp/tensorrt_llm/kernels/cutlass_kernels/moe_gemm/moe_gemm_tma_warp_specialized_input.cu), when setting `fused_finalize_epilogue.stride_final_output` with shape `(hidden_size, num_output_tokens, 1)`, the `num_rows_in_final_output` should be set to `num_output_tokens` (not `hidden_size`) because of a swap+transpose operation that maps rows of the output tensor to `hidden_size` and columns to `num_output_tokens`.

Applied to files:

  • cpp/tensorrt_llm/kernels/trtllmGenKernels/blockScaleMoe/RoutingDeepSeek.cu
  • cpp/tensorrt_llm/kernels/cuteDslKernels/moeUtils.h
  • cpp/tensorrt_llm/kernels/trtllmGenKernels/blockScaleMoe/RoutingRenormalize.cu
  • cpp/tensorrt_llm/kernels/cutlass_kernels/moe_gemm/moe_kernels.cu
  • cpp/tensorrt_llm/kernels/cuteDslKernels/moeUtils.cu
  • cpp/tensorrt_llm/kernels/trtllmGenKernels/blockScaleMoe/RoutingLlama4.cu
  • cpp/tensorrt_llm/thop/moeUtilOp.cpp
  • tensorrt_llm/_torch/custom_ops/cute_dsl_custom_ops.py
📚 Learning: 2025-08-19T03:35:20.866Z
Learnt from: djns99
Repo: NVIDIA/TensorRT-LLM PR: 6915
File: cpp/tensorrt_llm/kernels/cutlass_kernels/moe_gemm/moe_kernels.cu:4616-4626
Timestamp: 2025-08-19T03:35:20.866Z
Learning: In the MOE profiler TMA workspace preparation (cpp/tensorrt_llm/kernels/cutlass_kernels/moe_gemm/moe_kernels.cu), the overlapping of TMA WS regions for NONE and FINALIZE variants is deliberate design to save memory space, as confirmed by djns99. The comment "reuse the same pointers to save space" reflects this intentional behavior.

Applied to files:

  • cpp/tensorrt_llm/kernels/trtllmGenKernels/blockScaleMoe/RoutingDeepSeek.cu
  • cpp/tensorrt_llm/kernels/trtllmGenKernels/blockScaleMoe/runner.cu
  • cpp/tensorrt_llm/kernels/cuteDslKernels/moeUtils.h
  • tensorrt_llm/_torch/cute_dsl_kernels/blackwell/grouped_blockscaled_gemm_persistent.py
  • cpp/tensorrt_llm/kernels/trtllmGenKernels/blockScaleMoe/RoutingRenormalize.cu
  • cpp/tensorrt_llm/kernels/cutlass_kernels/moe_gemm/moe_kernels.cu
  • cpp/tensorrt_llm/kernels/cuteDslKernels/moeUtils.cu
  • cpp/tensorrt_llm/kernels/trtllmGenKernels/blockScaleMoe/RoutingLlama4.cu
  • cpp/tensorrt_llm/thop/moeUtilOp.cpp
📚 Learning: 2025-08-19T12:45:11.997Z
Learnt from: amitz-nv
Repo: NVIDIA/TensorRT-LLM PR: 7033
File: tensorrt_llm/_torch/pyexecutor/model_engine.py:0-0
Timestamp: 2025-08-19T12:45:11.997Z
Learning: In tensorrt_llm/_torch/pyexecutor/model_engine.py, DoRA (Delta Orthogonal Rank Adaptation) functionality was removed from the PyTorch flow to eliminate issues with inverted DoRA detection logic. The original is_dora condition was checking if scaling_vec_pointer == 0, which was potentially incorrect.

Applied to files:

  • cpp/tensorrt_llm/kernels/trtllmGenKernels/blockScaleMoe/runner.cu
  • tensorrt_llm/_torch/models/modeling_deepseekv3.py
  • cpp/tensorrt_llm/thop/moeUtilOp.cpp
📚 Learning: 2025-08-14T23:23:27.449Z
Learnt from: djns99
Repo: NVIDIA/TensorRT-LLM PR: 6915
File: cpp/tensorrt_llm/kernels/cutlass_kernels/moe_gemm/moe_kernels.cu:4010-4012
Timestamp: 2025-08-14T23:23:27.449Z
Learning: For MOE (Mixture of Experts) code reviews in TensorRT-LLM, avoid repeatedly suggesting finalize fusion validation checks and safety assertions. The user djns99 has indicated these suggestions are repetitive and unwanted across multiple MOE-related changes.

Applied to files:

  • cpp/tensorrt_llm/kernels/cuteDslKernels/moeUtils.h
  • cpp/tensorrt_llm/thop/cuteDslMoeUtilsOp.cpp
  • cpp/tensorrt_llm/kernels/cuteDslKernels/moeUtils.cu
  • tests/unittest/_torch/thop/parallel/test_cute_dsl_moe.py
  • cpp/tensorrt_llm/thop/moeUtilOp.cpp
  • tensorrt_llm/_torch/modules/fused_moe/fused_moe_cute_dsl.py
  • tensorrt_llm/_torch/custom_ops/cute_dsl_custom_ops.py
📚 Learning: 2025-08-08T22:03:28.403Z
Learnt from: sklevtsov-nvidia
Repo: NVIDIA/TensorRT-LLM PR: 3294
File: cpp/tensorrt_llm/kernels/internal_cutlass_kernels/include/moe_gemm_kernels.h:152-154
Timestamp: 2025-08-08T22:03:28.403Z
Learning: In CUTLASS, `TagToStrideC_t` template is defined for both pointer types (e.g., `Layout*`) and non-pointer types (e.g., `Layout`). When used with pointer types, it's often wrapped with `std::remove_pointer_t`, while non-pointer usage is direct. Both `cutlass::detail::TagToStrideC_t` and `cutlass::gemm::TagToStrideC_t` support both forms.

Applied to files:

  • cpp/tensorrt_llm/kernels/cutlass_kernels/moe_gemm/moe_kernels.cu
📚 Learning: 2025-08-08T04:10:19.038Z
Learnt from: djns99
Repo: NVIDIA/TensorRT-LLM PR: 6728
File: cpp/tensorrt_llm/plugins/mixtureOfExperts/mixtureOfExpertsPlugin.cpp:966-966
Timestamp: 2025-08-08T04:10:19.038Z
Learning: TensorRT plugins currently don't support padding functionality, and TensorRT is not getting new features (in maintenance mode). This means that duplicating parameters like mExpertHiddenSize in function calls, even with TODO comments, can be acceptable as pragmatic solutions within these constraints.

Applied to files:

  • cpp/tensorrt_llm/thop/moeUtilOp.cpp
📚 Learning: 2025-10-20T17:07:18.745Z
Learnt from: nvchenghaoz
Repo: NVIDIA/TensorRT-LLM PR: 8469
File: tensorrt_llm/_torch/auto_deploy/models/patches/nemotron_h.py:98-116
Timestamp: 2025-10-20T17:07:18.745Z
Learning: In NemotronH models (tensorrt_llm/_torch/auto_deploy/models/patches/nemotron_h.py), the gate (self.gate) returns topk_indices and topk_weights that are already in the correct shape to be passed directly to torch_ops.auto_deploy.torch_moe without needing to reshape them when hidden_states is flattened.

Applied to files:

  • tensorrt_llm/_torch/modules/fused_moe/fused_moe_cute_dsl.py
📚 Learning: 2025-08-14T15:38:01.771Z
Learnt from: MatthiasKohl
Repo: NVIDIA/TensorRT-LLM PR: 6904
File: cpp/tensorrt_llm/pybind/thop/bindings.cpp:55-57
Timestamp: 2025-08-14T15:38:01.771Z
Learning: In TensorRT-LLM Python bindings, tensor parameter collections like mla_tensor_params and spec_decoding_tensor_params are kept as required parameters without defaults to maintain API consistency, even when it might affect backward compatibility.

Applied to files:

  • tensorrt_llm/_torch/custom_ops/cute_dsl_custom_ops.py
🧬 Code graph analysis (9)
tensorrt_llm/_torch/autotuner.py (1)
tensorrt_llm/_torch/custom_ops/cute_dsl_custom_ops.py (1)
  • gen_tuning_buckets (369-373)
cpp/tensorrt_llm/kernels/cuteDslKernels/moeUtils.h (2)
cpp/tensorrt_llm/kernels/cutlass_kernels/include/moe_kernels.h (1)
  • tensorrt_llm (39-147)
cpp/tensorrt_llm/kernels/cuteDslKernels/moeUtils.cu (9)
  • void (58-113)
  • void (182-235)
  • void (280-356)
  • moePermute (116-160)
  • moePermute (116-119)
  • moeUnpermute (238-263)
  • moeUnpermute (238-240)
  • moeActivation (359-417)
  • moeActivation (359-362)
cpp/tensorrt_llm/thop/cuteDslMoeUtilsOp.cpp (1)
cpp/tensorrt_llm/kernels/trtllmGenKernels/blockScaleMoe/runner.h (7)
  • top_k (240-240)
  • n_group (241-241)
  • topk_group (243-243)
  • local_expert_offset (246-246)
  • local_num_experts (247-247)
  • getMaxPermutedPaddedCount (105-110)
  • getMaxNumCtasInBatchDim (75-103)
tensorrt_llm/_torch/cute_dsl_kernels/blackwell/grouped_blockscaled_gemm_persistent.py (1)
tensorrt_llm/_torch/cute_dsl_kernels/blackwell/custom_pipeline.py (5)
  • PipelineTmaUmma (73-269)
  • PipelineUmmaAsync (273-376)
  • producer_acquire (231-255)
  • producer_tail (364-376)
  • consumer_release (217-229)
tests/integration/defs/accuracy/test_llm_api_pytorch.py (1)
tests/integration/defs/conftest.py (2)
  • parametrize_with_ids (1818-1844)
  • get_sm_version (1890-1893)
cpp/tensorrt_llm/kernels/cuteDslKernels/moeUtils.cu (2)
cpp/tensorrt_llm/kernels/cutlass_kernels/moe_gemm/moe_kernels.cu (16)
  • void (156-275)
  • void (309-398)
  • void (564-613)
  • void (660-707)
  • void (710-740)
  • void (799-826)
  • void (1022-1067)
  • void (1070-1082)
  • void (1102-1141)
  • void (1143-1195)
  • void (1198-1236)
  • void (1240-1335)
  • void (1361-1566)
  • void (1683-1757)
  • void (1762-1865)
  • void (1943-1995)
cpp/include/tensorrt_llm/common/cudaUtils.h (1)
  • getMultiProcessorCount (403-450)
tests/unittest/_torch/thop/parallel/test_cute_dsl_moe.py (4)
tensorrt_llm/_torch/custom_ops/cute_dsl_custom_ops.py (10)
  • GroupedGemmInputsHelper (341-415)
  • get_max_num_permuted_tokens (359-360)
  • infer_num_tokens (362-367)
  • gen_tuning_buckets (369-373)
  • map_to_tuning_buckets (375-377)
  • get_max_num_tiles (351-357)
  • _ (325-339)
  • _ (665-683)
  • _ (879-899)
  • cute_dsl_nvfp4_grouped_gemm_blackwell (628-661)
tensorrt_llm/_torch/modules/fused_moe/fused_moe_cute_dsl.py (1)
  • cute_dsl_nvfp4_grouped_gemm_ref (93-149)
tensorrt_llm/_torch/utils.py (1)
  • unswizzle_sf (144-159)
cpp/tensorrt_llm/thop/cuteDslMoeUtilsOp.cpp (10)
  • moe_sort (112-125)
  • moe_sort (112-114)
  • moe_permute (129-200)
  • moe_permute (129-132)
  • moe_unpermute (204-254)
  • moe_unpermute (204-205)
  • moe_swiglu (257-303)
  • moe_swiglu (257-258)
  • moe_swiglu_nvfp4_quantize (305-359)
  • moe_swiglu_nvfp4_quantize (305-307)
tensorrt_llm/_torch/modules/fused_moe/fused_moe_cute_dsl.py (3)
tensorrt_llm/_torch/custom_ops/cpp_custom_ops.py (1)
  • allgather (97-102)
tensorrt_llm/_torch/utils.py (2)
  • Fp4QuantizedTensor (110-117)
  • shape (116-117)
tensorrt_llm/_torch/custom_ops/cute_dsl_custom_ops.py (1)
  • cute_dsl_nvfp4_grouped_gemm_blackwell (628-661)
tensorrt_llm/_torch/custom_ops/cute_dsl_custom_ops.py (5)
tensorrt_llm/_torch/autotuner.py (6)
  • AutoTuner (514-1181)
  • TuningConfig (53-101)
  • get_valid_tactics (156-174)
  • forward (180-206)
  • get (545-548)
  • choose_one (623-778)
tensorrt_llm/_torch/utils.py (3)
  • fp4_scale_infer_shape (262-267)
  • get_last_power_of_2_num_tokens_buckets (252-259)
  • last_positive_power_of_2 (229-234)
tensorrt_llm/_torch/cute_dsl_kernels/blackwell/dense_blockscaled_gemm_persistent.py (3)
  • Sm100BlockScaledPersistentDenseGemmKernel (65-1877)
  • Sm100BlockScaledPersistentDenseGemmKernelWrapper (1901-2015)
  • can_implement (1821-1877)
tensorrt_llm/_torch/cute_dsl_kernels/blackwell/grouped_blockscaled_gemm_persistent.py (3)
  • Sm100BlockScaledPersistentGroupedGemmKernel (56-2285)
  • can_implement (2142-2225)
  • wrapper (2228-2285)
tensorrt_llm/_torch/cute_dsl_kernels/blackwell/utils.py (2)
  • make_ptr (142-188)
  • dtype (118-119)
🪛 Clang (14.0.6)
cpp/tensorrt_llm/kernels/cuteDslKernels/moeUtils.h

[error] 18-18: 'tensorrt_llm/kernels/cutlass_kernels/include/moe_kernels.h' file not found

(clang-diagnostic-error)

cpp/tensorrt_llm/thop/cuteDslMoeUtilsOp.cpp

[error] 17-17: 'tensorrt_llm/kernels/cuteDslKernels/moeUtils.h' file not found

(clang-diagnostic-error)

🪛 Ruff (0.14.4)
tensorrt_llm/_torch/cute_dsl_kernels/blackwell/grouped_blockscaled_gemm_persistent.py

389-389: Avoid specifying long messages outside the exception class

(TRY003)


695-695: Unpacked variable bidy is never used

Prefix it with an underscore or any other dummy variable pattern

(RUF059)


695-695: Unpacked variable bidz is never used

Prefix it with an underscore or any other dummy variable pattern

(RUF059)


1060-1060: Loop control variable k_tile not used within loop body

Rename unused k_tile to _k_tile

(B007)


1282-1282: Loop control variable k_tile not used within loop body

Rename unused k_tile to _k_tile

(B007)


1701-1701: Unused method argument: tidx

(ARG002)


1928-1928: Avoid specifying long messages outside the exception class

(TRY003)

tests/unittest/_torch/thop/parallel/test_cute_dsl_moe.py

306-306: Loop control variable i not used within loop body

Rename unused i to _i

(B007)

tensorrt_llm/_torch/modules/fused_moe/fused_moe_cute_dsl.py

117-117: Ambiguous variable name: l

(E741)


136-136: Consider [0, *num_tiles_per_expert.cumsum(dim=0).tolist()] instead of concatenation

Replace with [0, *num_tiles_per_expert.cumsum(dim=0).tolist()]

(RUF005)


139-139: zip() without an explicit strict= parameter

Add explicit value for parameter strict=

(B905)


139-139: Prefer itertools.pairwise() over zip() when iterating over successive pairs

Replace zip() with itertools.pairwise()

(RUF007)


223-223: Unused method argument: output_dtype

(ARG002)


224-224: Unused method argument: all_rank_num_tokens

(ARG002)


225-225: Unused method argument: use_dp_padding

(ARG002)


369-369: Unpacked variable total_num_padded_tokens is never used

Prefix it with an underscore or any other dummy variable pattern

(RUF059)


456-458: Avoid specifying long messages outside the exception class

(TRY003)

tensorrt_llm/_torch/custom_ops/cute_dsl_custom_ops.py

418-418: Mutable class attributes should be annotated with typing.ClassVar

(RUF012)


419-419: Mutable class attributes should be annotated with typing.ClassVar

(RUF012)


441-443: Avoid specifying long messages outside the exception class

(TRY003)


448-448: Unused method argument: profile

(ARG002)


449-449: Unused method argument: kwargs

(ARG002)


453-453: Ambiguous variable name: l

(E741)


519-519: Ambiguous variable name: l

(E741)


668-668: Unused function argument: input_scale

(ARG001)


669-669: Unused function argument: weight_scale

(ARG001)


670-670: Unused function argument: alpha

(ARG001)


671-671: Unused function argument: tile_idx_to_group_idx

(ARG001)


672-672: Unused function argument: num_non_exiting_tiles

(ARG001)


673-673: Unused function argument: num_experts

(ARG001)


674-674: Unused function argument: top_k

(ARG001)


675-675: Unused function argument: num_local_experts

(ARG001)


676-676: Unused function argument: local_expert_offset

(ARG001)


677-677: Unused function argument: tile_size

(ARG001)


679-679: Unused function argument: scaling_vector_size

(ARG001)


717-717: Mutable class attributes should be annotated with typing.ClassVar

(RUF012)


738-738: Unused method argument: inputs

(ARG002)


739-739: Unused method argument: profile

(ARG002)


740-740: Unused method argument: kwargs

(ARG002)


772-772: Unpacked variable total_num_padded_tokens is never used

Prefix it with an underscore or any other dummy variable pattern

(RUF059)


881-881: Unused function argument: input_scale

(ARG001)


882-882: Unused function argument: token_selected_experts

(ARG001)


883-883: Unused function argument: token_final_scales

(ARG001)


884-884: Unused function argument: gemm1_weight

(ARG001)


885-885: Unused function argument: gemm1_weight_scale

(ARG001)


886-886: Unused function argument: gemm1_alpha

(ARG001)


887-887: Unused function argument: gemm2_input_global_scale

(ARG001)


888-888: Unused function argument: gemm2_weight

(ARG001)


889-889: Unused function argument: gemm2_weight_scale

(ARG001)


890-890: Unused function argument: gemm2_alpha

(ARG001)


891-891: Unused function argument: num_experts

(ARG001)


892-892: Unused function argument: top_k

(ARG001)


893-893: Unused function argument: num_local_experts

(ARG001)


894-894: Unused function argument: local_expert_offset

(ARG001)


896-896: Unused function argument: scaling_vector_size

(ARG001)

@coderabbitai
Copy link
Contributor

coderabbitai bot commented Nov 12, 2025

📝 Walkthrough

Walkthrough

This PR introduces NVFP4 (4-bit floating point) support with grouped GEMM optimizations for Mixture-of-Experts routing in TensorRT-LLM, targeting Blackwell architecture. It includes new CUDA kernels for MOE permutation/unpermutation/activation, refactored adaptor structures, updated routing kernels with expanded-to-permuted index mappings, new PyTorch custom ops, Cute DSL Python kernel implementations, and comprehensive test coverage.

Changes

Cohort / File(s) Summary
Build Infrastructure
cpp/tensorrt_llm/CMakeLists.txt, cpp/tensorrt_llm/kernels/CMakeLists.txt, cpp/tensorrt_llm/kernels/cuteDslKernels/CMakeLists.txt
Added cuteDslKernels subdirectory with object library target; excluded its sources from parent glob patterns; added cute_dsl_src library with POSITION_INDEPENDENT_CODE and CUDA_RESOLVE_DEVICE_SYMBOLS properties
MOE Utilities CUDA Kernels
cpp/tensorrt_llm/kernels/cuteDslKernels/moeUtils.cu, cpp/tensorrt_llm/kernels/cuteDslKernels/moeUtils.h
New CUDA kernel interfaces and implementations for MOE permutation, unpermutation, and activation with FP4/BF16/FP8 support; supports per-tile scaling, grid synchronization barriers, and type-templated explicit instantiations
Adaptor Structure Refactoring
cpp/tensorrt_llm/kernels/cutlass_kernels/include/moe_kernels.h, cpp/tensorrt_llm/kernels/cutlass_kernels/moe_gemm/moe_kernels.cu
Moved IdentityAdaptor, GLUAdaptor, and SwigluBiasAdaptor from .cu implementation file to public header; included cutlass activation utilities under __CUDACC__ guard
Routing Kernel Updates
cpp/tensorrt_llm/kernels/trtllmGenKernels/blockScaleMoe/RoutingKernel.{h,cuh}, cpp/tensorrt_llm/kernels/trtllmGenKernels/blockScaleMoe/Routing{DeepSeek,Llama4,Renormalize}.cu
Added mPtrPermutedIdxToExpandedIdx pointer to DataBase and KernelParamsBase; updated routing kernels to populate permuted-to-expanded index mappings for local experts; added null checks and conditional writes
Routing Runner
cpp/tensorrt_llm/kernels/trtllmGenKernels/blockScaleMoe/runner.cu
Added routing data pointer assignments for permutedIdxToExpandedIdx across DeepSeekV3, Llama4, and Renormalize code paths
PyTorch Torch Extensions
cpp/tensorrt_llm/thop/CMakeLists.txt, cpp/tensorrt_llm/thop/cuteDslMoeUtilsOp.cpp
New Torch extension binding MOE utilities (moe_topk_sort, moe_sort, moe_permute, moe_unpermute, moe_swiglu, moe_swiglu_nvfp4_quantize) with comprehensive input validation and dtype dispatch
Cute DSL Custom Ops
tensorrt_llm/_torch/custom_ops/cute_dsl_custom_ops.py
Added GroupedGemmInputsHelper, FusedMoEInputsHelper, Sm100BlockScaledPersistentGroupedGemmRunner, Sm100BlockScaledFusedMoERunner classes; registered new custom ops cute_dsl_nvfp4_grouped_gemm_blackwell and cute_dsl_nvfp4_fused_moe_blackwell with AutoTuner-driven selection
Cute DSL Python Kernels
tensorrt_llm/_torch/cute_dsl_kernels/blackwell/grouped_blockscaled_gemm_persistent.py
New Sm100BlockScaledPersistentGroupedGemmKernel class implementing Blackwell-optimized persistent grouped GEMM with TMA tiling, pipeline barriers, warp specialization, and epilogue processing
Fused MOE Modules
tensorrt_llm/_torch/modules/fused_moe/fused_moe_cute_dsl.py
Split forward_chunk into three paths (unquantized, fp8_block_scales, nvfp4); added NVFP4-specific fusion steps using moe_permute, cute_dsl_nvfp4_grouped_gemm_blackwell, moe_swiglu_nvfp4_quantize, moe_unpermute; applied torch.compile optimization
Fused MOE Cleanup
tensorrt_llm/_torch/modules/fused_moe/fused_moe_{cutlass,deepgemm,wide_ep}.py
Removed redundant self-assignments of output_dtype in Fp4QuantizedTensor paths
AutoTuner Enhancements
tensorrt_llm/_torch/autotuner.py
Relaxed dynamic tuning bucket validation to accept any callable; added special-case handling for torch.float4_e2m1fn_x2 dtype via uint8 intermediate conversion
Test Coverage
tests/unittest/_torch/thop/parallel/test_cute_dsl_moe.py, tests/integration/defs/accuracy/test_llm_api_pytorch.py, tests/integration/test_lists/test-db/{l0_b200,l0_dgx_b200}.yml
Added comprehensive unit tests for GroupedGemmInputsHelper, moe_sort/permute/unpermute/swiglu operations, and nvfp4 grouped GEMM; expanded integration test coverage with CUTEDSL backend for SM version 100; added CUTEDSL test variants to test database
Minor Updates
cpp/tensorrt_llm/thop/{fp4Quantize,moeUtilOp}.cpp, tensorrt_llm/_torch/models/modeling_deepseekv3.py, requirements.txt
Reformatted Torch library registration strings (no functional change); updated nvidia-cutlass-dsl to 4.3.0.dev0 for Python >= 3.10

Sequence Diagram(s)

sequenceDiagram
    actor User as PyTorch User
    participant MOEFused as CuteDslFusedMoE
    participant Router as Router (Top-K)
    participant Custom as Custom Ops
    participant Kernel as CUDA Kernels
    
    User->>MOEFused: forward(input)
    MOEFused->>Router: moe_topk_sort/moe_sort
    Router->>Kernel: Run routing kernel
    Kernel-->>Router: Returns expert assignments & scales
    
    alt NVFP4 Path
        MOEFused->>Custom: moe_permute(input)
        Custom->>Kernel: Execute permutation kernel
        Kernel-->>Custom: permuted_output, permuted_sf
        
        MOEFused->>Custom: cute_dsl_nvfp4_grouped_gemm_blackwell
        Custom->>Kernel: Execute grouped GEMM (persistent)
        Kernel-->>Custom: gemm_output
        
        MOEFused->>Custom: moe_swiglu_nvfp4_quantize(gemm_output)
        Custom->>Kernel: Execute activation + FP4 quantize
        Kernel-->>Custom: activated_output, output_sf
        
        MOEFused->>Custom: moe_unpermute(activated_output)
        Custom->>Kernel: Execute unpermutation kernel
        Kernel-->>Custom: final_output
    end
    
    MOEFused-->>User: return final_output
Loading

Estimated code review effort

🎯 4 (Complex) | ⏱️ ~60 minutes

Areas requiring extra attention:

  • moeUtils.cu — Dense CUDA kernel logic with type-templated instantiations, grid synchronization barriers, and FP4-specific code paths; requires careful verification of memory access patterns and correctness of permutation/scaling operations
  • Sm100BlockScaledPersistentGroupedGemmKernel — Novel high-performance kernel with complex TMA tiling, pipeline barrier coordination, warp specialization, and epilogue synchronization; substantial architectural knowledge needed
  • cute_dsl_custom_ops.py — Large feature addition with new runner classes, tuning infrastructure, and dispatch logic; interconnects multiple new components that must coordinate correctly
  • fused_moe_cute_dsl.py — Split forward paths with NVFP4-specific operations; correctness depends on proper tensor flow through permute→GEMM→activation→unpermute sequence
  • Routing kernel updates — Distributed changes across multiple files adding new index mapping writes; verify consistency of null checks and index computation across all routing variants
  • Index mapping consistency — Verify that permuted-to-expanded index mappings are correctly populated and consumed by MOE utilities and custom ops

Possibly related PRs

Pre-merge checks and finishing touches

❌ Failed checks (1 warning)
Check name Status Explanation Resolution
Docstring Coverage ⚠️ Warning Docstring coverage is 26.53% which is insufficient. The required threshold is 80.00%. You can run @coderabbitai generate docstrings to improve docstring coverage.
✅ Passed checks (2 passed)
Check name Status Explanation
Title check ✅ Passed The title '[TRTLLM-9286][feat] Integration of CuteDSL NVFP4 grouped GEMM' clearly describes the main change: integrating CuteDSL NVFP4 grouped GEMM functionality. It follows the repository convention and directly relates to the primary objective.
Description check ✅ Passed The PR description provides a clear explanation of what is being integrated (CuteDSL NVFP4 grouped GEMM for the CuteDSL MoE backend), mentions hardware support (B200/GB200), includes a practical configuration example, demonstrates usage with a concrete command, and reports accuracy results. However, the Test Coverage section is empty with only a comment placeholder, leaving test coverage documentation incomplete.
✨ Finishing touches
  • 📝 Generate docstrings
🧪 Generate unit tests (beta)
  • Create PR with unit tests
  • Post copyable unit tests in a comment

Thanks for using CodeRabbit! It's free for OSS, and your support helps us grow. If you like it, consider giving us a shout-out.

❤️ Share

Comment @coderabbitai help to get the list of available commands and usage tips.

Copy link
Contributor

@coderabbitai coderabbitai bot left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Actionable comments posted: 4

Caution

Some comments are outside the diff and can’t be posted inline due to platform limitations.

⚠️ Outside diff range comments (2)
cpp/tensorrt_llm/kernels/cutlass_kernels/moe_gemm/moe_kernels.cu (2)

204-224: Fix smart_routing local/global expert indexing and ID storage.

Two issues in buildMinLatencyActiveExpertMapsKernel():

  • active_expert_global_ids stores local IDs; it must store global IDs.
  • s_local_experts is indexed with a global expert ID in step 6; must subtract start_expert first to avoid OOB/incorrect masking.

Apply:

@@
-                    active_expert_global_ids[offset - num_active_offset_start] = i;
+                    active_expert_global_ids[offset - num_active_offset_start] = i + start_expert;
@@
-        bool is_valid_expert
-            = smart_routing ? s_local_experts[expert] : (expert >= start_expert && expert < end_expert);
+        int local_expert = expert - start_expert;
+        bool is_valid_expert = smart_routing
+            ? (expert >= start_expert && expert < end_expert && s_local_experts[local_expert])
+            : (expert >= start_expert && expert < end_expert);

These fixes prevent incorrect masking and wrong expert IDs in min‑latency mode.

Also applies to: 242-253


2097-2112: Avoid UB: guard pointer arithmetic on a possibly null bias_ptr.

bias_ptr may be null, but bias_ptr + bias_offset is computed unconditionally. Compute the vector pointer only when bias_ptr is non‑null.

-        auto bias_ptr_vec = reinterpret_cast<BiasElem const*>(bias_ptr + bias_offset);
+        auto bias_ptr_vec = bias_ptr ? reinterpret_cast<BiasElem const*>(bias_ptr + bias_offset) : nullptr;

Downstream code already checks bias_ptr/bias_ptr_vec before use.

🧹 Nitpick comments (6)
cpp/tensorrt_llm/thop/fp4Quantize.cpp (3)

1-2: Update copyright year to include 2025.

The copyright header should reflect the current year (2025) as per coding guidelines.

Apply this diff to update the copyright year:

-/*
- * Copyright (c) 2020-2023, NVIDIA CORPORATION.  All rights reserved.
+/*
+ * Copyright (c) 2020-2025, NVIDIA CORPORATION.  All rights reserved.

86-86: Consider renaming thread_local variable to follow static variable naming convention.

The mMultiProcessorCount variable uses the 'm' prefix, which is reserved for member variables. Function-scope thread_local variables should follow the same naming convention as static variables and use the 's' prefix.

Apply this diff:

-    const thread_local int mMultiProcessorCount = tensorrt_llm::common::getMultiProcessorCount();
+    const thread_local int sMultiProcessorCount = tensorrt_llm::common::getMultiProcessorCount();

And update the reference on line 94:

         reinterpret_cast<int32_t*>(scaleFP8SF.data_ptr()), sfUseUE8M0, layout, mMultiProcessorCount,                   \
+        reinterpret_cast<int32_t*>(scaleFP8SF.data_ptr()), sfUseUE8M0, layout, sMultiProcessorCount,                   \

192-192: Consider adding 's' prefix to static variable.

The multiProcessorCount static variable should use the 's' prefix per coding guidelines for locally visible static variables.

Apply this diff:

-    static int multiProcessorCount = tensorrt_llm::common::getMultiProcessorCount();
+    static int sMultiProcessorCount = tensorrt_llm::common::getMultiProcessorCount();

And update the references on lines 211 and 220:

         tensorrt_llm::kernels::computePerTokenGlobalScaleForFP4Quantization<half>(batch_size, token_num, hidden_size,
             reinterpret_cast<half const*>(input.data_ptr()), tokensPerBatchPtr, globalScale.data_ptr<float>(),
-            multiProcessorCount, at::cuda::getCurrentCUDAStream(input.get_device()));
+            sMultiProcessorCount, at::cuda::getCurrentCUDAStream(input.get_device()));
         tensorrt_llm::kernels::computePerTokenGlobalScaleForFP4Quantization<__nv_bfloat16>(batch_size, token_num,
             hidden_size, reinterpret_cast<__nv_bfloat16 const*>(input.data_ptr()), tokensPerBatchPtr,
-            globalScale.data_ptr<float>(), multiProcessorCount, at::cuda::getCurrentCUDAStream(input.get_device()));
+            globalScale.data_ptr<float>(), sMultiProcessorCount, at::cuda::getCurrentCUDAStream(input.get_device()));
tensorrt_llm/_torch/autotuner.py (1)

1058-1062: Clarify randint range intent for float4_e2m1fn_x2 dtype conversion

The special handling for torch.float4_e2m1fn_x2 uses torch.randint(-5, 5) before converting to uint8 and viewing as the dtype. The negative values from this range will wrap when cast to uint8 (e.g., -1→255, -5→251), creating indirect bit patterns through integer overflow. While this approach avoids all-zero tensors (as intended per the comment at line 1057), the wrapping behavior is implicit and not immediately clear.

For better clarity and directness, consider using torch.randint(0, 256) to generate explicit uint8 bit patterns without relying on wrapping. This maintains the goal of avoiding all-zero tensors while making the intent more obvious:

         if dtype == torch.float4_e2m1fn_x2:
             return torch.randint(-5, 5, shapes,
-                                 device=device).to(torch.uint8).view(dtype)
+                                 device=device).to(torch.uint8).view(dtype)
+            # Generate explicit uint8 bit patterns for float4 (2 FP4 values per byte)
+            return torch.randint(0, 256, shapes,
+                                 device=device, dtype=torch.uint8).view(dtype)

Or if the negative wrapping is preferred for some reason, add an explanatory comment clarifying why.

cpp/tensorrt_llm/kernels/cutlass_kernels/moe_gemm/moe_kernels.cu (1)

1346-1347: Nit: comment grammar.

“Duplicated and permutes rows for MoE.” → “Duplicates and permutes rows for MoE.”

cpp/tensorrt_llm/kernels/trtllmGenKernels/blockScaleMoe/RoutingLlama4.cu (1)

352-355: Consider using expandedIdx for consistency (optional refactor).

The write to mPtrPermutedIdxToExpandedIdx[permutedIdx] = tokenIdx; is semantically correct since expandedIdx == tokenIdx when topK == 1 (Line 28: MaxNumTopExperts = 1). However, for consistency with other routing variants (RoutingDeepSeek.cu line 532, RoutingKernel.cuh lines 479, 849), consider defining expandedIdx = tokenIdx; and using it in the write.

Apply this diff for consistency:

+            auto expandedIdx = tokenIdx; // Since topK=1 in Llama4
             // write out `mPtrPermutedIdxToExpandedIdx` if required
             if (params.mPtrPermutedIdxToExpandedIdx != nullptr && isLocalExpert)
             {
-                params.mPtrPermutedIdxToExpandedIdx[permutedIdx] = tokenIdx;
+                params.mPtrPermutedIdxToExpandedIdx[permutedIdx] = expandedIdx;
             }
📜 Review details

Configuration used: Path: .coderabbit.yaml

Review profile: CHILL

Plan: Pro

📥 Commits

Reviewing files that changed from the base of the PR and between b7a2574 and 4a9c0d8.

📒 Files selected for processing (30)
  • cpp/tensorrt_llm/CMakeLists.txt (1 hunks)
  • cpp/tensorrt_llm/kernels/CMakeLists.txt (2 hunks)
  • cpp/tensorrt_llm/kernels/cuteDslKernels/CMakeLists.txt (1 hunks)
  • cpp/tensorrt_llm/kernels/cuteDslKernels/moeUtils.cu (1 hunks)
  • cpp/tensorrt_llm/kernels/cuteDslKernels/moeUtils.h (1 hunks)
  • cpp/tensorrt_llm/kernels/cutlass_kernels/include/moe_kernels.h (2 hunks)
  • cpp/tensorrt_llm/kernels/cutlass_kernels/moe_gemm/moe_kernels.cu (1 hunks)
  • cpp/tensorrt_llm/kernels/trtllmGenKernels/blockScaleMoe/RoutingDeepSeek.cu (2 hunks)
  • cpp/tensorrt_llm/kernels/trtllmGenKernels/blockScaleMoe/RoutingKernel.cuh (2 hunks)
  • cpp/tensorrt_llm/kernels/trtllmGenKernels/blockScaleMoe/RoutingKernel.h (3 hunks)
  • cpp/tensorrt_llm/kernels/trtllmGenKernels/blockScaleMoe/RoutingLlama4.cu (1 hunks)
  • cpp/tensorrt_llm/kernels/trtllmGenKernels/blockScaleMoe/RoutingRenormalize.cu (1 hunks)
  • cpp/tensorrt_llm/kernels/trtllmGenKernels/blockScaleMoe/runner.cu (3 hunks)
  • cpp/tensorrt_llm/thop/CMakeLists.txt (1 hunks)
  • cpp/tensorrt_llm/thop/cuteDslMoeUtilsOp.cpp (1 hunks)
  • cpp/tensorrt_llm/thop/fp4Quantize.cpp (1 hunks)
  • cpp/tensorrt_llm/thop/moeUtilOp.cpp (1 hunks)
  • requirements.txt (1 hunks)
  • tensorrt_llm/_torch/autotuner.py (2 hunks)
  • tensorrt_llm/_torch/custom_ops/cute_dsl_custom_ops.py (4 hunks)
  • tensorrt_llm/_torch/cute_dsl_kernels/blackwell/grouped_blockscaled_gemm_persistent.py (1 hunks)
  • tensorrt_llm/_torch/models/modeling_deepseekv3.py (1 hunks)
  • tensorrt_llm/_torch/modules/fused_moe/fused_moe_cute_dsl.py (7 hunks)
  • tensorrt_llm/_torch/modules/fused_moe/fused_moe_cutlass.py (0 hunks)
  • tensorrt_llm/_torch/modules/fused_moe/fused_moe_deepgemm.py (0 hunks)
  • tensorrt_llm/_torch/modules/fused_moe/fused_moe_wide_ep.py (0 hunks)
  • tests/integration/defs/accuracy/test_llm_api_pytorch.py (3 hunks)
  • tests/integration/test_lists/test-db/l0_b200.yml (2 hunks)
  • tests/integration/test_lists/test-db/l0_dgx_b200.yml (2 hunks)
  • tests/unittest/_torch/thop/parallel/test_cute_dsl_moe.py (1 hunks)
💤 Files with no reviewable changes (3)
  • tensorrt_llm/_torch/modules/fused_moe/fused_moe_deepgemm.py
  • tensorrt_llm/_torch/modules/fused_moe/fused_moe_wide_ep.py
  • tensorrt_llm/_torch/modules/fused_moe/fused_moe_cutlass.py
🧰 Additional context used
📓 Path-based instructions (8)
**/*.{h,hpp,hh,hxx,cpp,cxx,cc,cu,cuh}

📄 CodeRabbit inference engine (CODING_GUIDELINES.md)

**/*.{h,hpp,hh,hxx,cpp,cxx,cc,cu,cuh}: Namespace closing braces must include a trailing comment with the namespace name (e.g., '} // namespace foo').
Prefer const or constexpr variables over #define for constants.
Declare variables that are not modified after initialization as const.
Avoid magic literals in code; except for 0, nullptr, true, false. Use named constants for comparisons and logic.
Use Allman brace style for formatting.
Place the semicolon of an empty for/while loop on a new line.
Bodies of switch/while/do-while/for must be compound statements (brace-delimited), and if/else must always be followed by brace-delimited statements.
Type names (e.g., classes) must be CamelCase starting with an uppercase letter (e.g., FooBar).
Local variables, methods, and namespaces use lowerCamelCase (e.g., localFooBar).
Non-magic-number global variables that are non-static and not in an anonymous namespace must be lowerCamelCase prefixed with 'g' (e.g., gDontUseGlobalFoos).
Non-magic-number globals that are static or in an anonymous namespace use lowerCamelCase prefixed with 's' (e.g., sMutableStaticGlobal).
Locally visible static variables use lowerCamelCase with 's' prefix (e.g., static std::once_flag sFlag).
Private/protected member variables use 'm' prefix with CamelCase (e.g., mNbFooValues). Public members may omit, but 'm' is encouraged for clarity.
Constants (enums, global constants, static constants, and function-scope magic/literal constants) use uppercase SNAKE_CASE with 'k' prefix (e.g., kDIGIT_NUM).
Function-scope constants that are not magic numbers or literals are named like non-constant variables (e.g., bool const pass = a && b).
If macros are necessary, name them in UPPER_SNAKE_CASE (e.g., FOO_VERSION) and prefer constants over #define.
Use LLVM clang-format; wrap lines at a maximum of 120 columns; use '// clang-format off/on' sparingly with justification.
Use smart pointers for heap allocations; prefer unique_ptr for sole ownership, shared_ptr for shared...

Files:

  • cpp/tensorrt_llm/kernels/trtllmGenKernels/blockScaleMoe/RoutingLlama4.cu
  • cpp/tensorrt_llm/kernels/trtllmGenKernels/blockScaleMoe/RoutingRenormalize.cu
  • cpp/tensorrt_llm/thop/moeUtilOp.cpp
  • cpp/tensorrt_llm/kernels/cutlass_kernels/moe_gemm/moe_kernels.cu
  • cpp/tensorrt_llm/kernels/cuteDslKernels/moeUtils.h
  • cpp/tensorrt_llm/kernels/trtllmGenKernels/blockScaleMoe/RoutingKernel.h
  • cpp/tensorrt_llm/kernels/trtllmGenKernels/blockScaleMoe/RoutingKernel.cuh
  • cpp/tensorrt_llm/kernels/trtllmGenKernels/blockScaleMoe/runner.cu
  • cpp/tensorrt_llm/kernels/cutlass_kernels/include/moe_kernels.h
  • cpp/tensorrt_llm/kernels/trtllmGenKernels/blockScaleMoe/RoutingDeepSeek.cu
  • cpp/tensorrt_llm/kernels/cuteDslKernels/moeUtils.cu
  • cpp/tensorrt_llm/thop/cuteDslMoeUtilsOp.cpp
  • cpp/tensorrt_llm/thop/fp4Quantize.cpp
**/*.{cpp,cxx,cc,cu,h,hpp,hh,hxx,cuh}

📄 CodeRabbit inference engine (CODING_GUIDELINES.md)

C++ filenames should be lowerCamelCase (first letter lowercase) and must be case-insensitive unique within a compilation target.

Files:

  • cpp/tensorrt_llm/kernels/trtllmGenKernels/blockScaleMoe/RoutingLlama4.cu
  • cpp/tensorrt_llm/kernels/trtllmGenKernels/blockScaleMoe/RoutingRenormalize.cu
  • cpp/tensorrt_llm/thop/moeUtilOp.cpp
  • cpp/tensorrt_llm/kernels/cutlass_kernels/moe_gemm/moe_kernels.cu
  • cpp/tensorrt_llm/kernels/cuteDslKernels/moeUtils.h
  • cpp/tensorrt_llm/kernels/trtllmGenKernels/blockScaleMoe/RoutingKernel.h
  • cpp/tensorrt_llm/kernels/trtllmGenKernels/blockScaleMoe/RoutingKernel.cuh
  • cpp/tensorrt_llm/kernels/trtllmGenKernels/blockScaleMoe/runner.cu
  • cpp/tensorrt_llm/kernels/cutlass_kernels/include/moe_kernels.h
  • cpp/tensorrt_llm/kernels/trtllmGenKernels/blockScaleMoe/RoutingDeepSeek.cu
  • cpp/tensorrt_llm/kernels/cuteDslKernels/moeUtils.cu
  • cpp/tensorrt_llm/thop/cuteDslMoeUtilsOp.cpp
  • cpp/tensorrt_llm/thop/fp4Quantize.cpp
**/*.{h,hpp,hh,hxx,cpp,cxx,cc,cu,cuh,py}

📄 CodeRabbit inference engine (CODING_GUIDELINES.md)

Use only spaces, no tabs; indent with 4 spaces.

Files:

  • cpp/tensorrt_llm/kernels/trtllmGenKernels/blockScaleMoe/RoutingLlama4.cu
  • cpp/tensorrt_llm/kernels/trtllmGenKernels/blockScaleMoe/RoutingRenormalize.cu
  • tensorrt_llm/_torch/models/modeling_deepseekv3.py
  • cpp/tensorrt_llm/thop/moeUtilOp.cpp
  • tensorrt_llm/_torch/autotuner.py
  • cpp/tensorrt_llm/kernels/cutlass_kernels/moe_gemm/moe_kernels.cu
  • cpp/tensorrt_llm/kernels/cuteDslKernels/moeUtils.h
  • cpp/tensorrt_llm/kernels/trtllmGenKernels/blockScaleMoe/RoutingKernel.h
  • cpp/tensorrt_llm/kernels/trtllmGenKernels/blockScaleMoe/RoutingKernel.cuh
  • tensorrt_llm/_torch/cute_dsl_kernels/blackwell/grouped_blockscaled_gemm_persistent.py
  • cpp/tensorrt_llm/kernels/trtllmGenKernels/blockScaleMoe/runner.cu
  • tensorrt_llm/_torch/modules/fused_moe/fused_moe_cute_dsl.py
  • tests/integration/defs/accuracy/test_llm_api_pytorch.py
  • tensorrt_llm/_torch/custom_ops/cute_dsl_custom_ops.py
  • cpp/tensorrt_llm/kernels/cutlass_kernels/include/moe_kernels.h
  • tests/unittest/_torch/thop/parallel/test_cute_dsl_moe.py
  • cpp/tensorrt_llm/kernels/trtllmGenKernels/blockScaleMoe/RoutingDeepSeek.cu
  • cpp/tensorrt_llm/kernels/cuteDslKernels/moeUtils.cu
  • cpp/tensorrt_llm/thop/cuteDslMoeUtilsOp.cpp
  • cpp/tensorrt_llm/thop/fp4Quantize.cpp
**/*.{cpp,cxx,cc,h,hpp,hh,hxx,cu,cuh,py}

📄 CodeRabbit inference engine (CODING_GUIDELINES.md)

Prepend the NVIDIA Apache-2.0 copyright header with current year to the top of all source files (e.g., .cpp, .h, .cu, .py).

Files:

  • cpp/tensorrt_llm/kernels/trtllmGenKernels/blockScaleMoe/RoutingLlama4.cu
  • cpp/tensorrt_llm/kernels/trtllmGenKernels/blockScaleMoe/RoutingRenormalize.cu
  • tensorrt_llm/_torch/models/modeling_deepseekv3.py
  • cpp/tensorrt_llm/thop/moeUtilOp.cpp
  • tensorrt_llm/_torch/autotuner.py
  • cpp/tensorrt_llm/kernels/cutlass_kernels/moe_gemm/moe_kernels.cu
  • cpp/tensorrt_llm/kernels/cuteDslKernels/moeUtils.h
  • cpp/tensorrt_llm/kernels/trtllmGenKernels/blockScaleMoe/RoutingKernel.h
  • cpp/tensorrt_llm/kernels/trtllmGenKernels/blockScaleMoe/RoutingKernel.cuh
  • tensorrt_llm/_torch/cute_dsl_kernels/blackwell/grouped_blockscaled_gemm_persistent.py
  • cpp/tensorrt_llm/kernels/trtllmGenKernels/blockScaleMoe/runner.cu
  • tensorrt_llm/_torch/modules/fused_moe/fused_moe_cute_dsl.py
  • tests/integration/defs/accuracy/test_llm_api_pytorch.py
  • tensorrt_llm/_torch/custom_ops/cute_dsl_custom_ops.py
  • cpp/tensorrt_llm/kernels/cutlass_kernels/include/moe_kernels.h
  • tests/unittest/_torch/thop/parallel/test_cute_dsl_moe.py
  • cpp/tensorrt_llm/kernels/trtllmGenKernels/blockScaleMoe/RoutingDeepSeek.cu
  • cpp/tensorrt_llm/kernels/cuteDslKernels/moeUtils.cu
  • cpp/tensorrt_llm/thop/cuteDslMoeUtilsOp.cpp
  • cpp/tensorrt_llm/thop/fp4Quantize.cpp
**/*.py

📄 CodeRabbit inference engine (CODING_GUIDELINES.md)

**/*.py: Python code must target Python 3.8+.
Indent Python code with 4 spaces; do not use tabs.
Maintain module namespace when importing; prefer 'from package.subpackage import foo' then 'foo.SomeClass()' instead of importing the class directly.
Python filenames should be snake_case (e.g., some_file.py).
Python classes use PascalCase names.
Functions and methods use snake_case names.
Local variables use snake_case; prefix 'k' for variables that start with a number (e.g., k_99th_percentile).
Global variables use upper SNAKE_CASE prefixed with 'G' (e.g., G_MY_GLOBAL).
Constants use upper SNAKE_CASE (e.g., MY_CONSTANT).
Avoid shadowing variables from an outer scope.
Initialize all externally visible members of a class in the constructor.
Prefer docstrings for interfaces that may be used outside a file; comments for in-function or file-local interfaces.
Use Google-style docstrings for classes and functions (Sphinx-parsable).
Document attributes and variables inline so they render under the class/function docstring.
Avoid reflection when a simpler, explicit approach suffices (e.g., avoid dict(**locals()) patterns).
In try/except, catch the most specific exceptions possible.
For duck-typing try/except, keep the try body minimal and use else for the main logic.

Files:

  • tensorrt_llm/_torch/models/modeling_deepseekv3.py
  • tensorrt_llm/_torch/autotuner.py
  • tensorrt_llm/_torch/cute_dsl_kernels/blackwell/grouped_blockscaled_gemm_persistent.py
  • tensorrt_llm/_torch/modules/fused_moe/fused_moe_cute_dsl.py
  • tests/integration/defs/accuracy/test_llm_api_pytorch.py
  • tensorrt_llm/_torch/custom_ops/cute_dsl_custom_ops.py
  • tests/unittest/_torch/thop/parallel/test_cute_dsl_moe.py
**/*.{h,hpp,hh,hxx,cpp,cxx,cc}

📄 CodeRabbit inference engine (CODING_GUIDELINES.md)

**/*.{h,hpp,hh,hxx,cpp,cxx,cc}: Prefer anonymous namespaces over 'static' for internal linkage of functions.
All templates (class/function/member/static) must be instantiated at least once; non-POD classes should have private data members.

Files:

  • cpp/tensorrt_llm/thop/moeUtilOp.cpp
  • cpp/tensorrt_llm/kernels/cuteDslKernels/moeUtils.h
  • cpp/tensorrt_llm/kernels/trtllmGenKernels/blockScaleMoe/RoutingKernel.h
  • cpp/tensorrt_llm/kernels/cutlass_kernels/include/moe_kernels.h
  • cpp/tensorrt_llm/thop/cuteDslMoeUtilsOp.cpp
  • cpp/tensorrt_llm/thop/fp4Quantize.cpp
**/*.{h,hpp,hh,hxx}

📄 CodeRabbit inference engine (CODING_GUIDELINES.md)

Document new class interfaces and function prototypes with Doxygen; use //! for single-line and //!< for members.

Files:

  • cpp/tensorrt_llm/kernels/cuteDslKernels/moeUtils.h
  • cpp/tensorrt_llm/kernels/trtllmGenKernels/blockScaleMoe/RoutingKernel.h
  • cpp/tensorrt_llm/kernels/cutlass_kernels/include/moe_kernels.h
**/*.{h,hpp,hh,hxx,cuh}

📄 CodeRabbit inference engine (CODING_GUIDELINES.md)

Use include guards named 'TRTLLM_<FILE_NAME_IN_CAPS_WITH_UNDERSCORES>_H' (no leading or trailing underscore; directory names excluded).

Files:

  • cpp/tensorrt_llm/kernels/cuteDslKernels/moeUtils.h
  • cpp/tensorrt_llm/kernels/trtllmGenKernels/blockScaleMoe/RoutingKernel.h
  • cpp/tensorrt_llm/kernels/trtllmGenKernels/blockScaleMoe/RoutingKernel.cuh
  • cpp/tensorrt_llm/kernels/cutlass_kernels/include/moe_kernels.h
🧠 Learnings (35)
📓 Common learnings
Learnt from: djns99
Repo: NVIDIA/TensorRT-LLM PR: 6915
File: cpp/tensorrt_llm/kernels/cutlass_kernels/moe_gemm/moe_kernels.cu:4010-4012
Timestamp: 2025-08-14T23:23:27.449Z
Learning: For MOE (Mixture of Experts) code reviews in TensorRT-LLM, avoid repeatedly suggesting finalize fusion validation checks and safety assertions. The user djns99 has indicated these suggestions are repetitive and unwanted across multiple MOE-related changes.
Learnt from: jhaotingc
Repo: NVIDIA/TensorRT-LLM PR: 7856
File: cpp/tensorrt_llm/thop/fp8BlockScaleMoe.cpp:159-166
Timestamp: 2025-09-19T21:28:13.751Z
Learning: In TensorRT-LLM blockScaleMoe routing (cpp/tensorrt_llm/kernels/trtllmGenKernels/blockScaleMoe/runner.cu), the DeepSeek routing method performs reinterpret_cast<float*>(routingLogits) at line 89, which could cause issues if routing_logits are BF16. However, Qwen3-FP8 models use RenormalizeNaive routing method and are not affected by this dtype casting issue.
Learnt from: nv-lschneider
Repo: NVIDIA/TensorRT-LLM PR: 7910
File: cpp/tensorrt_llm/kernels/nccl_device/multimem.h:20-30
Timestamp: 2025-09-23T15:13:48.819Z
Learning: TRT-LLM targets modern CUDA toolkits that support FP8 datatypes, so cuda_fp8.h can be included unconditionally without version guards in TRT-LLM code.
Learnt from: ChristinaZ
Repo: NVIDIA/TensorRT-LLM PR: 7068
File: cpp/tensorrt_llm/kernels/moeTopKFuncs.cuh:169-172
Timestamp: 2025-08-20T07:43:36.447Z
Learning: In TensorRT-LLM MOE kernels, when processing up to 128 experts across 32 threads, each thread handles at most 4 experts (N < 5 constraint), where N represents candidates per thread rather than total system capacity.
Learnt from: sklevtsov-nvidia
Repo: NVIDIA/TensorRT-LLM PR: 3294
File: cpp/tensorrt_llm/kernels/cutlass_kernels/moe_gemm/moe_kernels.cu:1198-1209
Timestamp: 2025-08-08T22:03:40.707Z
Learning: In the CUTLASS MoE kernels (cpp/tensorrt_llm/cutlass_extensions), when `layout_info.fusion` is set to `TmaWarpSpecializedGroupedGemmInput::EpilogueFusion::FINALIZE`, the `router_scales` parameter must be non-null by design. The fused finalize kernel epilogue does not perform nullptr checks and requires valid router scales to function correctly. This is an implicit contract that callers must satisfy when enabling the FINALIZE fusion mode.
📚 Learning: 2025-10-17T13:21:31.724Z
Learnt from: ixlmar
Repo: NVIDIA/TensorRT-LLM PR: 8398
File: tensorrt_llm/_torch/pyexecutor/sampling_utils.py:237-272
Timestamp: 2025-10-17T13:21:31.724Z
Learning: The setup.py file in TensorRT-LLM explicitly requires Python 3.10+ via `python_requires=">=3.10, <4"`, making match/case statements and other Python 3.10+ features appropriate throughout the codebase.

Applied to files:

  • requirements.txt
📚 Learning: 2025-09-19T21:28:13.751Z
Learnt from: jhaotingc
Repo: NVIDIA/TensorRT-LLM PR: 7856
File: cpp/tensorrt_llm/thop/fp8BlockScaleMoe.cpp:159-166
Timestamp: 2025-09-19T21:28:13.751Z
Learning: In TensorRT-LLM blockScaleMoe routing (cpp/tensorrt_llm/kernels/trtllmGenKernels/blockScaleMoe/runner.cu), the DeepSeek routing method performs reinterpret_cast<float*>(routingLogits) at line 89, which could cause issues if routing_logits are BF16. However, Qwen3-FP8 models use RenormalizeNaive routing method and are not affected by this dtype casting issue.

Applied to files:

  • cpp/tensorrt_llm/kernels/trtllmGenKernels/blockScaleMoe/RoutingLlama4.cu
  • cpp/tensorrt_llm/kernels/trtllmGenKernels/blockScaleMoe/RoutingRenormalize.cu
  • tensorrt_llm/_torch/models/modeling_deepseekv3.py
  • cpp/tensorrt_llm/kernels/trtllmGenKernels/blockScaleMoe/RoutingKernel.h
  • cpp/tensorrt_llm/kernels/trtllmGenKernels/blockScaleMoe/RoutingKernel.cuh
  • cpp/tensorrt_llm/kernels/trtllmGenKernels/blockScaleMoe/runner.cu
  • cpp/tensorrt_llm/kernels/trtllmGenKernels/blockScaleMoe/RoutingDeepSeek.cu
  • cpp/tensorrt_llm/thop/cuteDslMoeUtilsOp.cpp
📚 Learning: 2025-08-08T22:03:40.707Z
Learnt from: sklevtsov-nvidia
Repo: NVIDIA/TensorRT-LLM PR: 3294
File: cpp/tensorrt_llm/kernels/cutlass_kernels/moe_gemm/moe_kernels.cu:1198-1209
Timestamp: 2025-08-08T22:03:40.707Z
Learning: In the CUTLASS MoE kernels (cpp/tensorrt_llm/cutlass_extensions), when `layout_info.fusion` is set to `TmaWarpSpecializedGroupedGemmInput::EpilogueFusion::FINALIZE`, the `router_scales` parameter must be non-null by design. The fused finalize kernel epilogue does not perform nullptr checks and requires valid router scales to function correctly. This is an implicit contract that callers must satisfy when enabling the FINALIZE fusion mode.

Applied to files:

  • cpp/tensorrt_llm/kernels/trtllmGenKernels/blockScaleMoe/RoutingLlama4.cu
  • cpp/tensorrt_llm/kernels/trtllmGenKernels/blockScaleMoe/RoutingRenormalize.cu
  • cpp/tensorrt_llm/thop/moeUtilOp.cpp
  • cpp/tensorrt_llm/kernels/cutlass_kernels/moe_gemm/moe_kernels.cu
  • cpp/tensorrt_llm/kernels/cuteDslKernels/moeUtils.h
  • cpp/tensorrt_llm/kernels/trtllmGenKernels/blockScaleMoe/RoutingKernel.h
  • cpp/tensorrt_llm/kernels/trtllmGenKernels/blockScaleMoe/RoutingKernel.cuh
  • cpp/tensorrt_llm/kernels/trtllmGenKernels/blockScaleMoe/runner.cu
  • tensorrt_llm/_torch/modules/fused_moe/fused_moe_cute_dsl.py
  • cpp/tensorrt_llm/kernels/trtllmGenKernels/blockScaleMoe/RoutingDeepSeek.cu
📚 Learning: 2025-09-23T14:58:05.372Z
Learnt from: nv-lschneider
Repo: NVIDIA/TensorRT-LLM PR: 7910
File: cpp/tensorrt_llm/kernels/nccl_device/config.cu:42-49
Timestamp: 2025-09-23T14:58:05.372Z
Learning: In TensorRT-LLM NCCL device kernels (cpp/tensorrt_llm/kernels/nccl_device/), the token partitioning intentionally uses ceil-like distribution (same token_per_rank for all ranks) to ensure all ranks launch the same number of blocks. This is required for optimal NCCL device API barrier performance, even though it may launch extra blocks for non-existent tokens on later ranks. Runtime bounds checking in the kernel (blockID validation) handles the overshoot cases.

Applied to files:

  • cpp/tensorrt_llm/kernels/trtllmGenKernels/blockScaleMoe/RoutingLlama4.cu
  • cpp/tensorrt_llm/kernels/trtllmGenKernels/blockScaleMoe/RoutingRenormalize.cu
  • cpp/tensorrt_llm/thop/moeUtilOp.cpp
  • cpp/tensorrt_llm/kernels/trtllmGenKernels/blockScaleMoe/RoutingKernel.cuh
  • cpp/tensorrt_llm/kernels/trtllmGenKernels/blockScaleMoe/runner.cu
  • tensorrt_llm/_torch/custom_ops/cute_dsl_custom_ops.py
  • cpp/tensorrt_llm/kernels/cutlass_kernels/include/moe_kernels.h
  • cpp/tensorrt_llm/kernels/trtllmGenKernels/blockScaleMoe/RoutingDeepSeek.cu
📚 Learning: 2025-08-14T21:04:50.248Z
Learnt from: thorjohnsen
Repo: NVIDIA/TensorRT-LLM PR: 6910
File: cpp/tensorrt_llm/batch_manager/kvCacheManager.cpp:0-0
Timestamp: 2025-08-14T21:04:50.248Z
Learning: In KV cache onboarding logic during prefill in cpp/tensorrt_llm/batch_manager/kvCacheManager.cpp, when calculating which blocks fall within the attention window, use getTokensPerBlock() to advance token indices rather than block->getUniqueTokens().size(), because the calculation needs to consider the post-prefill state where blocks will be filled to capacity, not their current token count.

Applied to files:

  • cpp/tensorrt_llm/kernels/trtllmGenKernels/blockScaleMoe/RoutingLlama4.cu
  • cpp/tensorrt_llm/kernels/trtllmGenKernels/blockScaleMoe/RoutingRenormalize.cu
  • cpp/tensorrt_llm/kernels/trtllmGenKernels/blockScaleMoe/RoutingKernel.cuh
  • cpp/tensorrt_llm/kernels/trtllmGenKernels/blockScaleMoe/runner.cu
  • cpp/tensorrt_llm/kernels/trtllmGenKernels/blockScaleMoe/RoutingDeepSeek.cu
📚 Learning: 2025-08-15T06:46:54.897Z
Learnt from: eopXD
Repo: NVIDIA/TensorRT-LLM PR: 6767
File: cpp/tensorrt_llm/batch_manager/kvCacheManager.cpp:0-0
Timestamp: 2025-08-15T06:46:54.897Z
Learning: In cpp/tensorrt_llm/batch_manager/kvCacheManager.cpp addToken function, newly allocated blocks are unshared by design. The beam search path in addToken (when sequence.getNumTokens() > windowSize) is currently broken/non-functional with SWA, so the block allocation doesn't follow a shared-then-unshared pattern.

Applied to files:

  • cpp/tensorrt_llm/kernels/trtllmGenKernels/blockScaleMoe/RoutingLlama4.cu
  • cpp/tensorrt_llm/kernels/trtllmGenKernels/blockScaleMoe/RoutingRenormalize.cu
  • cpp/tensorrt_llm/kernels/trtllmGenKernels/blockScaleMoe/runner.cu
  • cpp/tensorrt_llm/kernels/trtllmGenKernels/blockScaleMoe/RoutingDeepSeek.cu
📚 Learning: 2025-08-20T07:43:36.447Z
Learnt from: ChristinaZ
Repo: NVIDIA/TensorRT-LLM PR: 7068
File: cpp/tensorrt_llm/kernels/moeTopKFuncs.cuh:169-172
Timestamp: 2025-08-20T07:43:36.447Z
Learning: In TensorRT-LLM MOE kernels, when processing up to 128 experts across 32 threads, each thread handles at most 4 experts (N < 5 constraint), where N represents candidates per thread rather than total system capacity.

Applied to files:

  • cpp/tensorrt_llm/kernels/trtllmGenKernels/blockScaleMoe/RoutingLlama4.cu
  • cpp/tensorrt_llm/kernels/trtllmGenKernels/blockScaleMoe/RoutingRenormalize.cu
  • cpp/tensorrt_llm/thop/moeUtilOp.cpp
  • cpp/tensorrt_llm/kernels/trtllmGenKernels/blockScaleMoe/RoutingKernel.cuh
  • cpp/tensorrt_llm/kernels/cutlass_kernels/include/moe_kernels.h
  • cpp/tensorrt_llm/kernels/trtllmGenKernels/blockScaleMoe/RoutingDeepSeek.cu
  • cpp/tensorrt_llm/thop/cuteDslMoeUtilsOp.cpp
📚 Learning: 2025-08-09T20:57:04.084Z
Learnt from: sklevtsov-nvidia
Repo: NVIDIA/TensorRT-LLM PR: 3294
File: cpp/tensorrt_llm/kernels/cutlass_kernels/moe_gemm/moe_gemm_tma_warp_specialized_input.cu:118-127
Timestamp: 2025-08-09T20:57:04.084Z
Learning: In the CUTLASS MoE finalize fusion implementation (cpp/tensorrt_llm/kernels/cutlass_kernels/moe_gemm/moe_gemm_tma_warp_specialized_input.cu), when setting `fused_finalize_epilogue.stride_final_output` with shape `(hidden_size, num_output_tokens, 1)`, the `num_rows_in_final_output` should be set to `num_output_tokens` (not `hidden_size`) because of a swap+transpose operation that maps rows of the output tensor to `hidden_size` and columns to `num_output_tokens`.

Applied to files:

  • cpp/tensorrt_llm/kernels/trtllmGenKernels/blockScaleMoe/RoutingLlama4.cu
  • cpp/tensorrt_llm/kernels/trtllmGenKernels/blockScaleMoe/RoutingRenormalize.cu
  • cpp/tensorrt_llm/thop/moeUtilOp.cpp
  • cpp/tensorrt_llm/kernels/cutlass_kernels/moe_gemm/moe_kernels.cu
  • cpp/tensorrt_llm/kernels/cuteDslKernels/moeUtils.h
  • cpp/tensorrt_llm/kernels/trtllmGenKernels/blockScaleMoe/runner.cu
  • tensorrt_llm/_torch/modules/fused_moe/fused_moe_cute_dsl.py
  • tests/integration/defs/accuracy/test_llm_api_pytorch.py
  • cpp/tensorrt_llm/kernels/trtllmGenKernels/blockScaleMoe/RoutingDeepSeek.cu
  • cpp/tensorrt_llm/kernels/cuteDslKernels/moeUtils.cu
📚 Learning: 2025-08-21T02:39:12.009Z
Learnt from: djns99
Repo: NVIDIA/TensorRT-LLM PR: 7104
File: cpp/tensorrt_llm/kernels/cutlass_kernels/moe_gemm/moe_kernels.cu:1475-1480
Timestamp: 2025-08-21T02:39:12.009Z
Learning: The min latency mode functionality in TensorRT-LLM MOE kernels (cpp/tensorrt_llm/kernels/cutlass_kernels/moe_gemm/moe_kernels.cu) is deprecated and no longer being maintained/updated, as confirmed by djns99. Bug reports and optimization suggestions for the computeStridesTmaWarpSpecializedLowLatencyKernel and related min latency code paths should be deprioritized.

Applied to files:

  • cpp/tensorrt_llm/kernels/trtllmGenKernels/blockScaleMoe/RoutingLlama4.cu
  • cpp/tensorrt_llm/kernels/trtllmGenKernels/blockScaleMoe/RoutingRenormalize.cu
  • cpp/tensorrt_llm/thop/moeUtilOp.cpp
  • cpp/tensorrt_llm/kernels/cutlass_kernels/moe_gemm/moe_kernels.cu
  • cpp/tensorrt_llm/kernels/cuteDslKernels/moeUtils.h
  • cpp/tensorrt_llm/kernels/trtllmGenKernels/blockScaleMoe/runner.cu
  • tests/integration/defs/accuracy/test_llm_api_pytorch.py
  • cpp/tensorrt_llm/kernels/trtllmGenKernels/blockScaleMoe/RoutingDeepSeek.cu
  • cpp/tensorrt_llm/kernels/cuteDslKernels/moeUtils.cu
  • cpp/tensorrt_llm/thop/cuteDslMoeUtilsOp.cpp
📚 Learning: 2025-09-23T15:01:00.070Z
Learnt from: nv-lschneider
Repo: NVIDIA/TensorRT-LLM PR: 7910
File: cpp/tensorrt_llm/kernels/nccl_device/config.cu:15-17
Timestamp: 2025-09-23T15:01:00.070Z
Learning: In TensorRT-LLM NCCL device kernels, the <sstream> header is not needed as an explicit include in config.cu because it's provided transitively through other headers. Local compilation testing confirms this works without the explicit include.

Applied to files:

  • cpp/tensorrt_llm/kernels/trtllmGenKernels/blockScaleMoe/RoutingLlama4.cu
  • cpp/tensorrt_llm/CMakeLists.txt
  • cpp/tensorrt_llm/kernels/cuteDslKernels/moeUtils.h
  • cpp/tensorrt_llm/kernels/CMakeLists.txt
  • cpp/tensorrt_llm/kernels/trtllmGenKernels/blockScaleMoe/RoutingKernel.cuh
  • cpp/tensorrt_llm/kernels/cuteDslKernels/CMakeLists.txt
  • cpp/tensorrt_llm/kernels/cutlass_kernels/include/moe_kernels.h
📚 Learning: 2025-08-19T03:35:20.866Z
Learnt from: djns99
Repo: NVIDIA/TensorRT-LLM PR: 6915
File: cpp/tensorrt_llm/kernels/cutlass_kernels/moe_gemm/moe_kernels.cu:4616-4626
Timestamp: 2025-08-19T03:35:20.866Z
Learning: In the MOE profiler TMA workspace preparation (cpp/tensorrt_llm/kernels/cutlass_kernels/moe_gemm/moe_kernels.cu), the overlapping of TMA WS regions for NONE and FINALIZE variants is deliberate design to save memory space, as confirmed by djns99. The comment "reuse the same pointers to save space" reflects this intentional behavior.

Applied to files:

  • cpp/tensorrt_llm/kernels/trtllmGenKernels/blockScaleMoe/RoutingLlama4.cu
  • cpp/tensorrt_llm/kernels/trtllmGenKernels/blockScaleMoe/RoutingRenormalize.cu
  • cpp/tensorrt_llm/thop/moeUtilOp.cpp
  • cpp/tensorrt_llm/kernels/cutlass_kernels/moe_gemm/moe_kernels.cu
  • cpp/tensorrt_llm/kernels/cuteDslKernels/moeUtils.h
  • tensorrt_llm/_torch/cute_dsl_kernels/blackwell/grouped_blockscaled_gemm_persistent.py
  • cpp/tensorrt_llm/kernels/trtllmGenKernels/blockScaleMoe/runner.cu
  • cpp/tensorrt_llm/kernels/cuteDslKernels/moeUtils.cu
📚 Learning: 2025-08-21T21:48:35.135Z
Learnt from: djns99
Repo: NVIDIA/TensorRT-LLM PR: 7104
File: cpp/tensorrt_llm/cutlass_extensions/include/cutlass_extensions/epilogue/fusion/sm90_visitor_scatter.hpp:399-417
Timestamp: 2025-08-21T21:48:35.135Z
Learning: CUTLASS extensions in TensorRT-LLM (located under cpp/tensorrt_llm/cutlass_extensions/) are designed to integrate with and extend functionality in the external CUTLASS repository. When analyzing these extensions, their consumers and functionality wiring may exist in the CUTLASS codebase rather than within TensorRT-LLM itself.

Applied to files:

  • cpp/tensorrt_llm/CMakeLists.txt
  • cpp/tensorrt_llm/kernels/cuteDslKernels/moeUtils.h
  • cpp/tensorrt_llm/kernels/cuteDslKernels/CMakeLists.txt
  • tensorrt_llm/_torch/custom_ops/cute_dsl_custom_ops.py
  • cpp/tensorrt_llm/kernels/cutlass_kernels/include/moe_kernels.h
  • cpp/tensorrt_llm/thop/cuteDslMoeUtilsOp.cpp
📚 Learning: 2025-08-18T09:08:07.687Z
Learnt from: tongyuantongyu
Repo: NVIDIA/TensorRT-LLM PR: 6984
File: cpp/tensorrt_llm/CMakeLists.txt:297-299
Timestamp: 2025-08-18T09:08:07.687Z
Learning: In the TensorRT-LLM project, artifacts are manually copied rather than installed via `cmake --install`, so INSTALL_RPATH properties are not needed - only BUILD_RPATH affects the final artifacts.

Applied to files:

  • cpp/tensorrt_llm/CMakeLists.txt
📚 Learning: 2025-08-08T05:06:31.596Z
Learnt from: sklevtsov-nvidia
Repo: NVIDIA/TensorRT-LLM PR: 3294
File: cpp/tensorrt_llm/cutlass_extensions/include/cutlass_extensions/epilogue/fusion/sm90_visitor_scatter.hpp:36-36
Timestamp: 2025-08-08T05:06:31.596Z
Learning: CUTLASS extension files (under cpp/tensorrt_llm/cutlass_extensions/) follow CUTLASS coding style conventions, including using #pragma once instead of TRTLLM_ prefixed header guards, even though they are .hpp files.

Applied to files:

  • cpp/tensorrt_llm/CMakeLists.txt
  • cpp/tensorrt_llm/kernels/cuteDslKernels/moeUtils.h
  • cpp/tensorrt_llm/kernels/CMakeLists.txt
  • cpp/tensorrt_llm/thop/CMakeLists.txt
  • cpp/tensorrt_llm/kernels/cuteDslKernels/CMakeLists.txt
  • cpp/tensorrt_llm/kernels/cutlass_kernels/include/moe_kernels.h
  • cpp/tensorrt_llm/thop/cuteDslMoeUtilsOp.cpp
📚 Learning: 2025-09-23T15:01:00.070Z
Learnt from: nv-lschneider
Repo: NVIDIA/TensorRT-LLM PR: 7910
File: cpp/tensorrt_llm/kernels/nccl_device/config.cu:15-17
Timestamp: 2025-09-23T15:01:00.070Z
Learning: In TensorRT-LLM NCCL device kernels (cpp/tensorrt_llm/kernels/nccl_device/config.cu), std::ostringstream is used but <sstream> doesn't need to be explicitly included because it's provided transitively through other headers like tensorrt_llm/common/cudaUtils.h or config.h. Local compilation testing confirms this works without the explicit include.

Applied to files:

  • cpp/tensorrt_llm/CMakeLists.txt
  • cpp/tensorrt_llm/kernels/cuteDslKernels/moeUtils.h
  • cpp/tensorrt_llm/kernels/CMakeLists.txt
  • cpp/tensorrt_llm/kernels/cutlass_kernels/include/moe_kernels.h
📚 Learning: 2025-08-06T13:58:07.506Z
Learnt from: galagam
Repo: NVIDIA/TensorRT-LLM PR: 6487
File: tests/unittest/_torch/auto_deploy/unit/singlegpu/test_ad_trtllm_bench.py:1-12
Timestamp: 2025-08-06T13:58:07.506Z
Learning: In TensorRT-LLM, test files (files under tests/ directories) do not require NVIDIA copyright headers, unlike production source code files. Test files typically start directly with imports, docstrings, or code.

Applied to files:

  • cpp/tensorrt_llm/CMakeLists.txt
  • tests/integration/test_lists/test-db/l0_dgx_b200.yml
📚 Learning: 2025-09-09T09:40:45.658Z
Learnt from: fredricz-20070104
Repo: NVIDIA/TensorRT-LLM PR: 7645
File: tests/integration/test_lists/qa/llm_function_core.txt:648-648
Timestamp: 2025-09-09T09:40:45.658Z
Learning: In TensorRT-LLM test lists, it's common and intentional for the same test to appear in multiple test list files when they serve different purposes (e.g., llm_function_core.txt for comprehensive core functionality testing and llm_function_core_sanity.txt for quick sanity checks). This duplication allows tests to be run in different testing contexts.

Applied to files:

  • cpp/tensorrt_llm/CMakeLists.txt
  • tests/integration/test_lists/test-db/l0_b200.yml
  • tests/integration/test_lists/test-db/l0_dgx_b200.yml
  • tensorrt_llm/_torch/custom_ops/cute_dsl_custom_ops.py
📚 Learning: 2025-09-16T09:30:09.716Z
Learnt from: tongyuantongyu
Repo: NVIDIA/TensorRT-LLM PR: 7763
File: cpp/tensorrt_llm/CMakeLists.txt:297-301
Timestamp: 2025-09-16T09:30:09.716Z
Learning: In the TensorRT-LLM project, NCCL libraries are loaded earlier by PyTorch libraries or the bindings library, so the main shared library doesn't need NCCL paths in its RPATH - the libraries will already be available in the process address space when needed.

Applied to files:

  • cpp/tensorrt_llm/CMakeLists.txt
📚 Learning: 2025-09-23T15:13:48.819Z
Learnt from: nv-lschneider
Repo: NVIDIA/TensorRT-LLM PR: 7910
File: cpp/tensorrt_llm/kernels/nccl_device/multimem.h:20-30
Timestamp: 2025-09-23T15:13:48.819Z
Learning: TRT-LLM targets modern CUDA toolkits that support FP8 datatypes, so cuda_fp8.h can be included unconditionally without version guards in TRT-LLM code.

Applied to files:

  • cpp/tensorrt_llm/CMakeLists.txt
  • cpp/tensorrt_llm/kernels/cutlass_kernels/include/moe_kernels.h
  • cpp/tensorrt_llm/kernels/cuteDslKernels/moeUtils.cu
  • cpp/tensorrt_llm/thop/fp4Quantize.cpp
📚 Learning: 2025-10-22T06:53:47.017Z
Learnt from: xinhe-nv
Repo: NVIDIA/TensorRT-LLM PR: 8534
File: scripts/format_test_list.py:1-6
Timestamp: 2025-10-22T06:53:47.017Z
Learning: The file `scripts/format_test_list.py` in the TensorRT-LLM repository does not require the NVIDIA Apache-2.0 copyright header.

Applied to files:

  • cpp/tensorrt_llm/CMakeLists.txt
📚 Learning: 2025-08-08T04:10:19.038Z
Learnt from: djns99
Repo: NVIDIA/TensorRT-LLM PR: 6728
File: cpp/tensorrt_llm/plugins/mixtureOfExperts/mixtureOfExpertsPlugin.cpp:966-966
Timestamp: 2025-08-08T04:10:19.038Z
Learning: TensorRT plugins currently don't support padding functionality, and TensorRT is not getting new features (in maintenance mode). This means that duplicating parameters like mExpertHiddenSize in function calls, even with TODO comments, can be acceptable as pragmatic solutions within these constraints.

Applied to files:

  • cpp/tensorrt_llm/kernels/trtllmGenKernels/blockScaleMoe/RoutingRenormalize.cu
  • cpp/tensorrt_llm/thop/moeUtilOp.cpp
📚 Learning: 2025-09-17T02:48:52.732Z
Learnt from: tongyuantongyu
Repo: NVIDIA/TensorRT-LLM PR: 7781
File: tests/integration/test_lists/waives.txt:313-313
Timestamp: 2025-09-17T02:48:52.732Z
Learning: In TensorRT-LLM, `tests/integration/test_lists/waives.txt` is specifically for waiving/skipping tests, while other test list files like those in `test-db/` and `qa/` directories are for different test execution contexts (pre-merge, post-merge, QA tests). The same test appearing in both waives.txt and execution list files is intentional - the test is part of test suites but will be skipped due to the waiver.

Applied to files:

  • tests/integration/test_lists/test-db/l0_b200.yml
  • tests/integration/test_lists/test-db/l0_dgx_b200.yml
📚 Learning: 2025-08-26T09:49:04.956Z
Learnt from: pengbowang-nv
Repo: NVIDIA/TensorRT-LLM PR: 7192
File: tests/integration/test_lists/test-db/l0_dgx_b200.yml:56-72
Timestamp: 2025-08-26T09:49:04.956Z
Learning: In TensorRT-LLM test configuration files, the test scheduling system handles wildcard matching with special rules that prevent duplicate test execution even when the same tests appear in multiple yaml files with overlapping GPU wildcards (e.g., "*b200*" and "*gb200*").

Applied to files:

  • tests/integration/test_lists/test-db/l0_b200.yml
  • tests/integration/test_lists/test-db/l0_dgx_b200.yml
📚 Learning: 2025-07-28T17:06:08.621Z
Learnt from: moraxu
Repo: NVIDIA/TensorRT-LLM PR: 6303
File: tests/integration/test_lists/qa/examples_test_list.txt:494-494
Timestamp: 2025-07-28T17:06:08.621Z
Learning: In TensorRT-LLM testing, it's common to have both CLI flow tests (test_cli_flow.py) and PyTorch API tests (test_llm_api_pytorch.py) for the same model. These serve different purposes: CLI flow tests validate the traditional command-line workflow, while PyTorch API tests validate the newer LLM API backend. Both are legitimate and should coexist.

Applied to files:

  • tests/integration/test_lists/test-db/l0_b200.yml
  • tests/integration/test_lists/test-db/l0_dgx_b200.yml
  • tests/integration/defs/accuracy/test_llm_api_pytorch.py
📚 Learning: 2025-08-14T06:36:40.701Z
Learnt from: timlee0212
Repo: NVIDIA/TensorRT-LLM PR: 6886
File: tensorrt_llm/_torch/models/modeling_deepseekv3.py:0-0
Timestamp: 2025-08-14T06:36:40.701Z
Learning: In DeepSeek V3 model (tensorrt_llm/_torch/models/modeling_deepseekv3.py), the disagreement between AllReduce.__init__ guard and _compute_mlp_tp_size logic for MNNVL usage is expected by design. The AllReduce component and MLP TP-size computation intentionally use different criteria for MNNVL availability decisions.

Applied to files:

  • tests/integration/test_lists/test-db/l0_b200.yml
  • tensorrt_llm/_torch/models/modeling_deepseekv3.py
  • cpp/tensorrt_llm/thop/moeUtilOp.cpp
📚 Learning: 2025-08-19T12:45:11.997Z
Learnt from: amitz-nv
Repo: NVIDIA/TensorRT-LLM PR: 7033
File: tensorrt_llm/_torch/pyexecutor/model_engine.py:0-0
Timestamp: 2025-08-19T12:45:11.997Z
Learning: In tensorrt_llm/_torch/pyexecutor/model_engine.py, DoRA (Delta Orthogonal Rank Adaptation) functionality was removed from the PyTorch flow to eliminate issues with inverted DoRA detection logic. The original is_dora condition was checking if scaling_vec_pointer == 0, which was potentially incorrect.

Applied to files:

  • tensorrt_llm/_torch/models/modeling_deepseekv3.py
  • cpp/tensorrt_llm/thop/moeUtilOp.cpp
  • tensorrt_llm/_torch/autotuner.py
  • cpp/tensorrt_llm/kernels/trtllmGenKernels/blockScaleMoe/runner.cu
📚 Learning: 2025-08-14T23:23:27.449Z
Learnt from: djns99
Repo: NVIDIA/TensorRT-LLM PR: 6915
File: cpp/tensorrt_llm/kernels/cutlass_kernels/moe_gemm/moe_kernels.cu:4010-4012
Timestamp: 2025-08-14T23:23:27.449Z
Learning: For MOE (Mixture of Experts) code reviews in TensorRT-LLM, avoid repeatedly suggesting finalize fusion validation checks and safety assertions. The user djns99 has indicated these suggestions are repetitive and unwanted across multiple MOE-related changes.

Applied to files:

  • cpp/tensorrt_llm/thop/moeUtilOp.cpp
  • cpp/tensorrt_llm/kernels/cutlass_kernels/moe_gemm/moe_kernels.cu
  • tensorrt_llm/_torch/modules/fused_moe/fused_moe_cute_dsl.py
  • tests/integration/defs/accuracy/test_llm_api_pytorch.py
  • cpp/tensorrt_llm/kernels/cuteDslKernels/moeUtils.cu
  • cpp/tensorrt_llm/thop/cuteDslMoeUtilsOp.cpp
📚 Learning: 2025-10-20T17:09:21.560Z
Learnt from: nvchenghaoz
Repo: NVIDIA/TensorRT-LLM PR: 8469
File: tensorrt_llm/_torch/auto_deploy/transform/library/rms_norm.py:180-182
Timestamp: 2025-10-20T17:09:21.560Z
Learning: In tensorrt_llm/_torch/auto_deploy/transform/library/rms_norm.py, the _gated_rmsnorm_replacement function does not need to cast the output of torch.ops.auto_deploy.torch_rmsnorm_gated back to the input dtype, even though the custom op returns fp32. The dtype handling is managed elsewhere or the fp32 output is acceptable for downstream consumers.

Applied to files:

  • tensorrt_llm/_torch/autotuner.py
📚 Learning: 2025-08-21T02:41:10.565Z
Learnt from: djns99
Repo: NVIDIA/TensorRT-LLM PR: 7104
File: cpp/tensorrt_llm/kernels/cutlass_kernels/include/moe_gemm_kernels.h:141-145
Timestamp: 2025-08-21T02:41:10.565Z
Learning: In TensorRT-LLM MOE GEMM kernels (cpp/tensorrt_llm/kernels/cutlass_kernels/include/moe_gemm_kernels.h), the stride_act and stride_weight pointers in TmaWarpSpecializedGroupedGemmInput are intentionally declared as void* rather than typed pointers because the actual stride type is determined at runtime based on factors like the swap_ab flag and layout decisions. This runtime type determination makes compile-time type safety impossible, so void* is the correct approach.

Applied to files:

  • cpp/tensorrt_llm/kernels/cutlass_kernels/moe_gemm/moe_kernels.cu
  • cpp/tensorrt_llm/kernels/cuteDslKernels/moeUtils.h
  • cpp/tensorrt_llm/kernels/trtllmGenKernels/blockScaleMoe/runner.cu
  • cpp/tensorrt_llm/kernels/cutlass_kernels/include/moe_kernels.h
📚 Learning: 2025-08-22T01:54:35.850Z
Learnt from: djns99
Repo: NVIDIA/TensorRT-LLM PR: 7104
File: cpp/tensorrt_llm/kernels/cutlass_kernels/include/moe_kernels.h:999-1000
Timestamp: 2025-08-22T01:54:35.850Z
Learning: The `internal_cutlass_kernels` directory in TensorRT-LLM is a mirror of an internal NVIDIA repository and maintains its own implementation and API that may diverge from the public `cutlass_kernels` version. API inconsistencies between these two directories are intentional and by design, not bugs to be fixed.

Applied to files:

  • cpp/tensorrt_llm/kernels/cutlass_kernels/moe_gemm/moe_kernels.cu
  • cpp/tensorrt_llm/kernels/cuteDslKernels/moeUtils.h
  • cpp/tensorrt_llm/kernels/CMakeLists.txt
  • tensorrt_llm/_torch/cute_dsl_kernels/blackwell/grouped_blockscaled_gemm_persistent.py
  • cpp/tensorrt_llm/kernels/cuteDslKernels/CMakeLists.txt
  • tensorrt_llm/_torch/custom_ops/cute_dsl_custom_ops.py
  • cpp/tensorrt_llm/kernels/cutlass_kernels/include/moe_kernels.h
📚 Learning: 2025-08-08T22:03:28.403Z
Learnt from: sklevtsov-nvidia
Repo: NVIDIA/TensorRT-LLM PR: 3294
File: cpp/tensorrt_llm/kernels/internal_cutlass_kernels/include/moe_gemm_kernels.h:152-154
Timestamp: 2025-08-08T22:03:28.403Z
Learning: In CUTLASS, `TagToStrideC_t` template is defined for both pointer types (e.g., `Layout*`) and non-pointer types (e.g., `Layout`). When used with pointer types, it's often wrapped with `std::remove_pointer_t`, while non-pointer usage is direct. Both `cutlass::detail::TagToStrideC_t` and `cutlass::gemm::TagToStrideC_t` support both forms.

Applied to files:

  • cpp/tensorrt_llm/kernels/cutlass_kernels/moe_gemm/moe_kernels.cu
📚 Learning: 2025-08-08T05:10:38.906Z
Learnt from: sklevtsov-nvidia
Repo: NVIDIA/TensorRT-LLM PR: 3294
File: cpp/tensorrt_llm/cutlass_extensions/include/cutlass_extensions/epilogue/fusion/sm90_visitor_scatter.hpp:0-0
Timestamp: 2025-08-08T05:10:38.906Z
Learning: The ScaledAccPerRowBiasPerColScaleScatter fusion in CUTLASS extensions (cpp/tensorrt_llm/cutlass_extensions/include/cutlass_extensions/epilogue/fusion/sm90_visitor_scatter.hpp) is specifically designed for per-column scaling factors only, so it uses a fixed Stride<_0,_1,int64_t> rather than conditional stride logic.

Applied to files:

  • cpp/tensorrt_llm/kernels/cutlass_kernels/moe_gemm/moe_kernels.cu
  • cpp/tensorrt_llm/kernels/cutlass_kernels/include/moe_kernels.h
📚 Learning: 2025-10-20T17:07:18.745Z
Learnt from: nvchenghaoz
Repo: NVIDIA/TensorRT-LLM PR: 8469
File: tensorrt_llm/_torch/auto_deploy/models/patches/nemotron_h.py:98-116
Timestamp: 2025-10-20T17:07:18.745Z
Learning: In NemotronH models (tensorrt_llm/_torch/auto_deploy/models/patches/nemotron_h.py), the gate (self.gate) returns topk_indices and topk_weights that are already in the correct shape to be passed directly to torch_ops.auto_deploy.torch_moe without needing to reshape them when hidden_states is flattened.

Applied to files:

  • tensorrt_llm/_torch/modules/fused_moe/fused_moe_cute_dsl.py
📚 Learning: 2025-08-14T15:38:01.771Z
Learnt from: MatthiasKohl
Repo: NVIDIA/TensorRT-LLM PR: 6904
File: cpp/tensorrt_llm/pybind/thop/bindings.cpp:55-57
Timestamp: 2025-08-14T15:38:01.771Z
Learning: In TensorRT-LLM Python bindings, tensor parameter collections like mla_tensor_params and spec_decoding_tensor_params are kept as required parameters without defaults to maintain API consistency, even when it might affect backward compatibility.

Applied to files:

  • tensorrt_llm/_torch/custom_ops/cute_dsl_custom_ops.py
🧬 Code graph analysis (9)
tensorrt_llm/_torch/autotuner.py (1)
tensorrt_llm/_torch/custom_ops/cute_dsl_custom_ops.py (1)
  • gen_tuning_buckets (369-373)
cpp/tensorrt_llm/kernels/cuteDslKernels/moeUtils.h (2)
cpp/tensorrt_llm/kernels/cutlass_kernels/include/moe_kernels.h (1)
  • tensorrt_llm (39-147)
cpp/tensorrt_llm/kernels/cuteDslKernels/moeUtils.cu (9)
  • void (58-113)
  • void (182-235)
  • void (280-356)
  • moePermute (116-160)
  • moePermute (116-119)
  • moeUnpermute (238-263)
  • moeUnpermute (238-240)
  • moeActivation (359-417)
  • moeActivation (359-362)
tensorrt_llm/_torch/cute_dsl_kernels/blackwell/grouped_blockscaled_gemm_persistent.py (1)
tensorrt_llm/_torch/cute_dsl_kernels/blackwell/custom_pipeline.py (5)
  • PipelineTmaUmma (73-269)
  • PipelineUmmaAsync (273-376)
  • producer_acquire (231-255)
  • producer_tail (364-376)
  • consumer_release (217-229)
tensorrt_llm/_torch/modules/fused_moe/fused_moe_cute_dsl.py (4)
tensorrt_llm/_torch/custom_ops/cpp_custom_ops.py (1)
  • allgather (97-102)
tensorrt_llm/_torch/utils.py (2)
  • Fp4QuantizedTensor (110-117)
  • shape (116-117)
cpp/tensorrt_llm/thop/cuteDslMoeUtilsOp.cpp (8)
  • moe_sort (112-125)
  • moe_sort (112-114)
  • moe_permute (129-200)
  • moe_permute (129-132)
  • moe_swiglu_nvfp4_quantize (305-359)
  • moe_swiglu_nvfp4_quantize (305-307)
  • moe_unpermute (204-254)
  • moe_unpermute (204-205)
tensorrt_llm/_torch/custom_ops/cute_dsl_custom_ops.py (1)
  • cute_dsl_nvfp4_grouped_gemm_blackwell (628-661)
tests/integration/defs/accuracy/test_llm_api_pytorch.py (2)
tests/integration/defs/conftest.py (2)
  • parametrize_with_ids (1818-1844)
  • get_sm_version (1890-1893)
tensorrt_llm/_utils.py (1)
  • get_sm_version (733-735)
tensorrt_llm/_torch/custom_ops/cute_dsl_custom_ops.py (5)
tensorrt_llm/_torch/autotuner.py (4)
  • ConstraintSpec (39-49)
  • DynamicTensorSpec (23-35)
  • TuningConfig (53-101)
  • get (545-548)
tensorrt_llm/_torch/utils.py (3)
  • fp4_scale_infer_shape (262-267)
  • get_last_power_of_2_num_tokens_buckets (252-259)
  • last_positive_power_of_2 (229-234)
tensorrt_llm/_torch/cute_dsl_kernels/blackwell/dense_blockscaled_gemm_persistent.py (3)
  • Sm100BlockScaledPersistentDenseGemmKernel (65-1877)
  • Sm100BlockScaledPersistentDenseGemmKernelWrapper (1901-2015)
  • can_implement (1821-1877)
tensorrt_llm/_torch/cute_dsl_kernels/blackwell/grouped_blockscaled_gemm_persistent.py (3)
  • Sm100BlockScaledPersistentGroupedGemmKernel (56-2285)
  • can_implement (2142-2225)
  • wrapper (2228-2285)
tensorrt_llm/_torch/cute_dsl_kernels/blackwell/utils.py (2)
  • make_ptr (142-188)
  • dtype (118-119)
tests/unittest/_torch/thop/parallel/test_cute_dsl_moe.py (4)
tensorrt_llm/_torch/custom_ops/cute_dsl_custom_ops.py (10)
  • GroupedGemmInputsHelper (341-415)
  • get_max_num_permuted_tokens (359-360)
  • infer_num_tokens (362-367)
  • gen_tuning_buckets (369-373)
  • map_to_tuning_buckets (375-377)
  • get_max_num_tiles (351-357)
  • _ (325-339)
  • _ (665-683)
  • _ (879-899)
  • cute_dsl_nvfp4_grouped_gemm_blackwell (628-661)
tensorrt_llm/_torch/modules/fused_moe/fused_moe_cute_dsl.py (1)
  • cute_dsl_nvfp4_grouped_gemm_ref (93-149)
tensorrt_llm/_torch/utils.py (1)
  • unswizzle_sf (144-159)
cpp/tensorrt_llm/thop/cuteDslMoeUtilsOp.cpp (10)
  • moe_sort (112-125)
  • moe_sort (112-114)
  • moe_permute (129-200)
  • moe_permute (129-132)
  • moe_unpermute (204-254)
  • moe_unpermute (204-205)
  • moe_swiglu (257-303)
  • moe_swiglu (257-258)
  • moe_swiglu_nvfp4_quantize (305-359)
  • moe_swiglu_nvfp4_quantize (305-307)
cpp/tensorrt_llm/kernels/cuteDslKernels/moeUtils.cu (2)
cpp/tensorrt_llm/kernels/cutlass_kernels/moe_gemm/moe_kernels.cu (16)
  • void (156-275)
  • void (309-398)
  • void (564-613)
  • void (660-707)
  • void (710-740)
  • void (799-826)
  • void (1022-1067)
  • void (1070-1082)
  • void (1102-1141)
  • void (1143-1195)
  • void (1198-1236)
  • void (1240-1335)
  • void (1361-1566)
  • void (1683-1757)
  • void (1762-1865)
  • void (1943-1995)
cpp/include/tensorrt_llm/common/cudaUtils.h (1)
  • getMultiProcessorCount (403-450)
cpp/tensorrt_llm/thop/cuteDslMoeUtilsOp.cpp (1)
cpp/tensorrt_llm/kernels/trtllmGenKernels/blockScaleMoe/runner.h (7)
  • top_k (240-240)
  • n_group (241-241)
  • topk_group (243-243)
  • local_expert_offset (246-246)
  • local_num_experts (247-247)
  • getMaxPermutedPaddedCount (105-110)
  • getMaxNumCtasInBatchDim (75-103)
🪛 Clang (14.0.6)
cpp/tensorrt_llm/kernels/cuteDslKernels/moeUtils.h

[error] 18-18: 'tensorrt_llm/kernels/cutlass_kernels/include/moe_kernels.h' file not found

(clang-diagnostic-error)

cpp/tensorrt_llm/thop/cuteDslMoeUtilsOp.cpp

[error] 17-17: 'tensorrt_llm/kernels/cuteDslKernels/moeUtils.h' file not found

(clang-diagnostic-error)

🪛 Ruff (0.14.4)
tensorrt_llm/_torch/cute_dsl_kernels/blackwell/grouped_blockscaled_gemm_persistent.py

389-389: Avoid specifying long messages outside the exception class

(TRY003)


695-695: Unpacked variable bidy is never used

Prefix it with an underscore or any other dummy variable pattern

(RUF059)


695-695: Unpacked variable bidz is never used

Prefix it with an underscore or any other dummy variable pattern

(RUF059)


1060-1060: Loop control variable k_tile not used within loop body

Rename unused k_tile to _k_tile

(B007)


1282-1282: Loop control variable k_tile not used within loop body

Rename unused k_tile to _k_tile

(B007)


1701-1701: Unused method argument: tidx

(ARG002)


1928-1928: Avoid specifying long messages outside the exception class

(TRY003)

tensorrt_llm/_torch/modules/fused_moe/fused_moe_cute_dsl.py

117-117: Ambiguous variable name: l

(E741)


136-136: Consider [0, *num_tiles_per_expert.cumsum(dim=0).tolist()] instead of concatenation

Replace with [0, *num_tiles_per_expert.cumsum(dim=0).tolist()]

(RUF005)


139-139: zip() without an explicit strict= parameter

Add explicit value for parameter strict=

(B905)


139-139: Prefer itertools.pairwise() over zip() when iterating over successive pairs

Replace zip() with itertools.pairwise()

(RUF007)


223-223: Unused method argument: output_dtype

(ARG002)


224-224: Unused method argument: all_rank_num_tokens

(ARG002)


225-225: Unused method argument: use_dp_padding

(ARG002)


369-369: Unpacked variable total_num_padded_tokens is never used

Prefix it with an underscore or any other dummy variable pattern

(RUF059)


456-458: Avoid specifying long messages outside the exception class

(TRY003)

tensorrt_llm/_torch/custom_ops/cute_dsl_custom_ops.py

418-418: Mutable class attributes should be annotated with typing.ClassVar

(RUF012)


419-419: Mutable class attributes should be annotated with typing.ClassVar

(RUF012)


441-443: Avoid specifying long messages outside the exception class

(TRY003)


448-448: Unused method argument: profile

(ARG002)


449-449: Unused method argument: kwargs

(ARG002)


453-453: Ambiguous variable name: l

(E741)


519-519: Ambiguous variable name: l

(E741)


668-668: Unused function argument: input_scale

(ARG001)


669-669: Unused function argument: weight_scale

(ARG001)


670-670: Unused function argument: alpha

(ARG001)


671-671: Unused function argument: tile_idx_to_group_idx

(ARG001)


672-672: Unused function argument: num_non_exiting_tiles

(ARG001)


673-673: Unused function argument: num_experts

(ARG001)


674-674: Unused function argument: top_k

(ARG001)


675-675: Unused function argument: num_local_experts

(ARG001)


676-676: Unused function argument: local_expert_offset

(ARG001)


677-677: Unused function argument: tile_size

(ARG001)


679-679: Unused function argument: scaling_vector_size

(ARG001)


717-717: Mutable class attributes should be annotated with typing.ClassVar

(RUF012)


738-738: Unused method argument: inputs

(ARG002)


739-739: Unused method argument: profile

(ARG002)


740-740: Unused method argument: kwargs

(ARG002)


772-772: Unpacked variable total_num_padded_tokens is never used

Prefix it with an underscore or any other dummy variable pattern

(RUF059)


881-881: Unused function argument: input_scale

(ARG001)


882-882: Unused function argument: token_selected_experts

(ARG001)


883-883: Unused function argument: token_final_scales

(ARG001)


884-884: Unused function argument: gemm1_weight

(ARG001)


885-885: Unused function argument: gemm1_weight_scale

(ARG001)


886-886: Unused function argument: gemm1_alpha

(ARG001)


887-887: Unused function argument: gemm2_input_global_scale

(ARG001)


888-888: Unused function argument: gemm2_weight

(ARG001)


889-889: Unused function argument: gemm2_weight_scale

(ARG001)


890-890: Unused function argument: gemm2_alpha

(ARG001)


891-891: Unused function argument: num_experts

(ARG001)


892-892: Unused function argument: top_k

(ARG001)


893-893: Unused function argument: num_local_experts

(ARG001)


894-894: Unused function argument: local_expert_offset

(ARG001)


896-896: Unused function argument: scaling_vector_size

(ARG001)

tests/unittest/_torch/thop/parallel/test_cute_dsl_moe.py

306-306: Loop control variable i not used within loop body

Rename unused i to _i

(B007)

@kaiyux kaiyux dismissed their stale review November 12, 2025 14:33

Re-approving

@syuoni
Copy link
Collaborator Author

syuoni commented Nov 17, 2025

/bot run --disable-fail-fast

@tensorrt-cicd
Copy link
Collaborator

PR_Github #24706 [ run ] triggered by Bot. Commit: 8dd9821

@tensorrt-cicd
Copy link
Collaborator

PR_Github #24706 [ run ] completed with state FAILURE. Commit: 8dd9821

@syuoni
Copy link
Collaborator Author

syuoni commented Nov 17, 2025

/bot run --disable-fail-fast

@tensorrt-cicd
Copy link
Collaborator

PR_Github #24715 [ run ] triggered by Bot. Commit: 8dd9821

@tensorrt-cicd
Copy link
Collaborator

PR_Github #24715 [ run ] completed with state FAILURE. Commit: 8dd9821

@syuoni
Copy link
Collaborator Author

syuoni commented Nov 17, 2025

/bot run --disable-fail-fast

@tensorrt-cicd
Copy link
Collaborator

PR_Github #24724 [ run ] triggered by Bot. Commit: 8dd9821

@tensorrt-cicd
Copy link
Collaborator

PR_Github #24724 [ run ] completed with state FAILURE. Commit: 8dd9821

Copy link
Collaborator

@hyukn hyukn left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Overall looks good to me. Some comments about the fallback implementations.

@syuoni
Copy link
Collaborator Author

syuoni commented Nov 17, 2025

/bot run --disable-fail-fast

@tensorrt-cicd
Copy link
Collaborator

PR_Github #24737 [ run ] triggered by Bot. Commit: 8dd9821

@tensorrt-cicd
Copy link
Collaborator

PR_Github #24737 [ run ] completed with state FAILURE. Commit: 8dd9821

@syuoni
Copy link
Collaborator Author

syuoni commented Nov 17, 2025

/bot run --disable-fail-fast

@tensorrt-cicd
Copy link
Collaborator

PR_Github #24758 [ run ] triggered by Bot. Commit: 8dd9821

@kaiyux kaiyux enabled auto-merge (squash) November 17, 2025 13:12
@tensorrt-cicd
Copy link
Collaborator

PR_Github #24758 [ run ] completed with state SUCCESS. Commit: 8dd9821
/LLM/main/L0_MergeRequest_PR pipeline #18675 completed with status: 'FAILURE'

@kaiyux
Copy link
Member

kaiyux commented Nov 18, 2025

/bot run --disable-fail-fast

@tensorrt-cicd
Copy link
Collaborator

PR_Github #24848 [ run ] triggered by Bot. Commit: 8dd9821

@tensorrt-cicd
Copy link
Collaborator

PR_Github #24848 [ run ] completed with state SUCCESS. Commit: 8dd9821
/LLM/main/L0_MergeRequest_PR pipeline #18757 completed with status: 'FAILURE'

@syuoni
Copy link
Collaborator Author

syuoni commented Nov 19, 2025

/bot skip --comment "All test stages passed, last pipeline failed at collect test result"

@tensorrt-cicd
Copy link
Collaborator

PR_Github #24953 [ skip ] triggered by Bot. Commit: 8dd9821

@tensorrt-cicd
Copy link
Collaborator

PR_Github #24953 [ skip ] completed with state SUCCESS. Commit: 8dd9821
Skipping testing for commit 8dd9821

@kaiyux kaiyux merged commit 7c4777a into NVIDIA:main Nov 19, 2025
5 checks passed
lkomali pushed a commit to lkomali/TensorRT-LLM that referenced this pull request Nov 19, 2025
…#8880)

Signed-off-by: Enwei Zhu <21126786+syuoni@users.noreply.github.com>
Signed-off-by: lkomali <lkomali@nvidia.com>
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment

Labels

None yet

Projects

None yet

Development

Successfully merging this pull request may close these issues.

8 participants