Skip to content

πŸ“š Academic project that compiles activities and algorithms developed in the Programming for Artificial Intelligence course of the Artificial Intelligence Engineering degree (FIME, UANL). πŸ” Covers everything from πŸ—‚οΈ data preparation and πŸ› οΈ virtual environments to πŸ€– implementing fundamental algorithms for modern AI.

Notifications You must be signed in to change notification settings

MrBrightside0/Programming-for-Artificial-Intelligence

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

25 Commits
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

πŸ“š Programming for Artificial Intelligence

Dr. Erick de JesΓΊs Ordaz Rivas Artificial Intelligence Engineering – FIME, UANL ---

🎯 Course Competency

The course Programming for Artificial Intelligence consists of three phases that enable students to develop skills to program basic AI algorithms such as A*, K-Means, or Logistic Regression.


πŸ“Œ Phase 1: AI-oriented tools and languages

  • Installation and configuration of development environments (VSCode, Anaconda, RStudio).
  • Creation and management of virtual environments.
  • Use of Git and version control for collaboration.
  • Basic programming in Python, following best practices and modular programming.

πŸ“Œ Phase 2: Data and operations

  • Basic operations for data processing and cleaning.
  • Normalization, scaling, handling missing values.
  • Vectorized operations for computational efficiency.
  • Programming reusable functions.

πŸ“Œ Phase 3: Algorithms

  • Implementation of classic AI algorithms:
    • A* search.
    • Iterative algorithms like K-Means.
    • Logistic Regression.
  • Using flowcharts and pseudocode as development guidelines.

πŸ“‚ Repository Structure

Programming-AI/
β”‚
β”œβ”€β”€ AF4/
β”‚   β”œβ”€β”€ README.md               # AF4: Normalizing Data
β”‚   β”œβ”€β”€ data/
β”‚   β”‚   └── amazon.csv          # Input dataset
β”‚   β”œβ”€β”€ results/
β”‚   β”‚   β”œβ”€β”€ products.csv        # Normalized products data
β”‚   β”‚   β”œβ”€β”€ categories.csv      # Normalized categories data
β”‚   β”‚   β”œβ”€β”€ users.csv           # Normalized users data
β”‚   β”‚   └── sales.csv           # Normalized sales data
β”‚   β”œβ”€β”€ main.py                 # Main script orchestrating the process
β”‚   β”œβ”€β”€ processing.py           # Module for initial processing
β”‚   └── normalization.py        # Module for data normalization
β”‚
β”œβ”€β”€ AF6/                        # AF6: Supervised Learning (Breast Cancer Diagnosis)
β”‚   β”œβ”€β”€ README.md               # Documentation & Methodology
β”‚   └── cancer_model.py         # Logistic Regression script
β”‚
β”œβ”€β”€ Final_Project/              # Final integrative project (Digit Classification)
β”‚   β”œβ”€β”€ data/
β”‚   β”‚   └── digits.csv          # Dataset file
β”‚   β”œβ”€β”€ figures/                # Visualizations generated
β”‚   β”‚   β”œβ”€β”€ class_distribution.png
β”‚   β”‚   β”œβ”€β”€ confusion_matrix.png
β”‚   β”‚   └── sample_digits.png
β”‚   β”œβ”€β”€ notebooks/
β”‚   β”‚   └── Final_Project.ipynb # Main Jupyter Notebook
β”‚   β”œβ”€β”€ results/                # Model metrics and logs
β”‚   β”‚   β”œβ”€β”€ classification_report.txt
β”‚   β”‚   β”œβ”€β”€ confusion_matrix.csv
β”‚   β”‚   └── metrics.txt
β”‚   β”œβ”€β”€ src/                    # Modularized source code
β”‚   β”‚   β”œβ”€β”€ evaluation.py
β”‚   β”‚   β”œβ”€β”€ modeling.py
β”‚   β”‚   └── preprocessing.py
β”‚   └── README.md               # Project documentation
β”‚
β”œβ”€β”€ Extra_Class_Activities/     # Additional or optional activities
β”‚   β”œβ”€β”€ README.md
β”‚   └── examples/               # Example scripts
β”‚
└── requirements.txt            # List of Python dependencies

πŸ“ Tasks and Grading

Activity Points
Final Integrative Project 30 pts
Fundamental Activity 4 15 pts
Fundamental Activity 5 15 pts
Fundamental Activity 6 15 pts

βš™οΈ Technologies and Tools

  • Language: Python 3.11.9
  • Development environment: Visual Studio Code
  • Virtual environments: venv
  • Version control: Git and GitHub
  • Main libraries: - numpy
    • pandas
    • matplotlib
    • scikit-learn

πŸš€ How to Run This Repository

  1. Clone the repository:
    git clone [https://github.com/MrBrightside0/Programming-for-Artificial-Intelligence.git](https://github.com/MrBrightside0/Programming-for-Artificial-Intelligence.git)

About

πŸ“š Academic project that compiles activities and algorithms developed in the Programming for Artificial Intelligence course of the Artificial Intelligence Engineering degree (FIME, UANL). πŸ” Covers everything from πŸ—‚οΈ data preparation and πŸ› οΈ virtual environments to πŸ€– implementing fundamental algorithms for modern AI.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 2

  •  
  •