Dr. Erick de JesΓΊs Ordaz Rivas Artificial Intelligence Engineering β FIME, UANL ---
The course Programming for Artificial Intelligence consists of three phases that enable students to develop skills to program basic AI algorithms such as A*, K-Means, or Logistic Regression.
- Installation and configuration of development environments (VSCode, Anaconda, RStudio).
- Creation and management of virtual environments.
- Use of Git and version control for collaboration.
- Basic programming in Python, following best practices and modular programming.
- Basic operations for data processing and cleaning.
- Normalization, scaling, handling missing values.
- Vectorized operations for computational efficiency.
- Programming reusable functions.
- Implementation of classic AI algorithms:
- A* search.
- Iterative algorithms like K-Means.
- Logistic Regression.
- Using flowcharts and pseudocode as development guidelines.
Programming-AI/
β
βββ AF4/
β βββ README.md # AF4: Normalizing Data
β βββ data/
β β βββ amazon.csv # Input dataset
β βββ results/
β β βββ products.csv # Normalized products data
β β βββ categories.csv # Normalized categories data
β β βββ users.csv # Normalized users data
β β βββ sales.csv # Normalized sales data
β βββ main.py # Main script orchestrating the process
β βββ processing.py # Module for initial processing
β βββ normalization.py # Module for data normalization
β
βββ AF6/ # AF6: Supervised Learning (Breast Cancer Diagnosis)
β βββ README.md # Documentation & Methodology
β βββ cancer_model.py # Logistic Regression script
β
βββ Final_Project/ # Final integrative project (Digit Classification)
β βββ data/
β β βββ digits.csv # Dataset file
β βββ figures/ # Visualizations generated
β β βββ class_distribution.png
β β βββ confusion_matrix.png
β β βββ sample_digits.png
β βββ notebooks/
β β βββ Final_Project.ipynb # Main Jupyter Notebook
β βββ results/ # Model metrics and logs
β β βββ classification_report.txt
β β βββ confusion_matrix.csv
β β βββ metrics.txt
β βββ src/ # Modularized source code
β β βββ evaluation.py
β β βββ modeling.py
β β βββ preprocessing.py
β βββ README.md # Project documentation
β
βββ Extra_Class_Activities/ # Additional or optional activities
β βββ README.md
β βββ examples/ # Example scripts
β
βββ requirements.txt # List of Python dependencies
| Activity | Points |
|---|---|
| Final Integrative Project | 30 pts |
| Fundamental Activity 4 | 15 pts |
| Fundamental Activity 5 | 15 pts |
| Fundamental Activity 6 | 15 pts |
- Language: Python 3.11.9
- Development environment: Visual Studio Code
- Virtual environments:
venv - Version control: Git and GitHub
- Main libraries: -
numpypandasmatplotlibscikit-learn
- Clone the repository:
git clone [https://github.com/MrBrightside0/Programming-for-Artificial-Intelligence.git](https://github.com/MrBrightside0/Programming-for-Artificial-Intelligence.git)