|
| 1 | +import math |
| 2 | +import lvgl as lv |
| 3 | +import mpos.util |
| 4 | + |
| 5 | +def get_object_center(obj): |
| 6 | + """Calculate the center (x, y) of an object.""" |
| 7 | + width = obj.get_width() |
| 8 | + height = obj.get_height() |
| 9 | + x = obj.get_x() |
| 10 | + y = obj.get_y() |
| 11 | + center_x = x + width / 2 |
| 12 | + center_y = y + height / 2 |
| 13 | + return center_x, center_y |
| 14 | + |
| 15 | +def compute_angle_to_object(from_obj, to_obj): |
| 16 | + """Compute the clockwise angle (degrees) from from_obj's center to to_obj's center (0° = UP).""" |
| 17 | + # Get centers |
| 18 | + from_x, from_y = get_object_center(from_obj) |
| 19 | + to_x, to_y = get_object_center(to_obj) |
| 20 | + |
| 21 | + # Compute vector |
| 22 | + dx = to_x - from_x |
| 23 | + dy = to_y - from_y |
| 24 | + |
| 25 | + # Calculate angle (0° = UP, 90° = RIGHT, clockwise) |
| 26 | + angle_rad = math.atan2(-dx, dy) # -dx, dy for 0° = UP |
| 27 | + angle_deg = math.degrees(angle_rad) |
| 28 | + return (angle_deg + 360) % 360 # Normalize to [0, 360) |
| 29 | + |
| 30 | +def find_closest_obj_in_direction(direction_degrees, angle_tolerance=45): |
| 31 | + print(f"default focus group has {lv.group_get_default().get_obj_count()} items") |
| 32 | + focusgroup = lv.group_get_default() |
| 33 | + for objnr in range(focusgroup.get_obj_count()): |
| 34 | + obj = focusgroup.get_obj_by_index(objnr) |
| 35 | + print ("checking obj for equality...") |
| 36 | + mpos.util.print_lvgl_widget(obj) |
| 37 | + print(f"current focus object: {lv.group_get_default().get_focused()}") |
| 38 | + |
| 39 | + """Find the closest object in the specified direction from the current focused object.""" |
| 40 | + # Get focus group and current focused object |
| 41 | + focus_group = lv.group_get_default() |
| 42 | + current_focused = focus_group.get_focused() |
| 43 | + |
| 44 | + if not current_focused: |
| 45 | + print("No current focused object.") |
| 46 | + return None |
| 47 | + |
| 48 | + print(f"Current focused object: {current_focused}") |
| 49 | + print(f"Default focus group has {focus_group.get_obj_count()} items") |
| 50 | + |
| 51 | + closest_obj = None |
| 52 | + min_distance = float('inf') |
| 53 | + |
| 54 | + # Iterate through objects in the focus group |
| 55 | + for objnr in range(focus_group.get_obj_count()): |
| 56 | + obj = focus_group.get_obj_by_index(objnr) |
| 57 | + if obj is current_focused: |
| 58 | + print(f"Skipping {obj} because it's the currently focused object.") |
| 59 | + continue |
| 60 | + |
| 61 | + # Compute angle to the object |
| 62 | + angle_deg = compute_angle_to_object(current_focused, obj) |
| 63 | + print(f"angle_deg is {angle_deg}") |
| 64 | + |
| 65 | + # Check if object is in the desired direction (within ±angle_tolerance) |
| 66 | + angle_diff = min((angle_deg - direction_degrees) % 360, (direction_degrees - angle_deg) % 360) |
| 67 | + if angle_diff <= angle_tolerance: |
| 68 | + # Calculate Euclidean distance |
| 69 | + current_x, current_y = get_object_center(current_focused) |
| 70 | + obj_x, obj_y = get_object_center(obj) |
| 71 | + distance = math.sqrt((obj_x - current_x)**2 + (obj_y - current_y)**2) |
| 72 | + |
| 73 | + # Update closest object if this one is closer |
| 74 | + if distance < min_distance: |
| 75 | + min_distance = distance |
| 76 | + closest_obj = obj |
| 77 | + |
| 78 | + # Result |
| 79 | + if closest_obj: |
| 80 | + print(f"Closest object in direction {direction_degrees}°: {closest_obj}") |
| 81 | + else: |
| 82 | + print(f"No object found in direction {direction_degrees}°") |
| 83 | + |
| 84 | + return closest_obj |
0 commit comments