@@ -142,15 +142,15 @@ def hyper_loss(model_output, gt_sdf, ks, ki, kg, gt_normals=None, kn=None):
142142 pred_sdf = model_output ["model_out" ].float ()
143143
144144 sdf_constraint = torch .where (
145- torch . abs ( gt_sdf ) == 0 , torch .abs (pred_sdf ), torch .zeros_like (pred_sdf )
145+ gt_sdf == 0 , torch .abs (pred_sdf ), torch .zeros_like (pred_sdf )
146146 )
147147 losses ['sdf' ] = torch .abs (sdf_constraint ).mean () * ks
148148
149149 pred_sdf_c = torch .clip (pred_sdf , - 0.3 , 0.3 ).float ()
150150 gt_sdf_c = torch .clip (gt_sdf , - 0.3 , 0.3 ).float ()
151151
152152 inter_constraint = torch .where (
153- torch . abs ( gt_sdf ) == 0 , torch .zeros_like (pred_sdf ), abs (gt_sdf_c - pred_sdf_c )
153+ gt_sdf == 0 , torch .zeros_like (pred_sdf ), abs (gt_sdf_c - pred_sdf_c )
154154 )
155155 losses ['inter' ] = inter_constraint .mean () * ki
156156
@@ -159,7 +159,7 @@ def hyper_loss(model_output, gt_sdf, ks, ki, kg, gt_normals=None, kn=None):
159159 if gt_normals is not None :
160160 norm = (1 - F .cosine_similarity (gradient , gt_normals , dim = - 1 ))[..., None ]
161161 normal_constraint = torch .where (
162- torch . abs ( gt_sdf ) == 0 , norm , torch .zeros_like (gradient [..., :1 ])
162+ gt_sdf == 0 , norm , torch .zeros_like (gradient [..., :1 ])
163163 )
164164 losses ['normal_constraint' ] = normal_constraint .mean () * kn
165165
@@ -176,7 +176,7 @@ def hyper_loss_deform(model_output, gt, kl, fw, ks, ki, kn, kg):
176176 pred_sdf = model_output ["model_out" ]
177177
178178 sdf_constraint = torch .where (
179- torch . abs ( gt_sdf ) == 0 , torch .abs (pred_sdf ), torch .zeros_like (pred_sdf )
179+ gt_sdf == 0 , torch .abs (pred_sdf ), torch .zeros_like (pred_sdf )
180180 )
181181 pred_sdf_c = torch .clip (pred_sdf , - 0.3 , 0.3 )
182182 gt_sdf_c = torch .clip (gt_sdf , - 0.3 , 0.3 )
@@ -190,7 +190,7 @@ def hyper_loss_deform(model_output, gt, kl, fw, ks, ki, kn, kg):
190190 norm = (1 - F .cosine_similarity (gradient , gt_normals , dim = - 1 ))[..., None ]
191191
192192 normal_constraint = torch .where (
193- torch . abs ( gt_sdf ) == 0 , norm , torch .zeros_like (gradient [..., :1 ])
193+ gt_sdf == 0 , norm , torch .zeros_like (gradient [..., :1 ])
194194 )
195195 grad_constraint = abs (1 - torch .linalg .norm (gradient , dim = - 1 ))
196196 else :
0 commit comments