@@ -370,28 +370,37 @@ int main(int argc, char* argv[]) {
370370 program.add_argument (" --output" ).required ().help (" Output directory for network files" );
371371 program.add_argument (" --resume" ).help (" Weights file to resume from" );
372372 program.add_argument (" --epochs" )
373- .default_value <int >(1000 )
374- .help (" Total number of epochs to train for" );
373+ .default_value (1000 )
374+ .help (" Total number of epochs to train for" )
375+ .scan <' i' , int >();
375376 program.add_argument (" --save-rate" )
376- .default_value <size_t >(50 )
377- .help (" How frequently to save quantized networks + weights" );
377+ .default_value (50 )
378+ .help (" How frequently to save quantized networks + weights" )
379+ .scan <' i' , int >();
378380 program.add_argument (" --ft-size" )
379- .default_value <size_t >(1024 )
380- .help (" Number of neurons in the Feature Transformer" );
381+ .default_value (1024 )
382+ .help (" Number of neurons in the Feature Transformer" )
383+ .scan <' i' , int >();
381384 program.add_argument (" --lambda" )
382- .default_value <float >(0.0 )
383- .help (" Ratio of evaluation score to use while training" );
384- program.add_argument (" --lr" ).default_value <float >(1e-3 ).help (
385- " The starting learning rate for the optimizer" );
385+ .default_value (0 .0f )
386+ .help (" Ratio of evaluation scored to use while training" )
387+ .scan <' f' , float >();
388+ program.add_argument (" --lr" )
389+ .default_value (0 .001f )
390+ .help (" The starting learning rate for the optimizer" )
391+ .scan <' f' , float >();
386392 program.add_argument (" --batch-size" )
387- .default_value <int >(16384 )
388- .help (" Number of positions in a mini-batch during training" );
393+ .default_value (16384 )
394+ .help (" Number of positions in a mini-batch during training" )
395+ .scan <' i' , int >();
389396 program.add_argument (" --lr-drop-epoch" )
390- .default_value <int >(500 )
391- .help (" Epoch to execute an LR drop at" );
397+ .default_value (500 )
398+ .help (" Epoch to execute an LR drop at" )
399+ .scan <' i' , int >();
392400 program.add_argument (" --lr-drop-ratio" )
393- .default_value <float >(1.0 / 40.0 )
394- .help (" How much to scale down LR when dropping" );
401+ .default_value (0 .025f )
402+ .help (" How much to scale down LR when dropping" )
403+ .scan <' f' , float >();
395404
396405 try {
397406 program.parse_args (argc, argv);
@@ -426,14 +435,14 @@ int main(int argc, char* argv[]) {
426435 std::cout << " Loading a total of " << files.size () << " files with " << total_positions
427436 << " total position(s)" << std::endl;
428437
429- const int total_epochs = program.get <int >(" --epochs" );
430- const size_t save_rate = program.get <size_t >(" --save-rate" );
431- const size_t ft_size = program.get <size_t >(" --ft-size" );
432- const float lambda = program.get <float >(" --lambda" );
433- const float lr = program.get <float >(" --lr" );
434- const int batch_size = program.get <int >(" --batch-size" );
435- const int lr_drop_epoch = program.get <int >(" --lr-drop-epoch" );
436- const float lr_drop_ratio = program.get <float >(" --lr-drop-ratio" );
438+ const int total_epochs = program.get <int >(" --epochs" );
439+ const int save_rate = program.get <int >(" --save-rate" );
440+ const int ft_size = program.get <int >(" --ft-size" );
441+ const float lambda = program.get <float >(" --lambda" );
442+ const float lr = program.get <float >(" --lr" );
443+ const int batch_size = program.get <int >(" --batch-size" );
444+ const int lr_drop_epoch = program.get <int >(" --lr-drop-epoch" );
445+ const float lr_drop_ratio = program.get <float >(" --lr-drop-ratio" );
437446
438447 std::cout << " Epochs: " << total_epochs << " \n "
439448 << " Save Rate: " << save_rate << " \n "
@@ -447,7 +456,7 @@ int main(int argc, char* argv[]) {
447456 dataset::BatchLoader<chess::Position> loader {files, batch_size};
448457 loader.start ();
449458
450- BerserkModel model {ft_size, lambda, save_rate};
459+ BerserkModel model {static_cast < size_t >( ft_size) , lambda, static_cast < size_t >( save_rate) };
451460 model.set_loss (MPE {2.5 , true });
452461 model.set_lr_schedule (StepDecayLRSchedule {lr, lr_drop_ratio, lr_drop_epoch});
453462
0 commit comments