|
| 1 | +import java.util.*; |
| 2 | + |
| 3 | +/** |
| 4 | + * DisjointedGraphTraversal |
| 5 | + * |
| 6 | + * Utility class that demonstrates traversal algorithms (DFS and BFS) for a graph |
| 7 | + * that may consist of multiple disjoint components. The graph is represented as |
| 8 | + * an adjacency list: a List<List<Integer>> where each index represents a node |
| 9 | + * (0..n-1) and the inner lists contain neighboring node indices. |
| 10 | + * |
| 11 | + * Notes and conventions: |
| 12 | + * - The class methods print traversal order to standard output. |
| 13 | + * - The graph is treated as an undirected graph in the example usage, but the |
| 14 | + * traversal code itself works for any directed/undirected adjacency-list |
| 15 | + * representation. |
| 16 | + * - All methods expect a non-null List<List<Integer>> of size n. Each inner |
| 17 | + * list may be empty when a node has no neighbors. |
| 18 | + * |
| 19 | + * Public methods: |
| 20 | + * - dfs(boolean[] visited, List<List<Integer>> graph) |
| 21 | + * Performs a complete depth-first traversal over all nodes in the graph, |
| 22 | + * visiting each connected component starting from the smallest unvisited |
| 23 | + * index. This method uses the recursive helper dfsUtil to visit nodes in a |
| 24 | + * component. The provided visited array is mutated to record visited nodes. |
| 25 | + * |
| 26 | + * @param visited boolean array of length >= graph.size(); visited[i] is true |
| 27 | + * when node i has already been visited. The array is |
| 28 | + * modified by the method. |
| 29 | + * @param graph adjacency list representation of the graph |
| 30 | + * |
| 31 | + * - getCountOfComponents(boolean[] visited, List<List<Integer>> graph) |
| 32 | + * Traverses the graph and counts the number of connected components. Each |
| 33 | + * time an unvisited node is found, it starts a DFS (via dfsUtil) to mark all |
| 34 | + * nodes in that component. The method prints each visited node (as a side |
| 35 | + * effect) and prints the final count of connected components. |
| 36 | + * |
| 37 | + * @param visited boolean array to track visited nodes; this array is |
| 38 | + * modified by the method. |
| 39 | + * @param graph adjacency list representation of the graph |
| 40 | + * |
| 41 | + * - bfs(boolean[] visited, List<List<Integer>> graph) |
| 42 | + * Performs a complete breadth-first traversal over all nodes in the graph. |
| 43 | + * Note: this implementation reinitializes the visited array internally to a |
| 44 | + * new boolean[graph.size()], so the visited parameter passed in by the |
| 45 | + * caller is effectively ignored. The method prints nodes in BFS order. |
| 46 | + * |
| 47 | + * @param visited boolean array (ignored and overwritten in current |
| 48 | + * implementation) |
| 49 | + * @param graph adjacency list representation of the graph |
| 50 | + * |
| 51 | + * - main(String[] args) |
| 52 | + * Example/demo entry point that builds a small disjoint graph, prints the |
| 53 | + * adjacency lists, and demonstrates DFS-based component counting and BFS |
| 54 | + * traversal. |
| 55 | + * |
| 56 | + * Helper (private) method: |
| 57 | + * - dfsUtil(int node, boolean[] visited, List<List<Integer>> graph) |
| 58 | + * Recursive helper that performs the standard DFS visit for a single |
| 59 | + * connected component, printing nodes as they are discovered. |
| 60 | + * |
| 61 | + * @param node index of the start node to visit |
| 62 | + * @param visited boolean array that is updated as nodes are visited |
| 63 | + * @param graph adjacency list representation of the graph |
| 64 | + * |
| 65 | + * Complexity: |
| 66 | + * - Time: O(V + E) for full traversal of the graph (V = number of nodes, |
| 67 | + * E = number of edges) for both DFS and BFS. |
| 68 | + * - Space: O(V) for the visited array; DFS additionally uses recursion stack |
| 69 | + * space up to O(V) in the worst case. |
| 70 | + * |
| 71 | + * Usage hints: |
| 72 | + * - If you want the bfs method to respect an externally-provided visited array, |
| 73 | + * remove the internal reinitialization (visited = new boolean[graph.size()]). |
| 74 | + * - To adapt for 1-based node indices or non-integer node labels, map labels to |
| 75 | + * contiguous integer indices before constructing the adjacency list. |
| 76 | + */ |
| 77 | +public class DisjointedGraphTraversal { |
| 78 | + |
| 79 | + public static void dfs(boolean visited[], List<List<Integer>> graph) { |
| 80 | + // Connected components traversal |
| 81 | + // for(List<Integer> neigbhour : graph){ |
| 82 | + // for(int node: neigbhour){ |
| 83 | + // if(!visited[node]){ |
| 84 | + // visited[node] = true; |
| 85 | + // System.out.print(node+" "); |
| 86 | + // dfs(visited, graph); |
| 87 | + // } |
| 88 | + // } |
| 89 | + // } |
| 90 | + // Complete traversal of disjointed graph |
| 91 | + for (int i = 0; i < graph.size(); i++) { |
| 92 | + if (!visited[i]) { |
| 93 | + dfsUtil(i, visited, graph); |
| 94 | + } |
| 95 | + } |
| 96 | + } |
| 97 | + |
| 98 | + private static void dfsUtil(int node, boolean visited[], List<List<Integer>> graph) { |
| 99 | + System.out.print(node + " "); |
| 100 | + visited[node] = true; |
| 101 | + for (int neighbor : graph.get(node)) { |
| 102 | + if (!visited[neighbor]) { |
| 103 | + dfsUtil(neighbor, visited, graph); |
| 104 | + } |
| 105 | + } |
| 106 | + } |
| 107 | + |
| 108 | + public static void getCountOfComponents(boolean visited[], List<List<Integer>> graph) { |
| 109 | + int count = 0; |
| 110 | + for (int i = 0; i < graph.size(); i++) { |
| 111 | + if (!visited[i]) { |
| 112 | + count++; |
| 113 | + dfsUtil(i, visited, graph); |
| 114 | + } |
| 115 | + } |
| 116 | + System.out.println("\nNumber of connected components: " + count); |
| 117 | + } |
| 118 | + |
| 119 | + public static void bfs(boolean visited[], List<List<Integer>> graph) { |
| 120 | + visited = new boolean[graph.size()]; |
| 121 | + Queue<Integer> queue = new LinkedList(); |
| 122 | + for (int i = 0; i < graph.size(); i++) { |
| 123 | + if (!visited[i]) { |
| 124 | + visited[i] = true; |
| 125 | + queue.add(i); |
| 126 | + while (!queue.isEmpty()) { |
| 127 | + int node = queue.poll(); |
| 128 | + System.out.print(node + " "); |
| 129 | + for (int neighbor : graph.get(node)) { |
| 130 | + if (!visited[neighbor]) { |
| 131 | + visited[neighbor] = true; |
| 132 | + queue.add(neighbor); |
| 133 | + } |
| 134 | + } |
| 135 | + } |
| 136 | + } |
| 137 | + } |
| 138 | + } |
| 139 | + |
| 140 | + public static void main(String[] args) { |
| 141 | + List<List<Integer>> disjointedGraph = new ArrayList<>(); |
| 142 | + for (int i = 0; i < 5; i++) { |
| 143 | + disjointedGraph.add(new ArrayList<>()); |
| 144 | + } |
| 145 | + disjointedGraph.get(0).add(1); |
| 146 | + disjointedGraph.get(1).add(0); |
| 147 | + disjointedGraph.get(0).add(4); |
| 148 | + disjointedGraph.get(4).add(0); |
| 149 | + |
| 150 | + disjointedGraph.get(1).add(4); |
| 151 | + disjointedGraph.get(4).add(1); |
| 152 | + disjointedGraph.get(1).add(3); |
| 153 | + disjointedGraph.get(3).add(1); |
| 154 | + for (int i = 0; i < 5; i++) { |
| 155 | + System.out.print(i + ": "); |
| 156 | + for (int neighbor : disjointedGraph.get(i)) { |
| 157 | + System.out.print(neighbor + " "); |
| 158 | + } |
| 159 | + System.out.println(); |
| 160 | + } |
| 161 | + boolean visited[] = new boolean[5]; |
| 162 | + System.out.println("DFS Traversal of Disjointed Graph:"); |
| 163 | + // dfs(visited, disjointedGraph); |
| 164 | + visited = new boolean[5]; |
| 165 | + getCountOfComponents(visited, disjointedGraph); |
| 166 | + System.out.println("BFS Traversal of Disjointed Graph:"); |
| 167 | + bfs(visited, disjointedGraph); |
| 168 | + |
| 169 | + } |
| 170 | +} |
0 commit comments