|
| 1 | +""" |
| 2 | +Adversarial attack optimization in GAMSPy (MNIST). |
| 3 | +
|
| 4 | +Builds and solves a bounded-noise attack that minimizes the logit margin |
| 5 | +between the predicted class and runner-up to induce misclassification. |
| 6 | +Users control the NN shape (hidden_layers, hidden_layer_neurons) and the |
| 7 | +modeling approach: MIP with CPLEX, NLP with CONOPT or MPEC with NLPEC. |
| 8 | +Weights are loaded from a pretrained NN (You can either train your own NN to |
| 9 | +check for yourself, or use the example file we provide in this repository). |
| 10 | +
|
| 11 | +Inputs: a correctly classified MNIST test image; noise ∈ [-MNIST_NOISE_BOUND, +MNIST_NOISE_BOUND]. |
| 12 | +Outputs: a JSON performance report (objective, time, status, size). |
| 13 | +
|
| 14 | +Multi-start: pass `noise_init` to `main(...)`. See the Sobol example at the end |
| 15 | +of the file for running many instances with diverse initial points. |
| 16 | +""" |
| 17 | + |
| 18 | +import os |
| 19 | +import math |
| 20 | +import json |
| 21 | +import numpy as np |
| 22 | + |
| 23 | +import gamspy as gp |
| 24 | +import torch |
| 25 | +import torch.nn as nn |
| 26 | +from gamspy.math.matrix import dim |
| 27 | +from torchvision import datasets, transforms |
| 28 | + |
| 29 | + |
| 30 | +def build_network(hidden_layers, hidden_layer_neurons): |
| 31 | + layers = [] |
| 32 | + layers.append(nn.Linear(784, hidden_layer_neurons)) |
| 33 | + layers.append(nn.ReLU()) |
| 34 | + for _ in range(hidden_layers - 1): |
| 35 | + layers.append(nn.Linear(hidden_layer_neurons, hidden_layer_neurons)) |
| 36 | + layers.append(nn.ReLU()) |
| 37 | + layers.append(nn.Linear(hidden_layer_neurons, 10)) |
| 38 | + |
| 39 | + network = nn.Sequential(*layers) |
| 40 | + network.load_state_dict( |
| 41 | + torch.load( |
| 42 | + f"ffn_data_{hidden_layers}_{hidden_layer_neurons}.pth", weights_only=True |
| 43 | + ) |
| 44 | + ) |
| 45 | + return network |
| 46 | + |
| 47 | + |
| 48 | +def get_image(network): |
| 49 | + transform = transforms.Compose([transforms.ToTensor()]) |
| 50 | + dataset = datasets.MNIST("data", train=False, download=True, transform=transform) |
| 51 | + test_loader = torch.utils.data.DataLoader(dataset) |
| 52 | + |
| 53 | + for data, target in test_loader: |
| 54 | + data, target = data, target |
| 55 | + single_image = data[0] |
| 56 | + single_target = target[0] |
| 57 | + single_image = single_image.reshape(single_image.size(0), -1) |
| 58 | + |
| 59 | + if torch.argmax(network(single_image)) == single_target: |
| 60 | + return single_image |
| 61 | + |
| 62 | + |
| 63 | +def convert_nlp(m: gp.Container, layer: torch.nn.ReLU): |
| 64 | + return gp.math.relu_with_complementarity_var |
| 65 | + |
| 66 | + |
| 67 | +def relu_with_mpec(x: gp.Variable): |
| 68 | + assert isinstance(x.container, gp.Container) |
| 69 | + domain = x.domain |
| 70 | + |
| 71 | + y = x.container.addVariable( |
| 72 | + type="positive", |
| 73 | + domain=domain, |
| 74 | + ) |
| 75 | + |
| 76 | + eq = x.container.addEquation( |
| 77 | + domain=domain, |
| 78 | + ) |
| 79 | + |
| 80 | + eq[...] = y - x >= gp.Number(0) |
| 81 | + return y, [], {eq: y} |
| 82 | + |
| 83 | + |
| 84 | +def mpec_wrapper(x: gp.Variable): |
| 85 | + output, equations, local_matches = relu_with_mpec(x) |
| 86 | + matches.update(local_matches) |
| 87 | + return output, equations |
| 88 | + |
| 89 | + |
| 90 | +def convert_mpec(m: gp.Container, layer): |
| 91 | + return mpec_wrapper |
| 92 | + |
| 93 | + |
| 94 | +def save_results(report, results_file: str = "performance_report.json") -> None: |
| 95 | + results = [] |
| 96 | + |
| 97 | + if os.path.exists(results_file): |
| 98 | + try: |
| 99 | + with open(results_file, "r") as f: |
| 100 | + data = json.load(f) |
| 101 | + results = data if isinstance(data, list) else [data] |
| 102 | + except (json.JSONDecodeError, IOError) as e: |
| 103 | + print(f"Warning: Could not read existing results file: {e}") |
| 104 | + |
| 105 | + results.append(report) |
| 106 | + |
| 107 | + try: |
| 108 | + with open(results_file, "w") as f: |
| 109 | + json.dump(results, f, indent=2) |
| 110 | + except IOError as e: |
| 111 | + print(f"Error saving results: {e}") |
| 112 | + |
| 113 | + |
| 114 | +global matches |
| 115 | + |
| 116 | +MEAN = (0.1307,) |
| 117 | +STD = (0.3081,) |
| 118 | +MNIST_NOISE_BOUND = 0.1 |
| 119 | + |
| 120 | +problem_type_map = { |
| 121 | + "MIP": [None, "CPLEX"], |
| 122 | + "NLP": [{"ReLU": convert_nlp}, "CONOPT"], |
| 123 | + "MPEC": [{"ReLU": convert_mpec}, "NLPEC"], |
| 124 | +} |
| 125 | + |
| 126 | + |
| 127 | +def main(hidden_layers, hidden_layer_neurons, prob_type: str, noise_init=None): |
| 128 | + m = gp.Container() |
| 129 | + network = build_network(hidden_layers, hidden_layer_neurons) |
| 130 | + single_image = get_image(network) |
| 131 | + relu_converter, solver = problem_type_map[prob_type] |
| 132 | + |
| 133 | + image_data = single_image.numpy().reshape(784) |
| 134 | + |
| 135 | + image = gp.Parameter( |
| 136 | + m, name="image", domain=dim(image_data.shape), records=image_data |
| 137 | + ) |
| 138 | + |
| 139 | + noise = gp.Variable(m, name="noise", domain=dim([784])) |
| 140 | + a1 = gp.Variable(m, name="a1", domain=dim([784])) |
| 141 | + |
| 142 | + # Set noise bounds |
| 143 | + noise.lo[...] = -MNIST_NOISE_BOUND |
| 144 | + noise.up[...] = MNIST_NOISE_BOUND |
| 145 | + |
| 146 | + if noise_init is not None: |
| 147 | + noise_vals = gp.Parameter(m, name="noise_vals", domain=noise.domain) |
| 148 | + noise_vals.setRecords(noise_init) |
| 149 | + noise.l[...] = noise_vals[...] |
| 150 | + |
| 151 | + # set input's lower and upper bounds |
| 152 | + a1.lo[...] = -MEAN[0] / STD[0] |
| 153 | + a1.up[...] = (1 - MEAN[0]) / STD[0] |
| 154 | + |
| 155 | + set_a1 = gp.Equation(m, "set_a1", domain=dim(a1.shape)) |
| 156 | + set_a1[...] = a1 == (image + noise - MEAN[0]) / STD[0] |
| 157 | + |
| 158 | + seq_formulation = gp.formulations.TorchSequential(m, network, relu_converter) |
| 159 | + y, _ = seq_formulation(a1) |
| 160 | + |
| 161 | + output_np = network(single_image.unsqueeze(0)).detach().numpy()[0][0] |
| 162 | + right_label = np.argsort(output_np)[-1] |
| 163 | + wrong_label = np.argsort(output_np)[-2] |
| 164 | + |
| 165 | + obj = gp.Variable(m, name="z") |
| 166 | + |
| 167 | + margin = gp.Equation(m, "margin") |
| 168 | + margin[...] = obj[...] == y[f"{right_label}"] - y[f"{wrong_label}"] |
| 169 | + |
| 170 | + model = gp.Model( |
| 171 | + m, |
| 172 | + "min_noise", |
| 173 | + equations=m.getEquations(), |
| 174 | + objective=obj, |
| 175 | + sense="min", |
| 176 | + problem=prob_type, |
| 177 | + matches=matches, |
| 178 | + ) |
| 179 | + |
| 180 | + model.solve(solver=solver, options=gp.Options.fromGams({"reslim": 4000})) |
| 181 | + |
| 182 | + report = { |
| 183 | + "hidden_layers": hidden_layers, |
| 184 | + "hidden_layer_neurons": hidden_layer_neurons, |
| 185 | + "problem_type": prob_type, |
| 186 | + "objective_value": round(model.objective_value, 5), |
| 187 | + "solve_time": round(model.total_solve_time, 5), |
| 188 | + "status": str(model.status).split(".")[-1], |
| 189 | + "variable_count": model.num_variables, |
| 190 | + } |
| 191 | + |
| 192 | + save_results(report) |
| 193 | + |
| 194 | + return model.objective_value |
| 195 | + |
| 196 | + |
| 197 | +if __name__ == "__main__": |
| 198 | + matches = {} |
| 199 | + obj_value = main(4, 40, prob_type="MPEC") |
| 200 | + assert math.isclose(obj_value, -1.96277, rel_tol=0.001) |
| 201 | + |
| 202 | + # The script below is an example of how to run multiple instances of the model |
| 203 | + # with different hidden layers, hidden layer neurons, and problem types. This |
| 204 | + # can be used as a comprehensive performance evaluation across various configurations. |
| 205 | + |
| 206 | + # hidden_layers = [1, 2, 3, 4, 5] |
| 207 | + # hidden_layer_neurons = [10, 20, 30, 40, 50, 60] |
| 208 | + # problem_types = ["MIP", "NLP", "MPEC"] |
| 209 | + # for hl in hidden_layers: |
| 210 | + # for hn in hidden_layer_neurons: |
| 211 | + # for prob_type in problem_types: |
| 212 | + # print(f"Running for HL: {hl}, HN: {hn}, Type: {prob_type}") |
| 213 | + # matches = {} |
| 214 | + # main(hl, hn, prob_type) |
| 215 | + # sys.stdout.flush() |
| 216 | + |
| 217 | + # The script below is an example of how to run multiple instances of the model |
| 218 | + # with different noise initializations sampled via a Sobol sequence. |
| 219 | + |
| 220 | + # sampler = qmc.Sobol(d=784) # dimension is the shape of the noise (28x28) |
| 221 | + # samples = sampler.random_base2(m=10) # Generates 2^10 = 1024 samples |
| 222 | + # scaled_samples = qmc.scale(samples, l_bounds=[-MNIST_NOISE_BOUND]*784, u_bounds=[MNIST_NOISE_BOUND]*784) |
| 223 | + # for sample in scaled_samples: |
| 224 | + # matches = {} |
| 225 | + # main(1, 10, prob_type="MPEC", noise_init=sample) |
| 226 | + # sys.stdout.flush() |
0 commit comments