Calculate volume of sphere, cone, cylinder, and cube instantly with our interactive 3D visualizer. Learn formulas with step-by-step solutions, explore geometric properties, and discover mathematical relationships through visualization. Free online geometry calculator and math solver.
CalcVisual is a free online volume calculator and interactive 3D geometry visualizer that combines the precision of a math solver with the clarity of real-time visualizations. Unlike static calculators that only provide numeric results, CalcVisual lets you see the formulas, manipulate 3D shapes in real-time, and discover mathematical relationships through exploration.
The core idea: when you drag the radius slider from 50 to 100, three things happen simultaneously - the sphere grows, the r³ in the formula highlights, and the calculation steps show r³ = 1,000,000. When radius doubles, a message appears: radius × 2 = volume × 8. That's when the relationship becomes obvious.
The interface uses Swiss Style principles:
No Rounded Corners - Maximum 2px border radius Explicit Grid - Visible 2px black borders define structure Academic Typography - Times New Roman serif headings Minimal Color - Pure white (#FFFFFF) and black (#000000) High Contrast - Pure black text for maximum readability Single Accent - Mathematical Blue (#0055FF) for emphasis only No Shadows - Flat design, content over decoration Border-Based Interaction - Border changes on hover, not background effects
This transforms the interface from generic "SaaS product" into a serious mathematical publication.
| Traditional Dictionary | CalcVisual |
|---|---|
| Static images and text | Interactive 3D visualizations |
| Read-only formulas | Manipulatable parameters |
| Abstract explanations | Real-world applications |
| Passive learning | Active discovery |
| Fixed examples | Infinite variations |
Sphere Volume Calculator
- Calculate volume with adjustable radius: V = (4/3)πr³
- Real-time 3D visualization
- Step-by-step formula explanations
- Surface area calculator: S = 4πr²
Cone Volume Calculator
- Calculate volume: V = (1/3)πr²h
- Surface area with slant height: S = πr(r+l)
- Compare cone vs cylinder volume (1/3 relationship)
- Interactive apex and base manipulation
Cylinder Volume Calculator
- Calculate volume: V = πr²h
- Surface area: S = 2πr(r+h)
- Real-time radius and height adjustment
- Curved surface unrolling visualization
Cube & Cuboid Volume Calculator
- Calculate volume: V = l × w × h
- Surface area: S = 2(lw + lh + wh)
- Space diagonal: d = √(l² + w² + h²)
- Interactive face highlighting
Pythagorean Theorem Calculator
- Calculate hypotenuse: c² = a² + b²
- Interactive 2D triangle visualization
- Visual proof with colored squares
- Famous Pythagorean triples detector (3-4-5, 5-12-13)
Formula Explanations
- Step-by-step derivations for each shape
- Variable definitions and units
- Real-world application examples
- Historical context (Archimedes, Euclid)
FAQ Sections
- Common geometry questions answered
- Bold keywords for easy scanning
- Step-by-step calculation guides
- Shape property comparisons
Discovery Zones
- Interactive experiments and comparisons
- "What if?" scenarios
- Mathematical relationship insights
- Real-world object comparisons
ExplorableFormula
- Step-by-step formula derivations
- Variable highlighting tied to slider manipulation
- Real-time calculation results
DiscoveryInsight
- Context-aware insights triggered by exploration
- Messages appear when you hit specific relationships
- Examples: doubling radius, finding famous triples
InteractiveSlider
- Touch-friendly sliders (44px minimum touch targets)
- Synchronized formula feedback
- Swiss styling: square thumb, 2px black border
DiscoveryZone
- Themed exploration areas
- Experiments and comparisons
- Historical context sections
FAQSection (NEW)
- Shape-specific frequently asked questions
- Bold keywords for easy scanning
- Step-by-step calculation guides
- FAQPage schema for "People Also Ask" optimization
- 20+ FAQ entries across all shapes
- 5 Geometric Shapes: Sphere, Cone, Cylinder, Cube, Pythagorean Triangle
- Real-time Parameter Adjustment: Slider controls for all dimensions
- Visible/Hidden Line Rendering: Smart solid/dashed line separation
- High-Performance Rendering: 60fps SVG rendering
- Responsive Design: Mobile-first touch-friendly interface
- SEO-Optimized Content: Educational material with formulas and context
- Node.js 16+
- npm 8+
cd geovisual
npm install
npm run devBrowser opens at http://localhost:5173
npm run build
npm run preview- Framework: React 18.3.1
- Build Tool: Vite 5.3.1
- Styling: Tailwind CSS 3.4.4 with custom Swiss design system
- Icons: Lucide React 0.400.0
- Math Engine: Pure JavaScript (no external math libraries)
- Typography: Times New Roman (headings), Inter (body), JetBrains Mono (math)
- Color System: Custom Swiss tokens (Black, White, Math Blue #0055FF)
geovisual/
├── src/
│ ├── components/
│ │ ├── premiumPages/
│ │ │ ├── PremiumSpherePage.jsx # Sphere exploration
│ │ │ ├── PremiumConePage.jsx # Cone exploration
│ │ │ ├── PremiumCylinderPage.jsx # Cylinder exploration
│ │ │ ├── PremiumCubePage.jsx # Cube exploration
│ │ │ └── PremiumPythagoreanPage.jsx # Pythagorean theorem
│ │ ├── ExplorableFormula.jsx # Formula display
│ │ ├── DiscoveryInsight.jsx # Insight triggers
│ │ ├── DiscoveryZone.jsx # Exploration containers
│ │ ├── InteractiveSlider.jsx # Touch sliders
│ │ ├── PythagoreanVisualization.jsx # 2D triangle
│ │ └── FAQSection.jsx # FAQ with schema (NEW)
│ ├── App.jsx # Main app with 3D engine
│ ├── App.css # Swiss typography
│ └── main.jsx # Entry point
├── index.html
├── vite.config.js
├── tailwind.config.js # Swiss design tokens
└── package.json
const Engine = {
ROTATION: { x: -25, y: -35 }, // Optimized fixed viewing angle
// 3D projection: map spatial points to screen coordinates
project(x, y, z) {
const radX = (this.ROTATION.x * Math.PI) / 180;
const radY = (this.ROTATION.y * Math.PI) / 180;
// Rotate around Y-axis (horizontal rotation)
let nx = x * Math.cos(radY) + z * Math.sin(radY);
let nz = -x * Math.sin(radY) + z * Math.cos(radY);
// Rotate around X-axis (pitch rotation)
let ny = y * Math.cos(radX) - nz * Math.sin(radX);
let fz = y * Math.sin(radX) + nz * Math.cos(radX); // Projected depth Z
return { x: nx, y: ny, z: fz };
}
}// Determine if face is front-facing (based on screen space cross product)
isFrontFacing(p1, p2, p3) {
// In SVG coordinate system (Y-axis down), clockwise points with nz < 0 indicate front face
const v1 = { x: p2.x - p1.x, y: p2.y - p1.y };
const v2 = { x: p3.x - p1.x, y: p3.y - p1.y };
const nz = v1.x * v2.y - v1.y * v2.x;
return nz < 0; // Front face if normal points toward viewer
}// Edge processing: logic is "visible edge = edge belonging to at least one front-facing face"
const edgeMap = new Map();
processedFaces.forEach(face => {
const n = face.idxSet.length;
for (let i = 0; i < n; i++) {
const v1 = face.idxSet[i], v2 = face.idxSet[(i + 1) % n];
const key = [v1, v2].sort().join('-');
const existing = edgeMap.get(key) || { isVisible: false };
if (face.isFront) existing.isVisible = true;
edgeMap.set(key, existing);
}
});
// Render visible edges as solid lines, hidden edges as dashed lines
Array.from(edgeMap.values()).forEach((edge, i) => {
const line = (
<line
key={`e-${i}`}
x1={edge.p1.x} y1={edge.p1.y}
x2={edge.p2.x} y2={edge.p2.y}
stroke={edge.isVisible ? "#3b82f6" : "#3b82f6"}
strokeWidth={edge.isVisible ? 2.5 : 1}
strokeDasharray={edge.isVisible ? "0" : "5,5"}
opacity={edge.isVisible ? 1 : 0.3}
/>
);
});// 1. Face processing and depth sorting (Painter's Algorithm)
const processedFaces = faces.map((idxSet, i) => {
const pts = idxSet.map(idx => projectedPts[idx]);
const isFront = Engine.isFrontFacing(pts[0], pts[1], pts[2]);
const avgZ = pts.reduce((s, p) => s + p.z, 0) / pts.length;
return { idxSet, isFront, avgZ, id: i };
}).sort((a, b) => b.avgZ - a.avgZ); // Sort by depth (back to front)
// 2. Render faces from back to front
processedFaces.forEach((f) => {
const pathData = f.idxSet.map((idx, j) =>
`${j === 0 ? 'M' : 'L'} ${projectedPts[idx].x} ${projectedPts[idx].y}`
).join(' ') + ' Z';
return <path
key={`f-${f.id}`}
d={pathData}
fill="url(#grad)"
fillOpacity={f.isFront ? 0.3 : 0.05}
/>;
});const ShapeGenerator = {
generateSphere(radius) {
const latS = 10, lonS = 16;
const vertices = [], faces = [];
for (let i = 0; i <= latS; i++) {
const lat = (i * Math.PI) / latS - Math.PI / 2;
const y = radius * Math.sin(lat), r = radius * Math.cos(lat);
vertices.push(...this.getCircle(r, y, lonS));
}
for (let i = 0; i < latS; i++) {
for (let j = 0; j < lonS; j++) {
const c = i*lonS+j, n = i*lonS+(j+1)%lonS;
const bc = (i+1)*lonS+j, bn = (i+1)*lonS+(j+1)%lonS;
faces.push([c, n, bn, bc]);
}
}
return { vertices, faces };
},
getCircle(r, y, segments = 64) {
return Array.from({ length: segments }).map((_, i) => {
const ang = (i * 2 * Math.PI) / segments;
return { x: r * Math.cos(ang), y: y, z: r * Math.sin(ang) };
});
}
}| Shape | Formula | Calculator |
|---|---|---|
| Sphere | V = (4/3)πr³ | Sphere Volume Calculator |
| Cone | V = (1/3)πr²h | Cone Volume Calculator |
| Cylinder | V = πr²h | Cylinder Volume Calculator |
| Cube | V = l × w × h | Cube Volume Calculator |
| Shape | Formula | Calculator |
|---|---|---|
| Sphere | S = 4πr² | Sphere Surface Area |
| Cone | S = πr(r+l), l=√(r²+h²) | Cone Surface Area |
| Cylinder | S = 2πr(r+h) | Cylinder Surface Area |
| Cube | S = 2(lw+lh+wh) | Cube Surface Area |
| Theorem | Formula | Calculator |
|---|---|---|
| Pythagorean | c² = a² + b² | Pythagorean Calculator |
| Cone Slant Height | l = √(r² + h²) | Cone Calculator |
| Cube Space Diagonal | d = √(l² + w² + h²) | Cube Calculator |
- V = Volume (cubic units)
- S = Surface Area (square units)
- r = Radius (units)
- h = Height (units)
- l, w = Length, Width (units)
- l = Slant Height (units)
- a, b = Triangle legs (units)
- c = Hypotenuse (units)
- π = Pi (≈3.14159)
Traditional Calculator:
Input: radius = 5, height = 10 Output: volume = 261.8
CalcVisual Approach:
- See the Formula - V = (4/3)πr³ displayed with highlighted variables
- Manipulate 3D Shape - Drag sliders and watch sphere grow in real-time
- Step-by-Step Calculation - Follow each calculation step
- Discover Relationships - Insights trigger when conditions met (e.g., "Doubling radius increases volume 8x!")
- Real-World Context - Compare with basketball, planets, molecules
- Calculate - Get instant results with interactive calculators
- Visualize - See formulas update in 3D as you adjust parameters
- Discover - Insights appear when you hit specific mathematical relationships
// Input: Adjust radius slider
radius = 70
// Step-by-step calculation:
Step 1: r³ = 70³ = 343,000
Step 2: π = 3.14159
Step 3: (4/3) × π × r³ = 1,436,755
// Visual feedback:
- Sphere grows in 3D
- Formula highlights "r³"
- Volume updates in real-time
// Discovery insight:
"Doubling radius increases volume 8x! (2³ = 8)"- Highlight - Dragging a slider highlights the corresponding variable in the formula
- Connect - Step-by-step calculations show how inputs become outputs
- Discover - Insights trigger when specific conditions are met
<ExplorableFormula
formula="V = (4/3)πr³"
variables={{ r: 70 }}
highlight="r"
showSteps={true}
result={1436755}
unit="cubic units"
/>
<DiscoveryInsight
triggerCondition={() => radius >= initialRadius * 2}
message="Doubling radius increases volume by 8x! (2³ = 8)"
/>Primary (Calculator & Solver Cluster):
- sphere volume calculator
- cone volume calculator
- cylinder volume calculator
- cube volume calculator
- Pythagorean theorem calculator
- math solver
- geometry solver
Secondary (Visualization Cluster):
- 3D geometry visualizer
- interactive 3D shapes
- geometry simulation
- mathematical visualization
- interactive geometry tools
Educational (Problem-Solving Cluster):
- step-by-step calculator
- volume formulas
- surface area calculator
- geometry education
- interactive math tools
✅ Structured Data (Schema.org)
- WebApplication schema
- MathSolver schemas for each calculator (Sphere, Cylinder, Cone, Pythagorean)
- FAQPage schema for "People Also Ask" optimization
✅ Meta Tags Optimization
- Title tags with calculator-focused keywords
- Descriptions emphasizing "Calculate instantly" and "Step-by-step"
- Open Graph and Twitter Card tags for social sharing
✅ Content Optimization
- Educational content with 2500+ words
- FAQ sections with bold keywords
- Formula explanations with step-by-step guides
- Real-world application examples
✅ Technical SEO
- Fast loading (Vite optimization)
- Mobile-responsive design
- Accessible (ARIA labels, keyboard navigation)
- Semantic HTML structure
Discovery Zones:
- Radius exploration with volume scaling insights
- Archimedes' 2/3 cylinder-sphere relationship
- Real-world object comparison (baseball, basketball, planets)
- Surface area-to-volume ratio analysis
Insights:
- Radius × 2 → Volume × 8
- Radius × 3 → Volume × 27
- Large objects cool slower (surface/volume ratio)
Discovery Zones:
- Why 1/3? (Cone vs Cylinder volume comparison)
- Apex angle experiments (tall vs wide)
- Slant height and Pythagorean connection
- Ice cream cone calculator
Insights:
- 3 cones = 1 cylinder
- Height ≈ radius → optimal 53° apex angle
- Large slant height → huge surface area
Discovery Zones:
- Unrolling the cylinder (curved surface → rectangle)
- Volume comparison: Cylinder vs Sphere vs Cone
- Soda can optimization puzzle (330ml target)
- Pipe flow and cross-sectional area
Insights:
- Unrolled area = 2πrh (rectangle)
- Sphere = 2/3 of cylinder volume
- Cone = 1/3 of cylinder volume
- Pipe radius × 2 → Flow × 4
Discovery Zones:
- Interactive face highlighting
- Spatial Pythagorean theorem (d = √(l²+w²+h²))
- Box packing optimization puzzles
- Surface area-to-volume ratio
Insights:
- Space diagonal formula
- Packing efficiency comparisons
- Surface/volume ratio explains cell size
Discovery Zones:
- Interactive 2D triangle with draggable sides
- Visual proofs (Rearrangement, Similar Triangles, Euclid's Windmill)
- Real-world applications (ladders, TV sizes, construction)
- Famous Pythagorean triples detector
Features:
- Clean triangle without side labels
- Three colored squares (blue a², green b², purple c²)
- Hypotenuse square rotates to align with hypotenuse
- Real-time area calculation
- Famous triple recognition
- Top Nav - Switch between shapes (Sphere, Cone, Cylinder, Cube, Pythagorean)
- Left Panel - Parameter controls + Mathematical Derivation
- Center Canvas - 3D/2D visualization with real-time rendering
- Premium Content - Scroll down for Discovery Zones
- Drag Sliders → Formula highlights + Results update
- Adjust Parameters → Insights trigger when conditions met
- Click Shapes → Face highlighting (Cube page)
- Scroll Discovery Zones → Educational content unfolds
<ExplorableFormula
formula="V = (4/3)πr³"
variables={{ r: 70 }}
highlight="r"
showSteps={true}
result={1436755}
unit="cubic units"
/><DiscoveryInsight
triggerCondition={() => radius > 100}
message="Discovery message"
type="discovery" // or 'warning', 'tip'
/><DiscoveryZone
title="Explore Title"
variant="primary" // 'primary' | 'secondary' | 'tertiary'
>
{/* Content */}
</DiscoveryZone><InteractiveSlider
label="Radius (r)"
value={radius}
onChange={setRadius}
min={10}
max={120}
variableName="r"
unit=" units"
color="math-blue"
/>- useMemo for expensive calculations
- React.memo on pure components
- Debounded slider events (16ms frame budget)
- 44px touch targets (Apple HIG compliant)
- Reduced motion respects
prefers-reduced-motion - Overflow scrolling for long content
- Semantic HTML (button, label, summary)
- ARIA labels on interactive controls
- Keyboard navigation support
- 650+ words per shape page (Comprehensive educational articles)
- 71 total FAQ entries (14-15 FAQs per shape covering long-tail keywords)
- 4 discovery zones per shape (Interactive experiments and comparisons)
- 4 content sections per shape: Introduction, Formula, Applications, Derivation
- Historical context: Archimedes, Euclid, ancient mathematicians
- Real-world applications: Engineering, astronomy, construction, manufacturing
- Meta descriptions: All 11 pages optimized to 140-160 characters for SERP display
- Dynamic title tags: High-traffic keywords (volume of a cylinder, cone geometry formulas, etc.)
- Structured data: WebApplication, MathSolver (4 shapes), FAQPage schemas
- Long-tail keyword targeting: Question-based FAQs for "People Also Ask" optimization
- Content depth: 6.5x expansion from ~100 to ~650 words per shape
- Component modularity - Reusable UI library
- Performance - 60fps rendering
- Responsive - Mobile-first Tailwind classes
Cause: Parent container has pointer-events: none
Fix: Add pointer-events-auto to interactive children
Cause: variableName prop doesn't match formula variable
Fix: Ensure consistent naming between slider and formula
Debug: Add console.log to check condition
npm run buildOutput: dist/ directory
- All meta descriptions optimized (140-160 characters)
- Educational content expanded (650+ words per shape)
- FAQ sections enhanced (71 total entries)
- Structured data deployed (WebApplication, MathSolver, FAQPage)
- High-traffic keywords integrated
- Google Rich Results Test validation
- Google Search Console re-indexing request
npm run build
# Outputs to: dist/Create .env.production:
VITE_BASE_URL=/path/to/appnpm i -g vercel
vercel --prodnpm i -g netlify-cli
netlify deploy --prodThe interface uses Swiss Style + Digital Brutalism principles to create a serious mathematical publication aesthetic.
| Principle | Implementation |
|---|---|
| No Rounded Corners | Maximum 2px border radius |
| Explicit Grid | Visible 2px black borders |
| Academic Typography | Times New Roman serif headings |
| Minimal Color | Pure white background only |
| High Contrast | Pure black text |
| Single Accent | Mathematical Blue for emphasis |
| No Shadows | Flat design |
| Border Interaction | Hover changes border width |
/* Foundation Colors */
--swiss-white: #FFFFFF /* Primary background */
--swiss-offwhite: #FAFAFA /* Secondary backgrounds */
--swiss-black: #000000 /* Primary text */
--swiss-charcoal: #1A1A1A /* Secondary text */
/* Accent Colors */
--math-blue: #0055FF /* Single accent color */
--math-blue-light: #E6F0FF /* Accent backgrounds */Display Headings (Serif) - Times New Roman for authority Body Text (Sans-Serif) - Inter for readability Math & Code (Monospace) - JetBrains Mono for precision
Primary card
<div className="bg-swiss-white border-2 border-swiss-black rounded-swiss-sm p-8">Secondary card
<div className="bg-swiss-offwhite border-2 border-swiss-black rounded-swiss-sm p-8">Formula display
<span className="font-serif-display text-display-xl font-semibold text-swiss-black">
V = (4/3)πr³
</span>Math numbers
<span className="font-mono-math text-display-2xl text-math-blue">
{volume.toFixed(2)}
</span>MIT License - Free for educational purposes
CalcVisual demonstrates interactive math visualization using pure JavaScript algorithms. No 3D libraries (Three.js, Babylon.js) are used - all projection is calculated from scratch.
Status: Production Ready (v2.1.0)
Latest Updates: February 1, 2026
Recent SEO Optimization: ✅ Keyword migration from "Dictionary" to "Calculator & Visualizer" ✅ MathSolver schemas deployed for all shapes ✅ FAQ sections with step-by-step guides ✅ Enhanced meta tags for search visibility ✅ Mobile-optimized with 44px touch targets
- Pure math engine (no external 3D libraries)
- 60fps performance with optimized rendering
- 5 MathSolver schemas (Sphere, Cylinder, Cone, Pythagorean)
- SEO-optimized with calculator-focused keywords
- Mobile-first responsive design
- Accessible (ARIA labels, keyboard navigation)
- Interactive calculators with real-time 3D visualization
- Context-aware insights triggered by exploration
- Step-by-step calculation guides for each formula
- Real-world connections (soda cans, ice cream, buildings)
- Visual proof library with interactive demonstrations
- FAQ sections with bold keywords for easy scanning
- Swiss Style design system with academic typography
- High contrast (pure black on white)
- Minimal aesthetic (no emojis, gradients, shadows)
- Sharp geometry (2px borders, 2px max corner radius)
- Single accent color (Mathematical Blue #0055FF)
- 5 Interactive Calculators (Sphere, Cone, Cylinder, Cube, Pythagorean)
- 20+ FAQ entries with step-by-step guides
- 5 MathSolver schemas for rich snippets
- 2500+ Words of educational content
- 8 Reusable Components
- 2000+ Lines of React/JavaScript code
- 3-Month: 1,000 monthly impressions, 100 visitors
- 6-Month: 10,000 monthly impressions, 1,000 visitors
- 12-Month: 50,000 monthly impressions, 5,000 visitors
- Keywords: "sphere volume calculator", "Pythagorean theorem calculator", etc.
- React Team - Excellent UI framework
- Vite Team - Lightning-fast build tool
- Tailwind CSS - Practical utility-first CSS
- Lucide - Beautiful icon library
- Explorable Explanations - Pedagogical inspiration by Bret Victor