Skip to content

AbsurdCoder/impact_analysis_system

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

2 Commits
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

Impact Analysis System

A comprehensive Django-based system for analyzing component dependencies and assessing change impacts in complex software architectures. This system provides advanced transitive dependency analysis, interactive visualizations, and detailed impact assessments to help teams make informed decisions about system changes.

πŸš€ Features

Core Functionality

  • Component Management: Define and manage system components with detailed metadata
  • Flow Designer: Visual flow designer for creating and managing component relationships
  • Transitive Dependency Analysis: Advanced analysis showing both direct and indirect impacts
  • Interactive Visualizations: D3.js-powered network graphs with force simulation
  • Impact Assessment: Comprehensive severity analysis with business impact scoring
  • Runbook Management: Operational procedures and step-by-step guides
  • YAML/JSON Import: Import system architectures from external formats

Advanced Analysis Features

  • Multi-directional Analysis: Downstream, upstream, and bidirectional impact analysis
  • Depth Control: Configurable analysis depth (1-3 levels or unlimited)
  • Severity Calculation: Dynamic severity scoring based on connection types and component criticality
  • Impact Paths: Visual representation of dependency chains
  • Business Impact Scoring: Quantitative assessment of change impacts
  • Component Grouping: Visual distinction between direct and indirect impacts

User Interface

  • Responsive Design: Works seamlessly on desktop and mobile devices
  • Real-time Updates: Dynamic component loading and analysis results
  • Interactive Elements: Clickable components, expandable sections, and detailed tooltips
  • Export Capabilities: Export analysis results and flow diagrams
  • Authentication System: Secure user management and session handling

πŸ“‹ Prerequisites

  • Python 3.8+
  • Django 4.2+
  • PostgreSQL (recommended) or SQLite for development
  • Node.js (for frontend dependencies)
  • Git

πŸ› οΈ Installation

1. Clone the Repository

git clone https://github.com/yourusername/impact-analysis-system.git
cd impact-analysis-system

2. Create Virtual Environment

python -m venv venv
source venv/bin/activate  # On Windows: venv\Scripts\activate

3. Install Dependencies

pip install -r requirements.txt

4. Database Setup

# Create and run migrations
python manage.py makemigrations
python manage.py migrate

# Create superuser
python manage.py createsuperuser

5. Load Sample Data (Optional)

python manage.py loaddata sample_data.json

6. Run Development Server

python manage.py runserver

Visit http://localhost:8000 to access the application.

πŸ—οΈ System Architecture

Backend Components

impact_analysis_system/
β”œβ”€β”€ core/                   # Core models and business logic
β”‚   β”œβ”€β”€ models.py          # Component, Flow, Connection, ImpactAnalysis models
β”‚   └── admin.py           # Django admin configuration
β”œβ”€β”€ api/                   # REST API endpoints
β”‚   β”œβ”€β”€ views.py           # API viewsets with analysis algorithms
β”‚   β”œβ”€β”€ serializers.py     # Data serialization
β”‚   └── urls.py            # API routing
β”œβ”€β”€ frontend/              # Web interface
β”‚   β”œβ”€β”€ views.py           # Frontend views
β”‚   β”œβ”€β”€ urls.py            # Frontend routing
β”‚   └── templates/         # HTML templates
└── templates/             # Shared templates
    β”œβ”€β”€ base.html          # Base template
    β”œβ”€β”€ frontend/          # Frontend-specific templates
    └── registration/      # Authentication templates

Key Models

Component

  • Purpose: Represents individual system components
  • Fields: Name, type, business function, description, metadata
  • Types: Database, Service, API, Frontend, Middleware, External Service

Flow

  • Purpose: Represents system workflows or processes
  • Fields: Name, version, description, metadata
  • Relationships: Contains multiple components and their connections

Connection

  • Purpose: Defines relationships between components
  • Types: API Call, Data Flow, Message Queue, Database Connection, Event Trigger
  • Metadata: Source, target, connection type, custom properties

ImpactAnalysis

  • Purpose: Stores analysis results and recommendations
  • Features: Severity assessment, affected components, analysis metadata
  • Analysis Types: Downstream, Upstream, Bidirectional

πŸ” Usage Guide

Creating Components

  1. Navigate to Components section
  2. Click "Add Component"
  3. Fill in component details:
    • Name and description
    • Component type (Database, Service, API, etc.)
    • Business function
    • Technical metadata

Designing Flows

  1. Go to Flows section
  2. Create a new flow or edit existing one
  3. Use the Flow Designer to:
    • Add components to the flow
    • Create connections between components
    • Position components visually
    • Define connection types and metadata

Running Impact Analysis

  1. Navigate to Impact Analysis

  2. Configure analysis parameters:

    • Select Flow: Choose the target flow
    • Target Component: Select component to analyze
    • Analysis Type: Downstream, Upstream, or Bidirectional
    • Max Depth: Set analysis depth (1-3 levels or unlimited)
    • Severity: Set minimum severity threshold
  3. Click "Run Analysis" to execute

Understanding Results

Impact Summary

  • Total Components Affected: Count of all impacted components
  • Direct vs Indirect: Breakdown of impact types
  • Severity Distribution: Components grouped by impact severity

Affected Components

  • Direct Impacts: Components immediately connected to the target
  • Indirect Impacts: Components affected through dependency chains
  • Impact Paths: Visual representation of dependency flows
  • Severity Indicators: Color-coded severity levels

Visualization

  • Network Graph: Interactive D3.js visualization
  • Force Simulation: Dynamic positioning based on relationships
  • Visual Distinction: Different styles for direct vs indirect impacts
  • Interactive Elements: Hover tooltips and clickable components

πŸ”§ API Reference

Core Endpoints

Components

GET    /api/v1/components/           # List all components
POST   /api/v1/components/           # Create new component
GET    /api/v1/components/{id}/      # Get component details
PUT    /api/v1/components/{id}/      # Update component
DELETE /api/v1/components/{id}/      # Delete component

Flows

GET    /api/v1/flows/                # List all flows
POST   /api/v1/flows/                # Create new flow
GET    /api/v1/flows/{id}/           # Get flow details
GET    /api/v1/flows/{id}/components/ # Get flow components
GET    /api/v1/flows/{id}/connections/ # Get flow connections

Impact Analysis

GET    /api/v1/impact-analyses/      # List analyses
POST   /api/v1/impact-analyses/      # Run new analysis
GET    /api/v1/impact-analyses/{id}/ # Get analysis results

Analysis Request Format

{
  "flow": "flow-uuid",
  "affected_component": "component-uuid",
  "analysis_type": "downstream",
  "severity": "medium",
  "max_depth": "2",
  "include_inactive": false,
  "description": "Analysis description"
}

Analysis Response Format

{
  "id": "analysis-uuid",
  "flow": "flow-uuid",
  "flow_name": "PayShield Flow",
  "affected_component": "component-uuid",
  "affected_component_name": "Payment Service",
  "severity": "medium",
  "affected_components": [
    {
      "id": "component-uuid",
      "name": "Validation Engine",
      "type": "service",
      "severity": "high",
      "impact_type": "direct",
      "depth": 1,
      "path": ["Payment Service", "Validation Engine"],
      "transitive_reason": "Directly connected to the target component"
    }
  ],
  "severity_distribution": {
    "total": {"low": 2, "medium": 1, "high": 1, "critical": 0},
    "direct": {"low": 0, "medium": 1, "high": 1, "critical": 0},
    "indirect": {"low": 2, "medium": 0, "high": 0, "critical": 0},
    "summary": {
      "total_affected": 4,
      "direct_affected": 2,
      "indirect_affected": 2,
      "max_depth": 2
    }
  }
}

πŸ§ͺ Testing

Running Tests

# Run all tests
python manage.py test

# Run specific app tests
python manage.py test core
python manage.py test api
python manage.py test frontend

# Run with coverage
coverage run --source='.' manage.py test
coverage report
coverage html

Test Structure

tests/
β”œβ”€β”€ test_models.py         # Model tests
β”œβ”€β”€ test_views.py          # View tests
β”œβ”€β”€ test_api.py            # API tests
β”œβ”€β”€ test_analysis.py       # Impact analysis algorithm tests
└── fixtures/              # Test data fixtures

πŸš€ Deployment

Production Setup

  1. Environment Variables
export DEBUG=False
export SECRET_KEY='your-secret-key'
export DATABASE_URL='postgresql://user:pass@localhost/dbname'
export ALLOWED_HOSTS='yourdomain.com'
  1. Database Configuration
DATABASES = {
    'default': {
        'ENGINE': 'django.db.backends.postgresql',
        'NAME': 'impact_analysis',
        'USER': 'your_user',
        'PASSWORD': 'your_password',
        'HOST': 'localhost',
        'PORT': '5432',
    }
}
  1. Static Files
python manage.py collectstatic
  1. Web Server Configuration
  • Use Gunicorn or uWSGI for application server
  • Configure Nginx for static files and reverse proxy
  • Set up SSL certificates for HTTPS

Docker Deployment

FROM python:3.11-slim

WORKDIR /app
COPY requirements.txt .
RUN pip install -r requirements.txt

COPY . .
RUN python manage.py collectstatic --noinput

EXPOSE 8000
CMD ["gunicorn", "impact_analysis_system.wsgi:application", "--bind", "0.0.0.0:8000"]

🀝 Contributing

Development Workflow

  1. Fork the repository
  2. Create a feature branch: git checkout -b feature/amazing-feature
  3. Make your changes and add tests
  4. Ensure all tests pass: python manage.py test
  5. Commit your changes: git commit -m 'Add amazing feature'
  6. Push to the branch: git push origin feature/amazing-feature
  7. Open a Pull Request

Code Style

  • Follow PEP 8 for Python code
  • Use Black for code formatting: black .
  • Use isort for import sorting: isort .
  • Add type hints where appropriate
  • Write comprehensive docstrings

Commit Message Format

type(scope): description

[optional body]

[optional footer]

Types: feat, fix, docs, style, refactor, test, chore

πŸ“Š Performance Considerations

Database Optimization

  • Use database indexes on frequently queried fields
  • Implement connection pooling for high-traffic scenarios
  • Consider read replicas for analysis-heavy workloads

Caching Strategy

  • Redis for session storage and temporary data
  • Cache analysis results for frequently accessed flows
  • Implement cache invalidation on component updates

Frontend Optimization

  • Lazy loading for large component lists
  • Pagination for analysis history
  • Debounced search and filtering

πŸ”’ Security

Authentication & Authorization

  • Django's built-in authentication system
  • Role-based access control (RBAC)
  • API token authentication for external integrations

Data Protection

  • Input validation and sanitization
  • SQL injection prevention through ORM
  • XSS protection with Django's template system
  • CSRF protection for all forms

Security Headers

SECURE_BROWSER_XSS_FILTER = True
SECURE_CONTENT_TYPE_NOSNIFF = True
X_FRAME_OPTIONS = 'DENY'
SECURE_HSTS_SECONDS = 31536000

πŸ“ˆ Monitoring & Logging

Application Monitoring

  • Django's built-in logging framework
  • Custom metrics for analysis performance
  • Error tracking with Sentry (optional)

Performance Metrics

  • Analysis execution time
  • Database query performance
  • API response times
  • User activity patterns

πŸ› Troubleshooting

Common Issues

Database Connection Errors

# Check database status
python manage.py dbshell

# Reset migrations (development only)
python manage.py migrate --fake-initial

Static Files Not Loading

# Collect static files
python manage.py collectstatic --clear

# Check STATIC_URL and STATIC_ROOT settings

Analysis Performance Issues

  • Check database indexes on Connection and FlowComponent tables
  • Consider reducing max_depth for large flows
  • Monitor memory usage during complex analyses

Debug Mode

Enable debug logging:

LOGGING = {
    'version': 1,
    'disable_existing_loggers': False,
    'handlers': {
        'console': {
            'class': 'logging.StreamHandler',
        },
    },
    'loggers': {
        'impact_analysis': {
            'handlers': ['console'],
            'level': 'DEBUG',
        },
    },
}

πŸ“š Additional Resources

Documentation

Related Projects

πŸ‘₯ Authors

  • Chiraag Bhatia

πŸ™ Acknowledgments

  • Django community for the excellent web framework
  • D3.js team for powerful visualization capabilities
  • Bootstrap team for responsive UI components

πŸ“ž Support

For support, email absurdcoders@gmail.com or create an issue in the GitHub repository.


Built with ❀️ using Django, D3.js, and modern web technologies

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published