zxros10
码龄8年
求更新 关注
提问 私信
  • 博客:58,831
    社区:97
    58,928
    总访问量
  • 20
    原创
  • 36
    粉丝
  • 138
    关注
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:湖北省
加入CSDN时间: 2017-12-08
博客简介:

zx_ros的博客

查看详细资料
个人成就
  • 获得37次点赞
  • 内容获得16次评论
  • 获得94次收藏
  • 代码片获得415次分享
  • 博客总排名314,296名
创作历程
  • 50篇
    2022年
成就勋章
TA的专栏
  • TVM源码分析
    15篇
  • LLVM 
  • LLVM TableGen
    2篇
  • TVM官方文档翻译
    29篇
  • TVM学习
  • 算子学习
    3篇

TA关注的专栏 1

TA关注的收藏夹 0

TA关注的社区 9

TA参与的活动 0

兴趣领域 设置
  • 人工智能
    opencv计算机视觉机器学习深度学习神经网络tensorflow图像处理
创作活动更多

AI 镜像开发实战征文活动

随着人工智能技术的飞速发展,AI 镜像开发逐渐成为技术领域的热点之一。Stable Diffusion 3.5 FP8 作为强大的文生图模型,为开发者提供了更高效的图像生成解决方案。为了推动 AI 镜像开发技术的交流与创新,我们特此发起本次征文活动,诚邀广大开发者分享在 Stable Diffusion 3.5 FP8 文生图方向的实战经验和创新应用 本次征文活动鼓励开发者围绕 Stable Diffusion 3.5 FP8 文生图方向,分享以下方面的内容: 1. 技术实践与优化 - Stable Diffusion 3.5 FP8 模型架构解析与优化技巧 - 文生图生成效果的提升方法与技巧 - 模型部署与加速策略,例如使用 Hugging Face、Diffusers 等工具 - 针对特定场景(例如二次元、写实风)的模型微调与定制化开发 2. 应用场景探索 - Stable Diffusion 3.5 FP8 在不同领域的应用案例分享,例如游戏设计、广告创意、艺术创作等 - 利用 Stable Diffusion 3.5 FP8 实现图像编辑、图像修复、图像增强等功能的探索 - 结合其他 AI 技术(例如 NLP、语音识别)构建更强大的应用 3. 创新应用与思考 - 基于 Stable Diffusion 3.5 FP8 的创新应用场景设计 - AI 镜像开发的未来发展方向的思考与展望 - 对 AI 镜像开发伦理、安全等问题的探讨

32人参与 去参加
  • 最近
  • 文章
  • 专栏
  • 代码仓
  • 资源
  • 收藏
  • 关注/订阅/互动
更多
  • 最近

  • 文章

  • 专栏

  • 代码仓

  • 资源

  • 收藏

  • 关注/订阅/互动

  • 社区

  • 帖子

  • 问答

  • 课程

  • 视频

搜索 取消

【TVM源码学习笔记】0 TVM安装

TVM + LLVM + CLANG的安装
原创
博文更新于 2022.08.24 ·
1496 阅读 ·
0 点赞 ·
4 评论 ·
4 收藏

【TVM源码学习笔记】3.1.3 工作空间更新

在relay ir低级化之前分配内存,然后统计各种内存大小
原创
博文更新于 2022.08.05 ·
568 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

【TVM源码学习笔记】3.1.2. Codegen低级化relay ir前的内存分配

relay ir低级化之前的内存分配
原创
博文更新于 2022.08.02 ·
984 阅读 ·
1 点赞 ·
0 评论 ·
1 收藏

【TVM源码学习笔记】3.1.1 VisitExpr流程分析

TVM模型表达式遍历使用的visitor模式
原创
博文更新于 2022.07.30 ·
2034 阅读 ·
2 点赞 ·
0 评论 ·
3 收藏

【TVM源码学习笔记】3.1 代码生成

代码生成接口Codegen的初步分析
原创
博文更新于 2022.07.29 ·
927 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

【TVM源码学习笔记】3 模型编译

模型编译的流程和初步分析
原创
博文更新于 2022.07.28 ·
973 阅读 ·
1 点赞 ·
0 评论 ·
4 收藏

【TVM源码学习笔记】2.2 C++侧的relay ir op, function和irmodule

探讨C++侧算子的relay ir的实现
原创
博文更新于 2022.07.25 ·
1829 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

【TVM源码学习笔记】附录1 TVM python调用C++的机制

tvm relay ir在python端通过特定机制调用对应的C++接口。本文将讨论这些调用机制的详细实现
原创
博文更新于 2022.07.25 ·
4220 阅读 ·
5 点赞 ·
1 评论 ·
9 收藏

【TVM源码学习笔记】2 模型导入from_onnx

from_onnx将onnx模型转换为tvm relay ir
原创
博文更新于 2022.07.25 ·
1772 阅读 ·
2 点赞 ·
0 评论 ·
4 收藏

【TVM源码学习笔记】附录3 导出tvm源码编译中间文件的方法

TVM源码编译时使用-E选项导出源码中间文件
原创
博文更新于 2022.07.25 ·
694 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

【TVM源码学习笔记】附录2 TVM的Object家族

TVM的Object类是很多类的基类,详细的分析资料可以参考深入理解TVM:Object家族 - 知乎深入理解TVM:Object家族(二) - 知乎TVM源码品读:万物基石——Object类(1) - 知乎TVM源码品读:万物基石——Object(2) - 知乎在阅读TVM C++代码的时候,有很多Object的派生类的类型转换需要追溯到Object/ObjectPtr/ObjectRef,所以这里着重分析三者之间的关系。我们可以只保留三者的包含关系代码:class TVM_DL
原创
博文更新于 2022.07.23 ·
1491 阅读 ·
2 点赞 ·
2 评论 ·
0 收藏

【TVM源码学习】前言:学习计划

TVM源码学习笔记入口
原创
博文更新于 2022.07.22 ·
1141 阅读 ·
1 点赞 ·
0 评论 ·
4 收藏

【TVM源码学习笔记】2.1 onnx算子转换

onnx节点转换为tvm relay ir
原创
博文更新于 2022.07.22 ·
2776 阅读 ·
2 点赞 ·
0 评论 ·
3 收藏

【TVM源码学习笔记】1 从编译运行第一个模型开始

tvm模型编译运行步骤
原创
博文更新于 2022.07.22 ·
849 阅读 ·
0 点赞 ·
0 评论 ·
3 收藏

深度学习模型编译快速入门教程

本文翻译自Quick Start Tutorial for Compiling Deep Learning Models — tvm 0.9.dev0 documentation
翻译
博文更新于 2022.07.18 ·
846 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

pass基础设施

Relay和TVM IR都包含一系列优化pass,用于改善模型的性能指标,如平均推断、内存占用或特定设备的功耗。有一套标准的优化和机器学习特有的优化,包括常量折叠、死代码消除、算子布局更改、算子融合、缓冲区处理和循环转换等。通过使用遍历期间和/或遍历之前收集的分析结果,将每个pass都被构造为ir-to-ir转换。然而,随着TVM的迅速发展,对这些pass进行更系统和更有效管理的需求变得越来越明显。另外,一个管理跨TVM栈不同层(如Relay和tir)的pass的通用框架,为开发人员快速原型化和将实现的pa
翻译
博文更新于 2022.07.05 ·
1108 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

TabaleGen介绍

本文翻译自TableGen Overview — LLVM 15.0.0git documentationTableGen的目的是帮助开发和维护领域特定信息的记录。因为可能有大量这样的记录,所以专门设计它来允许编写灵活的描述,并提取出这些记录的共同特性。这减少了描述中的重复数量,减少了出错的机会,并使结构领域特定信息变得更容易。TableGen前端解析文件,实例化声明,并将结果传递给特定领域的后端进行处理。有关TableGen的深入描述,请参阅TableGen Programmer’s Reference
翻译
博文更新于 2022.07.04 ·
748 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Device/Target交互

本文翻译自Device/Target Interactions — tvm 0.9.dev0 documentation本文档是为有兴趣了解TVM框架如何与特定设备API交互的开发人员编写的,或者希望实现对新API或新硬件的支持的开发人员编写的。任何新的运行时环境都必须实现三个主要方面。DeviceAPI类为特定设备提供了一个句柄,以及用于与之交互的API。它定义了一个通用接口,用于查询设备参数(例如可用内存、线程数量等)和执行简单操作(例如从主机复制内存,或在设备的缓冲区之间复制内存)。Target类包含
翻译
博文更新于 2022.07.03 ·
395 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

模块序列化介绍

部署TVM运行时模块时,无论是CPU还是GPU, TVM只需要一个动态共享库即可。关键是我们统一的模块序列化机制。本文档将介绍TVM模块序列化格式标准及实现细节。让我们先为构建一个ResNet-18 GPU 工作负载作为例子。 序列化入口API是tvm.module.Module的export_library。在这个函数中,我们将执行以下步骤:1. 收集所有DSO模块(LLVM模块和C模块)2. 一旦我们有了DSO模块,我们将调用保存函数将它们保存到文件中。3. 接下来,我们将检查是否导入了模块,
翻译
博文更新于 2022.06.30 ·
397 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

TableGen程序员参考

本文翻译自TableGen Programmer’s Reference — LLVM 15.0.0git documentationTableGen使用输入文件中的信息生成复杂的输出文件,输入源文件比输出文件更容易编码,也更容易维护和修改。输入文件中供TableGen处理的信息以声明式风格编码,信息包括类和记录。内部化的记录被传递到各种后端,后端从记录的子集中提取信息,并生成一个或多个输出文件。这些输出文件通常是C++的.inc文件,但也可以是后端开发人员需要的任何其他类型的文件。本文档将详细介绍LLVM
翻译
博文更新于 2022.06.30 ·
966 阅读 ·
0 点赞 ·
0 评论 ·
4 收藏
加载更多