自动驾驶
文章平均质量分 76
JoannaJuanCV
研究方向:图像处理、立体视觉、3D重建、人脸识别;传统AI、大模型、多模态等,专注于计算机视觉在无人机和机器人领域的研究和应用。
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
自动驾驶—CARLA仿真(20)manual_control demo
摘要: 该Python脚本是CARLA仿真平台中功能完备的手动驾驶控制客户端,支持完整的车辆操控(油门/转向/灯光等)、多传感器融合(RGB/激光雷达/雷达等)和环境动态调控(天气/地图图层)。核心模块包括: World类管理仿真环境与传感器系统 KeyboardControl实现真实车辆交互逻辑 Ackermann控制器提供高精度转向模型 HUD系统实时显示15+项车辆状态 14种传感器支持多模态数据可视化 录制回放功能保障实验可复现性 适用于自动驾驶算法测试、传感器调试和数据采集,是CARLA官方推荐的原创 2025-12-19 13:55:31 · 566 阅读 · 0 评论 -
自动驾驶—CARLA仿真(19)automatic_control demo
本文介绍了一个基于CARLA的自动驾驶代理演示系统,该系统集成了三种不同级别的自动驾驶代理(Basic/Constant/Behavior),能够自动规划路径并控制车辆行驶。系统包含完整的HUD信息显示、传感器管理和交互控制功能,支持多种驾驶风格和传感器配置。该实现为研究人员和开发者提供了开箱即用的自动驾驶测试平台,可直接用于高级行为策略或感知-决策融合研究,无需从零实现底层路径规划和控制逻辑。原创 2025-12-19 13:55:05 · 447 阅读 · 0 评论 -
自动驾驶—CARLA仿真(18)lidar_to_camera demo
本文介绍了将LiDAR点云投影到RGB图像的同步可视化方法。该方法通过同步采集LiDAR与摄像头数据,建立精确的3D→2D投影管线,实现点云强度信息的可视化。核心内容包括:1)同步数据采集机制,确保帧对齐;2)相机内参矩阵构建;3)完整的LiDAR→相机坐标变换链处理;4)点云可视化增强和有效点过滤。该技术适用于多传感器融合、感知算法调试和数据集生成,是自动驾驶感知系统开发的基础工具,特别适合需要精确2D-3D对应关系的任务。原创 2025-12-18 16:14:24 · 638 阅读 · 0 评论 -
自动驾驶—CARLA仿真(17)invertedai_traffic demo
摘要: 该脚本实现CARLA与InvertedAI云服务的联合仿真,通过调用InvertedAI的API生成高真实感交通流,并在CARLA中同步渲染智能体行为。系统支持车辆与行人混合交通、交通灯联动及动态路径规划,适用于大规模自动驾驶仿真。 核心功能: 初始化流程:通过large_initialize生成50+车辆,解决CARLA原生生成点不足问题。 双向同步:交通灯状态和行人位置实时同步,确保AI车辆遵守规则并避障。 动态导航:结合CARLA路网补充InvertedAI的局部行为,实现长距离路径规划。 混原创 2025-12-18 16:13:28 · 478 阅读 · 0 评论 -
自动驾驶—CARLA仿真(16)generate_traffic demo
摘要: CARLA的Traffic Generator脚本支持大规模交通流生成,包含车辆/行人批量生成、Traffic Manager智能配置(跟车距离、混合物理模式等)、同步/异步模式切换等功能。通过蓝图过滤、原子化批量操作(100辆车生成<2秒)和资源安全管理,实现高效稳定的交通仿真。适用于自动驾驶压力测试,支持高密度交通、夜间场景等配置,是工业级仿真测试的核心工具。关键特性包括混合物理优化、行人行为多样性及可复现实验设计。原创 2025-12-17 09:31:44 · 799 阅读 · 0 评论 -
自动驾驶—CARLA仿真(15)get_component_test demo
本文介绍了通过CARLA仿真引擎获取车辆组件世界坐标的方法。示例代码演示了如何生成Audi TT车辆并查询其右前转向灯的世界位姿,核心是使用get_component_world_transform()接口。该方法适用于高精度传感器安装、V2X通信、碰撞检测等需要部件级定位的场景,是实现车辆数字孪生的关键技术。文章还解析了连接服务器、车辆生成、坐标查询等关键步骤,并列举了常见组件命名和应用案例。原创 2025-12-17 09:30:19 · 405 阅读 · 0 评论 -
自动驾驶—CARLA仿真(24)sensor_synchronization demo
多传感器同步采集底层实现示例 该脚本演示了CARLA同步模式下多传感器数据对齐的原理,提供线程安全的数据收集机制。通过配置固定仿真步长(0.2秒/5FPS)和同步模式,确保所有传感器数据在每帧就绪。采用轻量级回调函数将帧号和传感器名入队,使用queue.Queue保证多传感器并发安全。部署3个摄像头、2个LiDAR(不同点云密度)和2个雷达,验证同步机制的鲁棒性。主循环严格检查每帧是否收齐7个传感器数据,超时则警告。与高级封装方案相比,本脚本更适合底层调试和定制开发,是理解CARLA同步机制的最小可行示例。原创 2025-12-16 17:32:32 · 302 阅读 · 0 评论 -
自动驾驶—CARLA仿真(25)synchronous_mode demo
摘要: 该Python脚本演示了CARLA仿真环境中多传感器同步采集与可视化的实现方法。核心模块包括: CarlaSyncMode:通过上下文管理器确保RGB摄像头与语义分割摄像头数据严格同步,自动对齐仿真帧; 简化路径跟踪:车辆通过路点系统自动移动(非物理模拟); 图像融合显示:将语义分割结果以半透明形式叠加到RGB图像上,使用CityScapes调色板着色; 性能监控:实时显示仿真与渲染FPS。适用于多模态感知算法验证和教学演示,提供约30FPS的稳定数据流。 (149字)原创 2025-12-16 17:19:27 · 346 阅读 · 0 评论 -
自动驾驶—CARLA仿真(14)draw_skeleton demo
摘要:该Python脚本演示了CARLA仿真中行人骨骼的可视化功能,通过同步模式获取行人68个骨骼节点的3D坐标,并将其投影到RGB图像上。核心功能包括:1)同步处理传感器数据;2)3D到2D坐标转换;3)动态绘制骨架连线和关键点;4)实现摄像机环绕行人运动。适用于人体姿态估计、动作捕捉等研究,支持自定义骨骼拓扑和纯客户端渲染,是构建精确关节标注系统的理想基础。原创 2025-12-16 10:40:45 · 859 阅读 · 0 评论 -
自动驾驶—CARLA仿真(13)dynamic_weather demo
摘要:该Python脚本实现了动态天气控制功能,用于自动驾驶系统测试。主要包含三个模块:1) Sun类模拟太阳轨迹变化,通过正弦函数实现高度角动态调整;2) Storm类采用状态机设计模拟风暴生命周期,联动控制云量、降雨、积水等参数;3) Weather类集成天气系统。支持通过speed_factor参数控制天气变化速度,实现物理一致的时间缩放效果。该工具能生成渐进式天气变化,适用于摄像头、LiDAR等传感器在复杂天气条件下的性能测试,特别适合需要长时间环境变化验证的场景。原创 2025-12-16 10:40:39 · 659 阅读 · 0 评论 -
自动驾驶—CARLA仿真(12)client_bounding_boxes demo
本文介绍了一个基于CARLA的客户端3D边界框可视化示例,展示了如何在纯Python环境下实现车辆3D边界框的实时计算与绘制。该方案不依赖服务端,仅需RGB摄像头和车辆列表数据,通过完整的3D→2D投影管线,将车辆bounding_box转换为2D像素坐标。核心包括坐标变换链(局部→世界→相机→像素)、相机内参校准以及深度过滤等关键技术,是学习自动驾驶3D目标检测基础的重要案例。原创 2025-12-16 10:05:33 · 647 阅读 · 0 评论 -
自动驾驶—CARLA仿真(11)bounding_boxes demo
本文介绍了一个基于CARLA仿真环境的2D/3D边界框生成与可视化系统。该系统通过RGB摄像头和实例分割摄像头获取场景数据,实时计算并绘制2D/3D边界框,同时将边界框、速度、灯光状态等结构化数据保存为JSON格式。核心功能包括:数据结构定义、坐标变换与投影、实例分割解码、边界框生成、可视化系统以及结构化数据导出。该系统支持28类语义标签,可生成精确的3D检测参数,适用于自动驾驶感知算法训练、数据集生成和传感器融合验证,是构建自动驾驶感知pipeline的关键工具。原创 2025-12-15 18:27:03 · 896 阅读 · 0 评论 -
自动驾驶—CARLA仿真(10)tutorial_gbuffer demo
本文介绍了一个高级传感器数据采集示例,用于在CARLA仿真环境中获取自动驾驶车辆的底层图形数据。该示例通过生成自动驾驶车辆并挂载高分辨率RGB摄像头,同时保存最终渲染图像和所有GBuffer纹理(包括场景深度、法线、材质属性等14+通道)。这些数据适用于计算机视觉研究、神经渲染、图像合成等需要底层图形数据的场景。文章详细解析了GBuffer的概念、主车与摄像头初始化方法、GBuffer启用与监听的核心代码,以及数据输出结构。同时指出该方法的性能开销较大,建议用于离线数据采集,并提醒注意磁盘空间消耗。该示例为原创 2025-12-15 17:43:01 · 461 阅读 · 0 评论 -
自动驾驶—CARLA仿真(8)tutorial demo
PythonAPI/examples/tutorial.py这是一个 **基础传感器数据采集示例**,演示如何:1. 在仿真中生成一辆主车并启用自动驾驶2. 为主车挂载一个深度摄像头(Depth Camera)3. 将摄像头捕获的图像**自动保存到磁盘**4. 动态调整车辆位置并批量生成 NPC 车辆适用于**数据集生成、传感器调试、自动化测试**等场景。原创 2025-12-15 16:54:21 · 549 阅读 · 0 评论 -
自动驾驶—CARLA仿真(9)visualize_multiple_sensors demo
car visualize_multiple_sensors 测试用例原创 2025-12-15 15:07:09 · 864 阅读 · 0 评论 -
自动驾驶—CARLA仿真(6)vehicle_gallery demo
carla vehicle_galler 测试用例原创 2025-12-15 14:36:09 · 589 阅读 · 0 评论 -
自动驾驶—CARLA仿真(7)vehicle_physics demo
carla vehicle_physics 测试用例原创 2025-12-15 14:50:35 · 830 阅读 · 0 评论 -
自动驾驶—CARLA仿真(0)报错记录
carla仿真 报错记录原创 2025-12-12 17:39:36 · 674 阅读 · 0 评论 -
自动驾驶—CARLA仿真(5)Actors与Blueprints
CARLA仿真中的参与者与蓝图管理 CARLA仿真中的核心元素是参与者(Actors),包括车辆、行人、传感器、交通标志和观察者。参与者通过蓝图(Blueprint)模板生成,蓝图包含可修改属性(如颜色、传感器参数)和不可修改属性。蓝图库提供所有可用模板,支持通过ID查询或随机选择。参与者生命周期包括生成(需指定位置和旋转)、操作(物理状态控制)和销毁(需显式调用)。特殊参与者如传感器通过回调函数处理数据流,交通灯可通过API控制状态切换,车辆则支持多种控制模式。注意Python脚本结束时必须显式销毁参与者原创 2025-12-12 15:26:28 · 981 阅读 · 0 评论 -
自动驾驶—CARLA仿真(4)基础概念
CARLA仿真基础概念摘要 CARLA采用客户端-服务器架构:服务器运行仿真,客户端通过API控制。核心对象包括: Client:连接服务器的终端(默认端口2000),支持多客户端并行 World:仿真环境单例,管理地图、天气、参与者等 提供两种运行模式: 异步模式(默认):服务器自主推进仿真 同步模式:客户端通过tick指令逐帧控制,适用于数据采集和严格同步场景 关键功能: Recorder:二进制记录仿真状态,支持精确回放 渲染选项:支持Epic/Low画质模式及离屏渲染优化性能 (字数:150)原创 2025-12-12 14:52:23 · 912 阅读 · 0 评论 -
自动驾驶—CARLA仿真(3) 坐标和坐标变换
本文介绍了CARLA仿真引擎中的坐标系系统。CARLA采用Unreal Engine的左手坐标系,X轴向前,Y轴向右,Z轴向上,使用米和度作为单位。参与者(如车辆、行人)拥有各自的局部坐标系,原点通常位于包围盒中心附近。CARLA API提供了Location、Rotation和Transform类来处理坐标变换,支持全局坐标与局部坐标之间的转换。此外,CARLA还支持地理坐标转换,通过OpenDRIVE文件中的地理参考信息实现大地坐标与CARLA世界坐标的相互映射。这些功能为自动驾驶仿真中的定位和感知系统原创 2025-12-12 14:33:57 · 878 阅读 · 0 评论 -
自动驾驶—CARLA仿真(2)入门指南
CARLA是一款开源的自动驾驶仿真平台,提供逼真的城市环境和车辆模型。通过Python API,用户可以加载不同地图、添加车辆和传感器,并利用交通管理器控制NPC车辆行驶。主车(Ego Vehicle)是仿真核心,可安装多种传感器采集数据用于算法训练。CARLA支持同步/异步模式,包含8种不同风格的地图,涵盖城市、乡村和高速公路场景,为自动驾驶研发提供安全高效的测试环境。原创 2025-12-12 11:21:54 · 1100 阅读 · 0 评论 -
自动驾驶—CARLA 仿真(1)安装与demo测试
CARLA是一个开源的自动驾驶仿真平台,基于Unreal Engine构建,提供高保真图形渲染和多种传感器模拟。它具有可编程交通、开放地图编辑、Python/C++ API和ROS集成等特点,适用于自动驾驶算法开发、测试和多智能体仿真等场景。用户可通过官网下载安装包,支持Windows和Linux系统运行。CARLA凭借其高仿真度和灵活性,已成为自动驾驶领域主流的仿真工具,为算法验证提供安全高效的虚拟测试环境。原创 2025-12-11 16:39:36 · 1182 阅读 · 0 评论 -
nuscenes-devkit 安装报错
nuscenes-devkit 安装报错原创 2023-06-13 09:54:45 · 1142 阅读 · 0 评论 -
行人检测-Caltech Pedestrian Dataset 数据集下载及格式转换
行人检测-Caltech Pedestrian Dataset 数据集下载及格式转换原创 2022-10-24 18:44:45 · 4799 阅读 · 0 评论 -
自动驾驶-鱼眼数据集下载记录
自动驾驶数据集下载原创 2022-10-12 16:31:12 · 2148 阅读 · 0 评论 -
WoodScape数据集之相机标定参数
woodscape 数据集 相机标定参数原创 2022-10-09 19:42:18 · 1503 阅读 · 5 评论 -
ONNXRuntime部署YOLOV7目标检测
ONNXRuntime部署YOLOV7目标检测原创 2022-08-09 21:05:36 · 2266 阅读 · 0 评论 -
Ubuntu18.04 lite.ai.toolkit配置、编译、测试
lite.ai.toolkit配置、编译、测试原创 2022-08-02 10:49:31 · 815 阅读 · 0 评论 -
MNN介绍、安装和编译(Linux)
MNN介绍、安装和编译(Linux)原创 2022-08-02 10:22:29 · 2275 阅读 · 0 评论 -
自动驾驶鱼眼数据集WoodScape介绍及样本筛选
自动驾驶鱼眼数据集WoodScape介绍及demo测试原创 2022-07-22 15:44:46 · 2421 阅读 · 0 评论 -
自动驾驶:车辆转弯半径计算
车辆转弯半径计算原创 2022-07-05 15:38:33 · 4662 阅读 · 0 评论 -
自动驾驶:前后轮转向方向
四轮转向系统,前后车轮转向角度原创 2022-07-05 14:33:19 · 1372 阅读 · 0 评论 -
车载全景可视系统
参考博文:【鱼眼相机】OpenCV实现鱼眼图像径向展开_105度西瓜的博客-CSDN博客_鱼眼图像展开【辅助驾驶】透视变换、仿射变换(包含鸟瞰图、俯视图、正视图)[1]——原理_105度西瓜的博客-CSDN博客【辅助驾驶】透视变换、仿射变换(包含鸟瞰图、俯视图、正视图)[2]——俯视图_105度西瓜的博客-CSDN博客_opencv鸟瞰图辅助驾驶【辅助驾驶】透视变换、仿射变换(包含鸟瞰图、俯视图、正视图)[3]——汽车全景环视系统_105度西瓜的博客-CSDN博客_鸟瞰图拼接【辅助驾驶】转载 2022-05-23 13:43:09 · 344 阅读 · 0 评论 -
自动驾驶:MOT 移动物体跟踪概述
Self-Driving Cars: A Survey原文下载:[1901.04407] Self-Driving Cars: A Survey (arxiv.org)https://arxiv.org/abs/1901.04407移动物体跟踪(MOT)子系统(也称为检测和跟踪多个物体 —— DATMO)主要负责检测和跟踪自动驾驶车周围环境中移动障碍物的姿势。该子系统保证自动驾驶车辆能够做出决定来避免与可能移动的物体(如,其他车辆、行人)发生碰撞。这个子系统是必不可少的。随着时间的推移,移动障碍转载 2022-05-06 14:38:49 · 1975 阅读 · 0 评论 -
自动驾驶概述
自动驾驶概述邱辉俊(少隆)高德技术2021-09-28 11:37导读汽车行业处在一个变革的时代,自动驾驶相关技术发展应用如火如荼。关注或者想了解这个领域的人也越来越多。本文的目标在于帮助大家对自动驾驶技术有一个全局的基础认识。文章分别介绍了自动驾驶基本原理,意义,分级以及相关行业背景。自动驾驶原理自动驾驶就是车辆在无驾驶员操作的情况下自行实现驾驶,它是车辆的能力。比如扫地机器人在扫地的时候就是在自动驾驶。自动驾驶有多种发展路径,单车智能、车路协同、联网云控等。车..转载 2022-05-06 11:56:25 · 2351 阅读 · 0 评论 -
自动驾驶:MOD 移动物体检测概述
MOD全称为Moving Object Detection,中文“移动物体检测”。主要的作用是泊车时,周围有人或物体经过探测区域被检测到给驾驶员声音和视觉提醒。nissan 官网:Moving Object Detection (MOD) | Innovation | Nissan Motor Corporation Official Global Website (nissan-global.com)MOD系统类型:1. 基于四路环视相机数据进行移动物体检测;工作场景:(1原创 2022-05-06 14:01:25 · 3102 阅读 · 0 评论
分享