JoannaJuanCV
码龄11年
求更新 关注
提问 私信
  • 博客:1,734,622
    社区:356
    视频:109
    1,735,087
    总访问量
  • 643
    原创
  • 1,525
    排名
  • 5,709
    粉丝
  • 127
    关注
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:湖北省
加入CSDN时间: 2014-07-19

个人简介:研究方向:图像处理、立体视觉、3D重建、人脸识别;传统AI、大模型、多模态等,专注于计算机视觉在无人机和机器人领域的研究和应用。

博客简介:

zfjBIT的专栏

查看详细资料
个人成就
  • 优质创作者: 人工智能技术领域
  • 获得2,640次点赞
  • 内容获得510次评论
  • 获得6,347次收藏
  • 代码片获得9,339次分享
  • 原力等级
    原力等级
    8
    原力分
    5,724
    本月获得
    143
创作历程
  • 106篇
    2025年
  • 8篇
    2024年
  • 42篇
    2023年
  • 73篇
    2022年
  • 36篇
    2021年
  • 37篇
    2020年
  • 330篇
    2019年
  • 45篇
    2018年
成就勋章
TA的专栏
  • PCL学习
    付费
    80篇
  • 立体视觉
    付费
    99篇
  • 三维数据处理
    付费
    59篇
  • 深度学习
    81篇
  • 大模型
    32篇
  • C/C++编程
    167篇
  • 自动驾驶
    37篇
  • 图像处理算法(c++/python opencv)
    92篇
  • SLAM
    34篇
  • 深度学习框架Keras学习与应用
    13篇
  • C# OpenCv
    6篇
  • 其他
    13篇
  • 机器学习
    7篇
  • cuda
    3篇
  • halcon 图像处理
    1篇
  • Qt
    2篇

TA关注的专栏 7

TA关注的收藏夹 0

TA关注的社区 2

TA参与的活动 10

创作活动更多

AI 镜像开发实战征文活动

随着人工智能技术的飞速发展,AI 镜像开发逐渐成为技术领域的热点之一。Stable Diffusion 3.5 FP8 作为强大的文生图模型,为开发者提供了更高效的图像生成解决方案。为了推动 AI 镜像开发技术的交流与创新,我们特此发起本次征文活动,诚邀广大开发者分享在 Stable Diffusion 3.5 FP8 文生图方向的实战经验和创新应用 本次征文活动鼓励开发者围绕 Stable Diffusion 3.5 FP8 文生图方向,分享以下方面的内容: 1. 技术实践与优化 - Stable Diffusion 3.5 FP8 模型架构解析与优化技巧 - 文生图生成效果的提升方法与技巧 - 模型部署与加速策略,例如使用 Hugging Face、Diffusers 等工具 - 针对特定场景(例如二次元、写实风)的模型微调与定制化开发 2. 应用场景探索 - Stable Diffusion 3.5 FP8 在不同领域的应用案例分享,例如游戏设计、广告创意、艺术创作等 - 利用 Stable Diffusion 3.5 FP8 实现图像编辑、图像修复、图像增强等功能的探索 - 结合其他 AI 技术(例如 NLP、语音识别)构建更强大的应用 3. 创新应用与思考 - 基于 Stable Diffusion 3.5 FP8 的创新应用场景设计 - AI 镜像开发的未来发展方向的思考与展望 - 对 AI 镜像开发伦理、安全等问题的探讨

28人参与 去参加
  • 最近
  • 文章
  • 专栏
  • 代码仓
  • 资源
  • 收藏
  • 关注/订阅/互动
更多
  • 最近

  • 文章

  • 专栏

  • 代码仓

  • 资源

  • 收藏

  • 关注/订阅/互动

  • 社区

  • 帖子

  • 问答

  • 课程

  • 视频

搜索 取消

自动驾驶—CARLA仿真(20)manual_control demo

摘要: 该Python脚本是CARLA仿真平台中功能完备的手动驾驶控制客户端,支持完整的车辆操控(油门/转向/灯光等)、多传感器融合(RGB/激光雷达/雷达等)和环境动态调控(天气/地图图层)。核心模块包括: World类管理仿真环境与传感器系统 KeyboardControl实现真实车辆交互逻辑 Ackermann控制器提供高精度转向模型 HUD系统实时显示15+项车辆状态 14种传感器支持多模态数据可视化 录制回放功能保障实验可复现性 适用于自动驾驶算法测试、传感器调试和数据采集,是CARLA官方推荐的
原创
博文更新于 10 小时前 ·
566 阅读 ·
13 点赞 ·
0 评论 ·
4 收藏

自动驾驶—CARLA仿真(19)automatic_control demo

本文介绍了一个基于CARLA的自动驾驶代理演示系统,该系统集成了三种不同级别的自动驾驶代理(Basic/Constant/Behavior),能够自动规划路径并控制车辆行驶。系统包含完整的HUD信息显示、传感器管理和交互控制功能,支持多种驾驶风格和传感器配置。该实现为研究人员和开发者提供了开箱即用的自动驾驶测试平台,可直接用于高级行为策略或感知-决策融合研究,无需从零实现底层路径规划和控制逻辑。
原创
博文更新于 10 小时前 ·
447 阅读 ·
5 点赞 ·
0 评论 ·
7 收藏

自动驾驶—CARLA仿真(18)lidar_to_camera demo

本文介绍了将LiDAR点云投影到RGB图像的同步可视化方法。该方法通过同步采集LiDAR与摄像头数据,建立精确的3D→2D投影管线,实现点云强度信息的可视化。核心内容包括:1)同步数据采集机制,确保帧对齐;2)相机内参矩阵构建;3)完整的LiDAR→相机坐标变换链处理;4)点云可视化增强和有效点过滤。该技术适用于多传感器融合、感知算法调试和数据集生成,是自动驾驶感知系统开发的基础工具,特别适合需要精确2D-3D对应关系的任务。
原创
博文更新于 前天 16:14 ·
638 阅读 ·
15 点赞 ·
0 评论 ·
16 收藏

自动驾驶—CARLA仿真(17)invertedai_traffic demo

摘要: 该脚本实现CARLA与InvertedAI云服务的联合仿真,通过调用InvertedAI的API生成高真实感交通流,并在CARLA中同步渲染智能体行为。系统支持车辆与行人混合交通、交通灯联动及动态路径规划,适用于大规模自动驾驶仿真。 核心功能: 初始化流程:通过large_initialize生成50+车辆,解决CARLA原生生成点不足问题。 双向同步:交通灯状态和行人位置实时同步,确保AI车辆遵守规则并避障。 动态导航:结合CARLA路网补充InvertedAI的局部行为,实现长距离路径规划。 混
原创
博文更新于 前天 16:13 ·
478 阅读 ·
15 点赞 ·
0 评论 ·
23 收藏

自动驾驶—CARLA仿真(16)generate_traffic demo

摘要: CARLA的Traffic Generator脚本支持大规模交通流生成,包含车辆/行人批量生成、Traffic Manager智能配置(跟车距离、混合物理模式等)、同步/异步模式切换等功能。通过蓝图过滤、原子化批量操作(100辆车生成<2秒)和资源安全管理,实现高效稳定的交通仿真。适用于自动驾驶压力测试,支持高密度交通、夜间场景等配置,是工业级仿真测试的核心工具。关键特性包括混合物理优化、行人行为多样性及可复现实验设计。
原创
博文更新于 2025.12.17 ·
799 阅读 ·
16 点赞 ·
0 评论 ·
12 收藏

自动驾驶—CARLA仿真(15)get_component_test demo

本文介绍了通过CARLA仿真引擎获取车辆组件世界坐标的方法。示例代码演示了如何生成Audi TT车辆并查询其右前转向灯的世界位姿,核心是使用get_component_world_transform()接口。该方法适用于高精度传感器安装、V2X通信、碰撞检测等需要部件级定位的场景,是实现车辆数字孪生的关键技术。文章还解析了连接服务器、车辆生成、坐标查询等关键步骤,并列举了常见组件命名和应用案例。
原创
博文更新于 2025.12.17 ·
405 阅读 ·
4 点赞 ·
0 评论 ·
5 收藏

自动驾驶—CARLA仿真(0)报错记录

carla仿真 报错记录
原创
博文更新于 2025.12.16 ·
674 阅读 ·
11 点赞 ·
0 评论 ·
12 收藏

自动驾驶—CARLA仿真(25)synchronous_mode demo

摘要: 该Python脚本演示了CARLA仿真环境中多传感器同步采集与可视化的实现方法。核心模块包括: CarlaSyncMode:通过上下文管理器确保RGB摄像头与语义分割摄像头数据严格同步,自动对齐仿真帧; 简化路径跟踪:车辆通过路点系统自动移动(非物理模拟); 图像融合显示:将语义分割结果以半透明形式叠加到RGB图像上,使用CityScapes调色板着色; 性能监控:实时显示仿真与渲染FPS。适用于多模态感知算法验证和教学演示,提供约30FPS的稳定数据流。 (149字)
原创
博文更新于 2025.12.16 ·
346 阅读 ·
5 点赞 ·
0 评论 ·
8 收藏

自动驾驶—CARLA仿真(24)sensor_synchronization demo

多传感器同步采集底层实现示例 该脚本演示了CARLA同步模式下多传感器数据对齐的原理,提供线程安全的数据收集机制。通过配置固定仿真步长(0.2秒/5FPS)和同步模式,确保所有传感器数据在每帧就绪。采用轻量级回调函数将帧号和传感器名入队,使用queue.Queue保证多传感器并发安全。部署3个摄像头、2个LiDAR(不同点云密度)和2个雷达,验证同步机制的鲁棒性。主循环严格检查每帧是否收齐7个传感器数据,超时则警告。与高级封装方案相比,本脚本更适合底层调试和定制开发,是理解CARLA同步机制的最小可行示例。
原创
博文更新于 2025.12.16 ·
302 阅读 ·
4 点赞 ·
0 评论 ·
9 收藏

carla_manual_control

发布视频 2025.12.16

carla_manual_control_carsim

发布视频 2025.12.16

carla_automatic_control

发布视频 2025.12.16

carla_generate_traffic

发布视频 2025.12.16

自动驾驶—CARLA仿真(13)dynamic_weather demo

摘要:该Python脚本实现了动态天气控制功能,用于自动驾驶系统测试。主要包含三个模块:1) Sun类模拟太阳轨迹变化,通过正弦函数实现高度角动态调整;2) Storm类采用状态机设计模拟风暴生命周期,联动控制云量、降雨、积水等参数;3) Weather类集成天气系统。支持通过speed_factor参数控制天气变化速度,实现物理一致的时间缩放效果。该工具能生成渐进式天气变化,适用于摄像头、LiDAR等传感器在复杂天气条件下的性能测试,特别适合需要长时间环境变化验证的场景。
原创
博文更新于 2025.12.16 ·
660 阅读 ·
16 点赞 ·
0 评论 ·
9 收藏

自动驾驶—CARLA仿真(14)draw_skeleton demo

摘要:该Python脚本演示了CARLA仿真中行人骨骼的可视化功能,通过同步模式获取行人68个骨骼节点的3D坐标,并将其投影到RGB图像上。核心功能包括:1)同步处理传感器数据;2)3D到2D坐标转换;3)动态绘制骨架连线和关键点;4)实现摄像机环绕行人运动。适用于人体姿态估计、动作捕捉等研究,支持自定义骨骼拓扑和纯客户端渲染,是构建精确关节标注系统的理想基础。
原创
博文更新于 2025.12.16 ·
859 阅读 ·
20 点赞 ·
0 评论 ·
15 收藏

carla_dynamic_weather

发布视频 2025.12.16

carla_draw_skeleton

发布视频 2025.12.16

自动驾驶—CARLA仿真(12)client_bounding_boxes demo

本文介绍了一个基于CARLA的客户端3D边界框可视化示例,展示了如何在纯Python环境下实现车辆3D边界框的实时计算与绘制。该方案不依赖服务端,仅需RGB摄像头和车辆列表数据,通过完整的3D→2D投影管线,将车辆bounding_box转换为2D像素坐标。核心包括坐标变换链(局部→世界→相机→像素)、相机内参校准以及深度过滤等关键技术,是学习自动驾驶3D目标检测基础的重要案例。
原创
博文更新于 2025.12.16 ·
647 阅读 ·
17 点赞 ·
0 评论 ·
10 收藏

自动驾驶—CARLA仿真(11)bounding_boxes demo

本文介绍了一个基于CARLA仿真环境的2D/3D边界框生成与可视化系统。该系统通过RGB摄像头和实例分割摄像头获取场景数据,实时计算并绘制2D/3D边界框,同时将边界框、速度、灯光状态等结构化数据保存为JSON格式。核心功能包括:数据结构定义、坐标变换与投影、实例分割解码、边界框生成、可视化系统以及结构化数据导出。该系统支持28类语义标签,可生成精确的3D检测参数,适用于自动驾驶感知算法训练、数据集生成和传感器融合验证,是构建自动驾驶感知pipeline的关键工具。
原创
博文更新于 2025.12.15 ·
896 阅读 ·
17 点赞 ·
0 评论 ·
7 收藏

carla_bounding+boxes

发布视频 2025.12.15
加载更多