数据采集系统(数据调查)学习总结(五)
开始我们说分表,分库能有效降低数据库的存储,访问压力,这个没错,但这只能是治标不治本,什么是本,本就是减少对数据库的访问,还不能降低用户量,也才是最终目标,那如何达到这个目标那,我们分析下权限列表是不是每次都要访问数据库,于是我们用存入application中的方法来应对的,那我们每张调查无数人用,是不是也没有必要每次都查询数据库吧,我们只需在用户有了存入操作后才刷新调查不就行了,这样就有效的减少
微服务及云计算学习总结
数据采集系统(数据调查)学习总结
时间笔记
linux学习笔记
算法总结
项目及框架总结
Hadoop学习总结
微服务及云计算学习总结
常用工具类
Android学习总结 TA关注的专栏 1
TA关注的收藏夹 0
TA关注的社区 0
TA参与的活动 0

AI 镜像开发实战征文活动
随着人工智能技术的飞速发展,AI 镜像开发逐渐成为技术领域的热点之一。Stable Diffusion 3.5 FP8 作为强大的文生图模型,为开发者提供了更高效的图像生成解决方案。为了推动 AI 镜像开发技术的交流与创新,我们特此发起本次征文活动,诚邀广大开发者分享在 Stable Diffusion 3.5 FP8 文生图方向的实战经验和创新应用 本次征文活动鼓励开发者围绕 Stable Diffusion 3.5 FP8 文生图方向,分享以下方面的内容: 1. 技术实践与优化 - Stable Diffusion 3.5 FP8 模型架构解析与优化技巧 - 文生图生成效果的提升方法与技巧 - 模型部署与加速策略,例如使用 Hugging Face、Diffusers 等工具 - 针对特定场景(例如二次元、写实风)的模型微调与定制化开发 2. 应用场景探索 - Stable Diffusion 3.5 FP8 在不同领域的应用案例分享,例如游戏设计、广告创意、艺术创作等 - 利用 Stable Diffusion 3.5 FP8 实现图像编辑、图像修复、图像增强等功能的探索 - 结合其他 AI 技术(例如 NLP、语音识别)构建更强大的应用 3. 创新应用与思考 - 基于 Stable Diffusion 3.5 FP8 的创新应用场景设计 - AI 镜像开发的未来发展方向的思考与展望 - 对 AI 镜像开发伦理、安全等问题的探讨


最近
文章
专栏
代码仓
资源
收藏
关注/订阅/互动
社区
帖子
问答
课程
视频
