若年封尘
码龄7年
求更新 关注
提问 私信
  • 博客:1,376,541
    社区:401
    问答:86
    动态:49
    1,377,077
    总访问量
  • 310
    原创
  • 5,223
    排名
  • 21,990
    粉丝
  • 96
    关注
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:北京市
加入CSDN时间: 2018-09-10
博客简介:

zag666的博客

查看详细资料
个人成就
  • 优质创作者: 编程框架技术领域
  • 领域专家: 前端开发技术领域
  • 获得3,415次点赞
  • 内容获得873次评论
  • 获得9,603次收藏
  • 代码片获得8,486次分享
  • 原力等级
    原力等级
    8
    原力分
    6,244
    本月获得
    14
创作历程
  • 8篇
    2025年
  • 5篇
    2024年
  • 48篇
    2023年
  • 56篇
    2022年
  • 41篇
    2021年
  • 81篇
    2020年
  • 87篇
    2019年
成就勋章
TA的专栏
  • 高频大厂前端面试题
    付费
    16篇
  • AI
    5篇
  • 深度学习
    54篇
  • 跨模态检索
    23篇
  • BUG解决
    4篇
  • 云原生
    3篇
  • 刷题
    10篇
  • 前端
    134篇
  • HTML
    17篇
  • CSS
    34篇
  • JavaScript
    46篇
  • Vue
    20篇
  • React
    5篇
  • axios
    1篇
  • AJAX
    1篇
  • Promise
    4篇
  • Webpack
    4篇
  • ECharts
    3篇
  • python
    29篇
  • Golang
    1篇
  • JAVA
    2篇
  • JavaWeb
    5篇
  • Spring
    15篇
  • C、C++
    3篇
  • Linux
    3篇
  • 人工智能
    6篇
  • 数据结构
    11篇
  • 计算机网络
    4篇
  • 操作系统
    3篇
  • 计算机组成原理
    1篇
  • 软件工程
    2篇
  • 需求工程
    5篇
  • 正则表达式
    1篇
  • 资源分享
    4篇
  • 算法
    3篇
  • 字体图标
    2篇
  • IDE
    7篇
  • 其它
    2篇

TA关注的专栏 6

TA关注的收藏夹 0

TA关注的社区 9

TA参与的活动 23

TA的推广
兴趣领域 设置
  • 前端
    javascriptcssvue.js前端框架
  • 后端
    node.js
  • 学习和成长
    面试
创作活动更多

AI 镜像开发实战征文活动

随着人工智能技术的飞速发展,AI 镜像开发逐渐成为技术领域的热点之一。Stable Diffusion 3.5 FP8 作为强大的文生图模型,为开发者提供了更高效的图像生成解决方案。为了推动 AI 镜像开发技术的交流与创新,我们特此发起本次征文活动,诚邀广大开发者分享在 Stable Diffusion 3.5 FP8 文生图方向的实战经验和创新应用 本次征文活动鼓励开发者围绕 Stable Diffusion 3.5 FP8 文生图方向,分享以下方面的内容: 1. 技术实践与优化 - Stable Diffusion 3.5 FP8 模型架构解析与优化技巧 - 文生图生成效果的提升方法与技巧 - 模型部署与加速策略,例如使用 Hugging Face、Diffusers 等工具 - 针对特定场景(例如二次元、写实风)的模型微调与定制化开发 2. 应用场景探索 - Stable Diffusion 3.5 FP8 在不同领域的应用案例分享,例如游戏设计、广告创意、艺术创作等 - 利用 Stable Diffusion 3.5 FP8 实现图像编辑、图像修复、图像增强等功能的探索 - 结合其他 AI 技术(例如 NLP、语音识别)构建更强大的应用 3. 创新应用与思考 - 基于 Stable Diffusion 3.5 FP8 的创新应用场景设计 - AI 镜像开发的未来发展方向的思考与展望 - 对 AI 镜像开发伦理、安全等问题的探讨

28人参与 去参加
  • 最近
  • 文章
  • 专栏
  • 资源
  • 代码仓
  • 关注/订阅/互动
  • 社区
  • 最近

  • 文章

  • 专栏

  • 资源

  • 代码仓

  • 关注/订阅/互动

  • 社区

搜索 取消

前端新人手册:入职第一天的环境配置秘籍

在前端开发的世界里,一个高效、稳定的开发环境是高效工作的基石。它不仅能够提升你的工作效率,还能帮助你更快地适应团队的工作节奏。本文将详细介绍前端开发需要具备的环境及工具。
原创
博文更新于 2025.12.09 ·
1190 阅读 ·
10 点赞 ·
0 评论 ·
26 收藏

告别混乱!Spring Boot + MyBatis 标准化开发:结构解析 + 接口实战 + Checklist

项目结构是代码的 “骨架”,清晰的目录划分能让每个文件 “各归其位”。
原创
博文更新于 2025.11.07 ·
909 阅读 ·
19 点赞 ·
0 评论 ·
19 收藏

吃透 Vue 样式穿透:从 scoped 原理到组件库样式修改实战

在 Vue 项目开发中,我们经常会引入 Element Plus、Vant、Ant Design等成熟组件库来提升开发效率。但即便组件库提供了基础样式配置,实际业务中仍需根据设计需求调整组件内部细节样式——这时候,「」就成了必须掌握的技能。而要理解样式穿透的必要性,首先得搞懂 Vue 中scoped属性的工作原理。
原创
博文更新于 2025.09.12 ·
902 阅读 ·
12 点赞 ·
1 评论 ·
26 收藏

下一场范式革命:Transformer架构≠最终解法

如今,Transformer 仍是舞台中央的王者,但 “唯一解” 的神话正在悄然瓦解。一场关乎 AI 未来成本、速度与落地广度的架构之战,已在无声中打响。谁能在性能与效率的天平上找到终极平衡,或许就将定义下一个十年的技术航向。
原创
博文更新于 2025.07.19 ·
1412 阅读 ·
19 点赞 ·
0 评论 ·
12 收藏

DeepSeek-R1论文解读,附15篇浙大、清华、北大、厦大宝典最全合集免费下载,建议收藏!

如表5所示,通过直接蒸馏DeepSeek-R1的输出,高效的小模型DeepSeek-R1-7B(即DeepSeek-R1-Distill-Qwen-7B,下文采用类似简称)即可全面超越GPT-4o-0513等非推理优化模型。值得注意的是,若对蒸馏模型施加强化学习(RL),性能可获进一步跃升。无需构建和维护高质量的 SFT 数据集,而是直接让模型在强化学习的环境中进行自我探索,通过与环境的互动,自主的去发现和学习解决复杂问题的能力,就好比一个初学者在没有老师的指导下通过不断的尝试和错误,来掌握一门新的技能。
原创
博文更新于 2025.03.20 ·
1120 阅读 ·
12 点赞 ·
0 评论 ·
11 收藏

「手把手教学」Vue3 defineEmits:从父子通信到组件封装的实战全流程

在 Vue 3 中,defineEmits 是一个用于定义组件触发自定义事件的宏。它主要用于在单文件组件(SFC)的语法糖中声明组件可以通过 emit 触发的自定义事件,帮助我们更好地管理组件间的通信。替代了 Vue 2 的 emits 选项,更符合 Composition API 风格。
原创
博文更新于 2025.02.15 ·
1125 阅读 ·
5 点赞 ·
0 评论 ·
10 收藏

Chrome开发者工具实用指南:调试效率翻倍不是梦!

Chrome 开发者工具是谷歌浏览器 Chrome 内置的一套 Web 开发和调试工具,可用于对网站进行迭代、调试和分析,帮助开发人员大幅提升工作效率。
原创
博文更新于 2025.02.10 ·
1358 阅读 ·
10 点赞 ·
0 评论 ·
15 收藏

OpenAI的真正对手?DeepSeek-R1如何用强化学习重构LLM能力边界——DeepSeek-R1论文精读

2025年1月20日,DeepSeek-R1 发布,并同步**开源**模型权重。截至目前,DeepSeek 发布的 iOS 应用甚至超越了 ChatGPT 的官方应用,直接登顶 AppStore。DeepSeek-R1 一经发布,各种资讯已经铺天盖地,那就让我们一起来精读一下论文,看看引爆AI圈的 DeepSeek-R1 是如何炼成的?
原创
博文更新于 2025.01.27 ·
3337 阅读 ·
27 点赞 ·
2 评论 ·
43 收藏

TS报错解决:不能将类型“string | null”分配给类型“string | undefined”

在Vue3项目开发中遇到一个基础的TS报错,在此稍作整理复习:不能将类型“string | null”分配给类型“string | undefined”。finalImage 的类型是 string | null,即它可能是字符串,也可能是 null。在模板中使用 :href=“finalImage” 时,TypeScript 会认为 finalImage 可能为 null,而 href 属性不接受 null 值。
原创
博文更新于 2025.01.22 ·
1176 阅读 ·
12 点赞 ·
0 评论 ·
12 收藏

2024年AI发展全景:塑造未来的技术趋势

现如今,AI正以前所未有的影响力重塑全球产业和社会发展的格局。它不仅仅是科技领域的一次革命,更被广泛认为是继电力革命之后的又一次重大飞跃,有人甚至将其比作“第二次地球文明革命”。AI的浪潮正席卷每一个角落,深刻地改变我们的工作和生活方式。它不仅是一种技术进步,更是推动整个人类文明向前发展的新动力。
原创
博文更新于 2024.12.25 ·
5223 阅读 ·
33 点赞 ·
0 评论 ·
15 收藏

LLM时代下Embedding模型如何重塑检索、增强生成

Embedding模型作为RAG中检索召回的重要一环,扮演着极其关键的角色,直接影响到信息检索的效果和生成文本的质量。更加准确的Embedding模型在抑制模型幻觉、提升封闭领域回答能力等方面都能发挥优势。
原创
博文更新于 2024.11.11 ·
1976 阅读 ·
25 点赞 ·
0 评论 ·
28 收藏

如何成为开源代码库Dify的contributor:解决issue并提交PR

本文以一个新人视角来完成一次issue的提出、解决以及PR的提交,成为Dify的共建者,为开源社区共享自己的一份力量!开源社区的持续迭代离不开使用者和开发者的长期反馈和支持,愿大家在开源的道路上步履不停~
原创
博文更新于 2024.10.31 ·
1469 阅读 ·
21 点赞 ·
0 评论 ·
29 收藏

EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks

发布资源 2021.03.18 ·
pdf

跨模态检索2023年最新顶会论文汇总

我们的实验验证了我们的检索增强对比性(RECO)训练在几个具有挑战性的细粒度任务上大幅提高了CLIP的性能:例如,在斯坦福Cars上+10.9,在CUB-2011上+10.2,在最近的OVEN基准上+7.3。在本文中,我们提出了一种新的图像文本检索技术,被称为鲁棒的视觉语义嵌入(RVSE),它由新的基于图像和文本的增强技术组成,称为图像语义保护增强(SPAugI)和文本增强(SPAugT)。在全局和局部跨模态混合相似性的基础上,所提出的方法实现了最先进的检索性能,与最近的代表性方法相比,推理时间极短。
原创
博文更新于 2024.03.08 ·
5085 阅读 ·
7 点赞 ·
5 评论 ·
68 收藏

跨模态检索最新高质量综述《Image-text Retrieval: A Survey on Recent Research and Development》

本文从四个方面对ITR方法进行了全面和最新的调查。通过将ITR系统剖析为两个过程:特征提取和特征对齐,我们从这两个角度总结了ITR方法的最新进展。在此基础上,对ITR系统的效率研究作为第三个角度进行了介绍。为了与时俱进,我们还从第四个角度对跨模态预训练的ITR方法进行了开创性的概述。最后,我们概述了ITR的通用基准数据集和评估指标,并对有代表性的ITR方法进行了准确性比较。本文最后还讨论了一些关键但研究不多的问题。
原创
博文更新于 2024.03.03 ·
12984 阅读 ·
30 点赞 ·
3 评论 ·
114 收藏

跨模态检索论文阅读:Cross-Modal Implicit Relation Reasoning and Aligning for Text-to-Image Person Retrieval

文本到图像的人物检索仍然是一项艰巨的任务,原因在于身份内部的显著差异以及视觉和语言之间的模式异质性。前一个挑战源于这样一个事实,即身份的视觉外观因姿势、视角、照明和其他因素而不同,而文本描述则因任意描述顺序和文本模糊性而不同。后一个挑战是跨模态任务中的主要问题,是由视觉和语言之间固有的表征差异造成的。为了应对上述两个挑战,文本到图像的人物检索的核心研究问题是探索更好的方法来提取具有区分性的特征表征,并设计更好的跨模态匹配方法来将图像和文本统一到一个联合嵌入空间中。
原创
博文更新于 2024.03.03 ·
2998 阅读 ·
27 点赞 ·
5 评论 ·
44 收藏

跨模态检索论文阅读:Learnable Pillar-based Re-ranking for Image-Text Retrieval(LeadRR)基于可学习支柱的图像文本检索重排

图像-文本检索旨在弥合模态鸿沟,根据语义相似性检索跨模态内容。之前的工作通常侧重于成对关系(即一个数据样本是否与另一个样本匹配),但忽略了高阶邻接关系(即多个数据样本之间的匹配结构)。重新排序是一种流行的后处理方法,它揭示了在单模态检索任务中捕捉邻接关系的优越性。然而,将现有的重新排序算法直接扩展到图像文本检索中效果并不理想。本文从泛化性、灵活性、稀疏性和不对称性四个角度分析了原因,并提出了一种新颖的基于可学习支柱的重新排序范式。
原创
博文更新于 2024.01.07 ·
2523 阅读 ·
33 点赞 ·
4 评论 ·
31 收藏

跨模态检索论文阅读:Plug-and-Play Regulators for Image-Text Matching用于图像文本匹配的即插即用调节器

在本文中,引入了[32]-[35]定义的调节器机制,其中可以通过自适应地优化具有合理的后向反馈的前向学习过程来改进网络,并验证了精心设计的监管操作可以在不需要额外数据和复杂结构的情况下,在获得准确的相互作用和进行跨模式的最佳聚合方面发挥巨大作用。更具体地说,我们提出了一种递归相关性调节器(RCR)和递归聚合调节器(RAR)来逐步促进图像-文本匹配过程,如图1所示。RCR学习每个特定单词/区域的自适应注意因子,以迭代地细化跨模式注意单元,为不同图像-文本对中语义不同的单词/区域获得更合理的注意分布。
原创
博文更新于 2023.12.28 ·
2283 阅读 ·
22 点赞 ·
4 评论 ·
21 收藏

A Differentiable Semantic Metric Approximation in Probabilistic Embedding for Cross-Modal Retrieval

跨模态检索旨在通过学习一个公共的表示空间来建立多个模态之间的对应关系。通常,图像可以在语义上匹配多个文本,反之亦然,这大大增加了这项任务的难度。为了解决这个问题,提出了概率嵌入来量化多对多关系。然而现有的数据集(例如MS-COCO)和度量(例如。,recall@k)由于非详尽的注释,不能完全表示这些多样性对应关系。基于这一观察结果,我们利用CIDEr计算的语义相关性来寻找潜在的对应关系。然后,我们提出了一个有效的度量标准,称为平均语义精度(ASP),它可以衡量检索集语义相关性的排序精度。
原创
博文更新于 2023.12.08 ·
1336 阅读 ·
23 点赞 ·
3 评论 ·
22 收藏

跨模态检索Retrieve Fast, Rerank Smart:Cooperative and Joint Approaches for Improved Cross-Modal Retrieval

目前最先进的跨模态检索方法是基于 Transformer 的架构,通过交叉注意力机制对图像中的所有文字和对象进行关注,从而联合处理文本和视觉输入。这些模型虽然提供了无与伦比的检索性能,但也存在以下问题1)通常是从头开始预训练,因此可扩展性较差,2)存在巨大的检索延迟和效率低下问题,这使它们在现实应用中不切实际。为了解决这些关键差距,实现改进和高效的跨模态检索,我们提出了一种新颖的微调框架,可将任何预训练的文本-图像多模态模型转化为高效的检索模型。
原创
博文更新于 2023.12.03 ·
1717 阅读 ·
23 点赞 ·
3 评论 ·
23 收藏
加载更多