程序员小八
码龄4年
求更新 关注
提问 私信
  • 博客:1,512,316
    社区:10
    1,512,326
    总访问量
  • 889
    原创
  • 6,950
    粉丝
  • 14
    关注
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:湖南省
加入CSDN时间: 2021-12-20
博客简介:

z099164的博客

查看详细资料
个人成就
  • 获得10,180次点赞
  • 内容获得175次评论
  • 获得10,899次收藏
  • 代码片获得14,571次分享
  • 博客总排名1,956,875名
创作历程
  • 371篇
    2024年
  • 361篇
    2023年
  • 144篇
    2022年
  • 20篇
    2021年
成就勋章
TA的专栏
  • 网络安全
    5篇
  • python
    2篇

TA关注的专栏 0

TA关注的收藏夹 0

TA关注的社区 0

TA参与的活动 0

兴趣领域 设置
  • 编程语言
    python
创作活动更多

AI 镜像开发实战征文活动

随着人工智能技术的飞速发展,AI 镜像开发逐渐成为技术领域的热点之一。Stable Diffusion 3.5 FP8 作为强大的文生图模型,为开发者提供了更高效的图像生成解决方案。为了推动 AI 镜像开发技术的交流与创新,我们特此发起本次征文活动,诚邀广大开发者分享在 Stable Diffusion 3.5 FP8 文生图方向的实战经验和创新应用 本次征文活动鼓励开发者围绕 Stable Diffusion 3.5 FP8 文生图方向,分享以下方面的内容: 1. 技术实践与优化 - Stable Diffusion 3.5 FP8 模型架构解析与优化技巧 - 文生图生成效果的提升方法与技巧 - 模型部署与加速策略,例如使用 Hugging Face、Diffusers 等工具 - 针对特定场景(例如二次元、写实风)的模型微调与定制化开发 2. 应用场景探索 - Stable Diffusion 3.5 FP8 在不同领域的应用案例分享,例如游戏设计、广告创意、艺术创作等 - 利用 Stable Diffusion 3.5 FP8 实现图像编辑、图像修复、图像增强等功能的探索 - 结合其他 AI 技术(例如 NLP、语音识别)构建更强大的应用 3. 创新应用与思考 - 基于 Stable Diffusion 3.5 FP8 的创新应用场景设计 - AI 镜像开发的未来发展方向的思考与展望 - 对 AI 镜像开发伦理、安全等问题的探讨

28人参与 去参加
  • 最近
  • 文章
  • 专栏
  • 代码仓
  • 资源
  • 收藏
  • 关注/订阅/互动
更多
  • 最近

  • 文章

  • 专栏

  • 代码仓

  • 资源

  • 收藏

  • 关注/订阅/互动

  • 社区

  • 帖子

  • 问答

  • 课程

  • 视频

搜索 取消

20.6K+ Star!一个开源的LLM(大型语言模型)应用开发平台

Dify是一个开源的LLM(大型语言模型)应用开发平台,它通过直观的界面结合了AI工作流程、RAG(检索-分析-生成)管道、代理功能、模型管理、可观察性特性等,使用户能够快速从原型设计转向产品生产。
原创
博文更新于 2024.08.09 ·
1418 阅读 ·
17 点赞 ·
0 评论 ·
16 收藏

大模型的几个关键认识——成本、网络效应、用户、竞争、基准、产品

随着大模型从技术竞赛阶段逐渐过渡到应用普及阶段,对于供给侧而言,抢占用户和规模化推广成为未来在大模型市场中占据一席之地的必经之路。而对于需求侧来说,在各家基础大模型能力和体验差异不大的前提下,投入产出比与大模型推广息息相关。在这一背景下,在GPT-4o的发布会后,国内基础大模型厂商纷纷开始降价,第一轮价格战拉开帷幕。这种现象类似于云计算领域的竞争,亚马逊云自诞生以来已降价超过100次,不断降低用户使用云计算的成本,这也是云计算渗透率不断提升的关键。
原创
博文更新于 2024.08.07 ·
1369 阅读 ·
7 点赞 ·
0 评论 ·
18 收藏

2024国内超火的 8 款 AI 大模型,你用过哪几个?

大家好,最近好多朋友在问我,国内是否有好用的大模型,今天我就整理好 8 款大模型,大家可以多尝试,一定会有不一样的感觉。01HOTSPOTKimiKimi 是由月之暗面科技有限公司开发的人工智能助手。它擅长中英文对话,能够提供安全、有帮助、准确的回答。同时能够阅读和理解用户上传的文件,访问互联网,并且结合搜索结果来回答问题。也能够处理多种文件格式,包括但不限于TXT、PDF、Word文档、PPT幻灯片和Excel电子表格。02HOTSPOT智普清言。
原创
博文更新于 2024.08.07 ·
8176 阅读 ·
17 点赞 ·
0 评论 ·
23 收藏

大语言模型作为功能近似器

论文探讨了将大语言模型视为功能近似器的概念,提出了一个分析框架来评估这些模型在不同任务上的表现,强调了其通用性以及在交互式应用中的功能诱导过程,并讨论了这一视角下模型评估的相关问题。
原创
博文更新于 2024.08.06 ·
950 阅读 ·
27 点赞 ·
0 评论 ·
25 收藏

本地部署大模型!一篇教会你,奶奶看了都会的教程!

综上所述,通过huggingface或者modelscope快速了解最新的大模型,并通过公式计算硬件要求,最后可通过ollama快速部署大模型。
原创
博文更新于 2024.08.06 ·
2567 阅读 ·
20 点赞 ·
0 评论 ·
9 收藏

书单 | 6本AI领域名家名作,大模型时代,趁风而起!

大模型时代,想抓住风口吗?本期书单就来分享,给大家把大模型时代那些事儿讲清楚!放心,入门的同学也可以从最基础的学起~~快来看看有哪些书吧……▊《彭勇,彭旋,郑志军,茹炳晟 著读懂ChatGPT的核心技术、GPT的进化史和创新点详述多模态大模型的核心技术和应用场景让中小公司可以从0到1部署多模态大模型,打开通往通用人工智能的大门本书详细介绍了大语言模型和多模态大模型的发展历史、技术原理和亮点、主要的开源框架、配套工具、部署细则和实战案例。
原创
博文更新于 2024.08.05 ·
1681 阅读 ·
48 点赞 ·
0 评论 ·
14 收藏

深度讲解AI大模型原理,它到底是如何工作的

假如我们有一个AI大模型,比如GPT2。此时我们向模型输入,“[cls]、今、天、天、气、真”,一共6个字(单词)。我们希望模型基于这6个字,生成第7个字。此时,模型会输出第7个字,是“的”字。这里要需要特殊说明:最开始的[cls],是一个特殊标记;它用于标记句子的起始位置;模型需要基于一些特殊的标记来进行计算。现在不太理解也没关系,可以暂时忽略这个cls标记。接着,我们要生成第8个字。对于第8个字的生成,就会依赖初始输入的6个字,与刚刚生成的第7个“的”字。
原创
博文更新于 2024.08.02 ·
2358 阅读 ·
18 点赞 ·
0 评论 ·
25 收藏

字节内部热捧“7种大模型微调的方法笔记”,太完整了

当然还有很多没有开源的,比如 OpenAI 的 ChatGPT/GPT-4,百度的文心一言,谷歌的 PLAM-540B,华为的盘古大模型,阿里的通义千问,等等。与传统的微调范式不同,前缀调整提出了一种新的策略,即在预训练的语言模型(LM)输入序列前添加可训练、任务特定的前缀,从而实现针对不同任务的微调。这些大公司或者研究机构,都是有足够资源的来开发大模型,但是对于一般的小公司或者个人来说,要想开发自己的大模型几乎不可能,要知道像 ChatGPT 这样的大模型,一次训练的成本就在上千亿美元。
原创
博文更新于 2024.08.01 ·
894 阅读 ·
5 点赞 ·
0 评论 ·
7 收藏

当下大模型的趋势以及如何让学习大模型?

作为一名热心肠的互联网老兵,我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。模型压缩和优化:随着模型规模的增大,模型的存储和计算成本也相应增加。:大模型的研究和开发越来越多地依赖于开源社区的合作,如GitHub上的开源项目、研究论文的开放获取等,这加速了技术的进步和知识的共享。:随着模型能力的增强,如何确保AI系统的行为与人类的意图和价值观相一致,以及如何防范潜在的安全风险,成为重要的研究方向。
原创
博文更新于 2024.07.30 ·
504 阅读 ·
4 点赞 ·
0 评论 ·
10 收藏

小白也能微调大模型:LLaMA-Factory使用心得

1. 准备好硬件(GPU)、数据;通过各方面的资讯选中你想要微调的基座模型2. 准备好代码:输入数据 + 模型 -> 在GPU上反复训练3. 训练结束以后,得到训练过程中的checkpoint + 一些log信息4. 根据log信息选一些比较有希望的checkpoint在自己的测试集上推理,获得相应的结果5. 分析结果,获得下一轮实验(数据、训练方案的迭代)思路而LLaMA-Factory就是一个很好的负责step。
原创
博文更新于 2024.07.30 ·
1831 阅读 ·
28 点赞 ·
0 评论 ·
15 收藏

Langchain中使用Ollama提供的Qwen大模型进行Function Call实现天气查询、网络搜索

>><<
原创
博文更新于 2024.07.29 ·
2031 阅读 ·
3 点赞 ·
0 评论 ·
11 收藏

直观易用的大模型开发框架LangChain,你会了没?

调用Embedding、Completion、Chat Model总结 目前LangChain框架在集团大模型接入手册中的学习案例有限,为了让大家可以快速系统地了解LangChain大模型框架并开发,产出此文章。本文章包含了LangChain的简介、基本组件和可跑的代码案例(包含Embedding、Completion、Chat三种功能模型声明)。
原创
博文更新于 2024.07.29 ·
789 阅读 ·
3 点赞 ·
0 评论 ·
8 收藏

【超丝滑的LangChain教程】快速入门Conversation Retrieval Chain

我们将从一个简单的 LLM 链开始,它只依赖于提示模板中的信息来响应。接下来,我们将构建一个检索链,该链从单独的数据库获取数据并将其传递到提示模板中。整个的流程大概是:检索文档找到关联的文档(一条或者多条),基于文档和历史对话进行问答,得到问题的答案。现在我们有了这个新的检索器,我们可以创建一个新的链来继续对话,并牢记这些检索到的文档。最后,我们将构建一个代理,利用 LLM 来确定它是否需要获取数据来回答问题。主要是网页数据的加载、嵌入模型的初始化、向量数据库的初始化等,具体代码如下。
原创
博文更新于 2024.07.29 ·
286 阅读 ·
3 点赞 ·
0 评论 ·
3 收藏

开发RAG应用,你必须知道的7个Embedding模型

在自然语言处理(NLP)领域,Embedding模型是将文本数据转化为数值向量的核心技术,从而让计算机能够便捷地衡量文本间的语义关联,这种表示法已成为多种基础NLP任务的核心,如文本相似度判定、语义搜索、信息检索、文本重新排序、聚类以及作为下游任务的特征输入。
原创
博文更新于 2024.07.27 ·
3047 阅读 ·
25 点赞 ·
0 评论 ·
33 收藏

程序员转行大模型,真的是新时代的选择吗?

在2024年,程序员仍然是IT行业中备受追捧的职业。但随着技术的不断发展,就业市场对于程序员的技能要求也在不断变化。传统的编程技能虽然重要,但面对日新月异的人工智能技术,许多程序员开始思考如何转型,以适应市场的变化。许多程序员选择转行当下火热的大模型,这真的是新时代的正确选择么?答案是值得肯定的。
原创
博文更新于 2024.07.27 ·
467 阅读 ·
6 点赞 ·
0 评论 ·
6 收藏

大模型:2024开源项目汇总

当大模型成本逐渐降低,可靠性提升后,这意味着越来越多的业务应用将会与 LLM 结合,为了让这种结合更加顺畅,需要有与现有来支撑 LLM 应用开发的快速开发应用构建工具: 插件中心, 流程编排, Prompt工程, RAG, Agent模型开发工具: 训练数据管理, 模型调优, 模型评测, 模型部署对比说明可参考:**2.1 Dify:**开源的 LLM 应用开发平台。其直观的界面结合了 AI 工作流、RAG 、Agent、模型管理、可观测性功能等,让您可以快速从原型到生产。
原创
博文更新于 2024.07.26 ·
3010 阅读 ·
7 点赞 ·
0 评论 ·
22 收藏

一文入门最热的LLM应用开发框架LangChain

假如我们想要用 openai api 对一个段文本进行总结,我们通常的做法就是直接发给 api 让他总结。但是如果文本超过了 api 最大的 token 限制就会报错。这时,我们一般会进行对文章进行分段,比如通过 tiktoken 计算并分割,然后将各段发送给 api 进行总结,最后将各段的总结再进行一个全部的总结。LangChain 很好的帮我们处理了这个过程,使得我们编写代码变的非常简单。# 导入os,设置环境变量。导入文本加载器、总结链、文本分割器及OpenAI模型import os。
原创
博文更新于 2024.07.26 ·
926 阅读 ·
26 点赞 ·
0 评论 ·
12 收藏

浅谈生成式 AI 的发展方向

生成式AI的未来发展方向是一个复杂而多元的话题,涵盖了技术、伦理和实用性的各个层面。目前看来,对话系统(Chat)与自主代理(Agent)都是发展的重要方向,并且二者的发展并非彼此独立,而是相辅相成。生成式AI在对话系统和自主代理两个领域已取得显著进展,不仅推动了人工智能的边界,也改变了多个行业的运作方式。下面详细介绍这两个领域的发展现状、主要技术和应用场景。
原创
博文更新于 2024.07.25 ·
1206 阅读 ·
7 点赞 ·
0 评论 ·
15 收藏

一篇解读大语言模型-Transformer,小白轻松入门!

大语言模型-Transformer是一种基于自注意力机制(self-attention)的深度学习模型,在处理序列数据(如自然语言)时展现出卓越的性能。Transformer模型由Vaswani等人在2017年提出,旨在解决传统的循环神经网络(RNN)和长短时记忆网络(LSTM)在处理长距离依赖问题时存在的困难。Transformer的核心组件:1. 注意力机制(Attention Mechanism):通过为输入序列中的每个元素分配权重,模型可以更好地捕捉到重要信息。
原创
博文更新于 2024.07.25 ·
1798 阅读 ·
24 点赞 ·
0 评论 ·
9 收藏

上海交通大学推出 更适合企业落地大模型的《动手学大模型》LLM 实战课,课件+实战教程(分享)

来了来了!上海交通大学的大模型超超超级牛掰的大模型编程实战课公开了,课件+教程,本套实战教程旨在提供大模型相关的入门编程参考。通过简单实践,帮助同学快速入门大模型,更好地开展课程设计或学术研究。上海交大大模型实验室整了一份针对入门阶段的大模型教程,已经看完了非常不错,想要学大模型的程序员,产品经理都推荐~
原创
博文更新于 2024.07.24 ·
1941 阅读 ·
64 点赞 ·
0 评论 ·
21 收藏
加载更多