个人成就
-
获得365次点赞
-
内容获得86次评论
-
获得978次收藏
-
代码片获得428次分享
-
博客总排名1,554,574名
TA的专栏
TA关注的专栏 0
TA关注的收藏夹 0
TA关注的社区 0
TA参与的活动 0
创作活动更多

AI 镜像开发实战征文活动
随着人工智能技术的飞速发展,AI 镜像开发逐渐成为技术领域的热点之一。Stable Diffusion 3.5 FP8 作为强大的文生图模型,为开发者提供了更高效的图像生成解决方案。为了推动 AI 镜像开发技术的交流与创新,我们特此发起本次征文活动,诚邀广大开发者分享在 Stable Diffusion 3.5 FP8 文生图方向的实战经验和创新应用 本次征文活动鼓励开发者围绕 Stable Diffusion 3.5 FP8 文生图方向,分享以下方面的内容: 1. 技术实践与优化 - Stable Diffusion 3.5 FP8 模型架构解析与优化技巧 - 文生图生成效果的提升方法与技巧 - 模型部署与加速策略,例如使用 Hugging Face、Diffusers 等工具 - 针对特定场景(例如二次元、写实风)的模型微调与定制化开发 2. 应用场景探索 - Stable Diffusion 3.5 FP8 在不同领域的应用案例分享,例如游戏设计、广告创意、艺术创作等 - 利用 Stable Diffusion 3.5 FP8 实现图像编辑、图像修复、图像增强等功能的探索 - 结合其他 AI 技术(例如 NLP、语音识别)构建更强大的应用 3. 创新应用与思考 - 基于 Stable Diffusion 3.5 FP8 的创新应用场景设计 - AI 镜像开发的未来发展方向的思考与展望 - 对 AI 镜像开发伦理、安全等问题的探讨
28人参与 去参加
- 最近
- 文章
- 专栏
- 代码仓
- 资源
- 收藏
- 关注/订阅/互动
更多


最近
文章
专栏
代码仓
资源
收藏
关注/订阅/互动
社区
帖子
问答
课程
视频

搜索 取消
1.综述:隐马尔可夫模型是马尔可夫模型的进一步发展。马尔可夫模型是马尔可夫过程的模型化, 可以用图1 (a) 的框图形象表示。它把一个总随机过程看成一系列状态的不断转移。图1(b)是隐马尔可夫模型。1.1几个需要理解的概念a.马尔可夫性:如果一个过程的”将来”仅依赖“现在”,而不依赖“过去”,此过程具有马尔可夫性,称此过程是马尔可夫过程。 b,马尔科夫链:时间和状态都离散的马尔科夫过程,称为马尔可




