-dragon-
码龄15年
求更新 关注
提问 私信
  • 博客:1,105,205
    社区:1,067
    问答:4,767
    1,111,039
    总访问量
  • 131
    原创
  • 413
    粉丝
  • 23
    关注
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:广东省
加入CSDN时间: 2010-10-19

个人简介:越努力,越幸运,不要让任何事成为你不学习的理由!关注数据挖掘、增强现实和android相关领域的发展。

博客简介:

dragon的专栏

博客描述:
无论多难都要坚持技能包的修炼
查看详细资料
个人成就
  • 获得365次点赞
  • 内容获得86次评论
  • 获得978次收藏
  • 代码片获得428次分享
  • 博客总排名1,554,574名
创作历程
  • 4篇
    2017年
  • 123篇
    2016年
  • 30篇
    2015年
成就勋章
TA的专栏
  • android进阶开发
    7篇
  • AR/VR
    18篇
  • java
    12篇
  • android
    57篇
  • mySQL
    2篇
  • python
    27篇
  • Unity3d
    2篇
  • linux
    13篇
  • ML/DL
    17篇
  • C/C++
    1篇
  • mongodb
    7篇
  • nodejs
    4篇
  • HTML/CSS
    1篇
  • git
    3篇
  • openGL es
    8篇

TA关注的专栏 0

TA关注的收藏夹 0

TA关注的社区 0

TA参与的活动 0

创作活动更多

AI 镜像开发实战征文活动

随着人工智能技术的飞速发展,AI 镜像开发逐渐成为技术领域的热点之一。Stable Diffusion 3.5 FP8 作为强大的文生图模型,为开发者提供了更高效的图像生成解决方案。为了推动 AI 镜像开发技术的交流与创新,我们特此发起本次征文活动,诚邀广大开发者分享在 Stable Diffusion 3.5 FP8 文生图方向的实战经验和创新应用 本次征文活动鼓励开发者围绕 Stable Diffusion 3.5 FP8 文生图方向,分享以下方面的内容: 1. 技术实践与优化 - Stable Diffusion 3.5 FP8 模型架构解析与优化技巧 - 文生图生成效果的提升方法与技巧 - 模型部署与加速策略,例如使用 Hugging Face、Diffusers 等工具 - 针对特定场景(例如二次元、写实风)的模型微调与定制化开发 2. 应用场景探索 - Stable Diffusion 3.5 FP8 在不同领域的应用案例分享,例如游戏设计、广告创意、艺术创作等 - 利用 Stable Diffusion 3.5 FP8 实现图像编辑、图像修复、图像增强等功能的探索 - 结合其他 AI 技术(例如 NLP、语音识别)构建更强大的应用 3. 创新应用与思考 - 基于 Stable Diffusion 3.5 FP8 的创新应用场景设计 - AI 镜像开发的未来发展方向的思考与展望 - 对 AI 镜像开发伦理、安全等问题的探讨

28人参与 去参加
  • 最近
  • 文章
  • 专栏
  • 代码仓
  • 资源
  • 收藏
  • 关注/订阅/互动
更多
  • 最近

  • 文章

  • 专栏

  • 代码仓

  • 资源

  • 收藏

  • 关注/订阅/互动

  • 社区

  • 帖子

  • 问答

  • 课程

  • 视频

搜索 取消

朴素贝叶斯算法matlab代码实现

发布资源 2015.03.16 ·
rar

latex源文件

发布资源 2016.02.06 ·
zip

基于python实现kNN算法的

发布资源 2015.12.07 ·
rar

obj model文件

发布资源 2016.07.30 ·
rar

logistic回归的实现

发布资源 2016.01.27 ·
rar

最新最全unity 5.x从入门到精通 资源带源码

发布资源 2016.05.14 ·
txt

RBM-on-Classification RBM在分类上的应用

发布资源 2015.04.27 ·
rar

最新python学习包

发布资源 2015.11.14 ·
rar

DeepLearnToolbox 工具箱

发布资源 2015.04.27 ·
rar

ML--HMM(隐马尔可夫模型及python的实现1)

1.综述:隐马尔可夫模型是马尔可夫模型的进一步发展。马尔可夫模型是马尔可夫过程的模型化, 可以用图1 (a) 的框图形象表示。它把一个总随机过程看成一系列状态的不断转移。图1(b)是隐马尔可夫模型。1.1几个需要理解的概念a.马尔可夫性:如果一个过程的”将来”仅依赖“现在”,而不依赖“过去”,此过程具有马尔可夫性,称此过程是马尔可夫过程。 b,马尔科夫链:时间和状态都离散的马尔科夫过程,称为马尔可
原创
博文更新于 2016.01.17 ·
9488 阅读 ·
0 点赞 ·
0 评论 ·
7 收藏

python中关于图例legend在图外的画法简析

1.最近遇到一个问题,关于图例legend如何画在图外的问题,并以适合的比例显示出来。2.首先传统的做法如下,这种方式并不能满足我的要求,而且是显示在图内。ax1.legend(loc='center left', bbox_to_anchor=(0.2, 1.12),ncol=3)loc表示图例的位置,有多种形式:‘North’ 图例标识放在图顶端‘South’
原创
博文更新于 2016.12.19 ·
65595 阅读 ·
33 点赞 ·
1 评论 ·
122 收藏

opengl es坐标变换2

原文地址 :http://blog.csdn.net/lyx2007825/article/details/8792475Overview几何数据——顶点位置,和标准向量(normal vectors),在OpenGL 管道raterization 处理过程之前可通过顶点操作(Vertex Operation)和基本组合操作改变这些数据。Object Coordinates
转载
博文更新于 2016.08.09 ·
1668 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

python 学习小结(1)

1.关于python的作用域1.1 在Python中,变量名类似xxx的,也就是以双下划线开头,并且以双下划线结尾的,是特殊变量,特殊变量是可以直接访问的,不是private变量.1.2 当看到_name,这样的实例变量外部是可以访问的,但是,按照约定俗成的规定,当你看到这样的变量时,意思就是,“虽然我可以被访问,但是,请把我视为私有变量,不要随意访问”
原创
博文更新于 2015.11.23 ·
490 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

最新机器学习代码和数据

发布资源 2015.08.28 ·
rar

iTween的使用demo

发布资源 2016.07.03 ·
rar

iTween examples 23 个

发布资源 2016.07.03 ·
zip

bird.obj文件

发布资源 2016.07.30 ·
zip

Java事件处理机制(自定义事件)

转载地址:http://blog.csdn.net/qq_35101189/article/details/61673121?ref=myreadJava中的事件机制的参与者有3种角色:1.event object:事件状态对象,用于listener的相应的方法之中,作为参数,一般存在与listerner的方法之中2.event source:具体的事件源,比如说,你点击一个button,那么bu
转载
博文更新于 2017.03.13 ·
2160 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

排序算法理解浅析

1.排序算法有很多,准确的理解可以帮我们快速实现工程问题,一种是比较排序,时间复杂度最少可达到O(n log n),主要有:冒泡排序,选择排序,插入排序,归并排序,堆排序,快速排序等。另一种是非比较排序,时间复杂度可以达到O(n),主要有:计数排序,基数排序,桶排序等。本文主要介绍比较排序,下表给出了它们的复杂度 。2.快速排序快速排序是由东尼·霍尔所发展的一种排序算法。在平均或是最好的状况下,排序
原创
博文更新于 2017.02.22 ·
1179 阅读 ·
2 点赞 ·
0 评论 ·
2 收藏

SVM总结

http://blog.csdn.net/lc013/article/details/55195523
转载
博文更新于 2017.02.16 ·
1187 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏
加载更多